
AMS and SSL/TLS Performance on the
IBM MQ Appliance

Objective

Examine the performance of AMS(Advanced Message Security) and SSL/TLS(Secure Sockets

Layer/Transport Layer Security) on the MQ Appliance, including the new AMS Quality of Protection
Mode (Confidentiality).

Background

IBM MQ customers often require message payloads to be encrypted while in transit and at rest to

comply with various security mandates. TLS protects message data in transit, whilst AMS protects
message data in transit and at rest.

IBM MQ V9 delivered a new AMS Quality of Protection called ‘Confidentiality’ which utilizes symmetric
keys without message signing to provide a faster way to allow messages to be transferred securely
and protect their payload data at rest.

TLS is used to encrypt the data conversation sent/received between the client and queue manager to
provide link level security. AMS encrypts each individual message and is only decrypted at the
receiving application. Once a non-AMS message is received over a TLS channel, the message is stored
in plaintext in both QM(Queue Manager) memory and in the queue log/data files.

Both AMS and TLS provide the user with different options to protect the message data being flowed.
Each option can affect the overall messaging performance of the scenario and this paper will illustrate
the performance impact of those options.

Scenario

A couple of different scenarios will be used to analyze the AMS and TLS Performance:

 Single queue – All clients send and receive from a single queue

 Multiple queue – All clients send and receive from one of 10 queues

For this investigation, unless stated otherwise a 2KB persistent message is used in all tests. The
messaging scenario is a request responder scenario as featured in the current distributed and
appliance performance reports.

The following encryption details apply respectively to each of the scenarios:

 AMS

o Each message is encrypted for a single recipient

o The signing algorithm used in the Integrity and Privacy modes is SHA512. The
encryption algorithm used for the Privacy and Confidential modes is AES256

 TLS

o The TLS_RSA_WITH_AES_256_GCM_SHA384 CipherSpec will be used. The
signature algorithm is SHA256WithRSA.

 A comparison will be made between all of the AMS Quality of Protection settings:

Page 2

 None – No signing or encryption applied

 Integrity – Message is signed

 Privacy – Message is signed and encrypted

 Confidentiality – Message is encrypted and key may be reused

o Key reuse setting of 32 will be used

The key reuse setting controls how often the symmetric key that is regenerated. For more information
on this and additional detail on the Qualities of protection, please see the IBM Knowledge Center:

http://www.ibm.com/support/knowledgecenter/SSFKSJ_9.0.0/com.ibm.mq.sec.doc/q127085_.htm

For the comparisons in this whitepaper, an AMS Confidentiality key reuse value of 32 was chosen; this

is considered a reasonable compromise in the tradeoff between the costs of key renegotiation (i.e.
scenario performance) and security. A set of data collected that demonstrates how the performance

linearly varies with the key reuse configuration was demonstrated in the AMS report published for the
distributed platforms: http://ibm-messaging.github.io/mqperf/AMS.pdf

AMS Confidentiality(32) provides 94% of the performance of AMS Confidential(Unlimited), but will only
reuse the same symmetric key for 32 messages.

Environment

These tests use 2 x86_64 Linux servers (see Appendix A for their specification); Server 1 hosts the
requester clients, the MQ Appliance hosts the QM under test and Server 2 hosts the responder
applications.

When providing a message buffer to the MQGET API to receive your AMS message, ensure the buffer
is larger than the expected message size, as the encrypted payload size is larger than the original

message length. For the tests featured in this report a 20KB buffer was supplied, although on

subsequent analysis, a 4K byte buffer would have been sufficient as largest buffer required was 3406
bytes for the signed and encrypted data in an AMS Privacy message(original message size was 2048
bytes).

The version of MQ used in these tests is MQ V9.0.2.

http://www.ibm.com/support/knowledgecenter/SSFKSJ_9.0.0/com.ibm.mq.sec.doc/q127085_.htm
http://ibm-messaging.github.io/mqperf/AMS.pdf

Page 3

Results

Single queue

The graph below shows the results from the single queue test:

Note that the CPU represented on the charts in this whitepaper is an average of the two client
machines featured in the test; this is of more interest than the server CPU (which is traditionally
featured on such graphs) as the costs of encryption and decryption are handled by the client
machines.

Figure 1 - Single queue AMS Comparison

The performance of AMS Confidentiality is more than 3x faster than the AMS Privacy mode. At 140
clients, the performance of AMS Confidentiality was almost identical to than when not using AMS
(although significantly more CPU was being expended by the clients).

0

10

20

30

40

50

60

70

80

90

100

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 20 40 60 80 100 120 140

C
lie

n
t

 C
P

U
%

R
o

u
n

d
 T

ri
p

/s

Requester Clients

Single Queue - AMS Performance Comparison

None Integrity Privacy

Confidentiality(32) None - CPU% Integrity - CPU%

Privacy - CPU% Confidentiality(32) - CPU%

Page 4

Multiple queue

The graph below shows the results from the multiple queue test:

Figure 2 - Multiple Queue AMS Comparison

Adding multiple queues into the scenario has increased the performance of AMS Confidentiality(32) to
over 4x faster than the AMS Privacy mode. It has also increased the performance of the non AMS
scenario (by relieving queue lock) and at 100 clients, the performance of AMS Confidentiality(32) was
just under half of the performance when compared with not using AMS.

The peak throughput achieved for the AMS Confidentiality(32) measurement at 300 clients was just
over 18,000 round trip/s. The request/responder scenario utilizes a request and a reply queue, so for
each round trip, 2 message put and 2 message get operations take place. For a single put/single get
scenario, the peak performance that you might obtain in the same environment is over 36,000
msg/sec.

0

10

20

30

40

50

60

70

80

90

100

0

10000

20000

30000

40000

50000

60000

0 50 100 150 200 250 300

C
lie

n
t

C
P

U
%

R
o

u
n

d
 T

ri
p

/s

Requester Clients

Multiple Queue - AMS Performance Comparison

None Integrity Privacy

Confidentiality(32) None - CPU% Integrity - CPU%

Privacy - CPU% Confidentiality(32) - CPU%

Page 5

Effect of poorly sized receive buffer

If a buffer that is not adequately sized for performing the MQ Get operation, poor performance can

result from the MQ client having to perform multiple message retrievals from the MQ QM. The graph
below takes the AMS Confidentiality(32) result from the multiple queue scenario and compares it with
the result if a message buffer of just 2K had been provided:

Figure 3 - Effect of small receive buffer

0

10

20

30

40

50

60

70

80

90

100

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 20 40 60 80 100 120 140 160 180 200

C
lie

n
t

C
P

U
%

R
o

u
n

d
 T

ri
p

/s

Requester Clients

Multiple Queue - Small buffer effect

Confidentiality(32) Confidentiality(32) Small buffer

Confidentiality(32) - CPU% Confidentiality(32) Small buffer - CPU%

Page 6

Comparison with TLS

In the graph below, we compare the performance of AMS Confidentiality(32) with TLS. Although both

offer on-the-wire encryption, AMS also protects the message at rest at the QM. 3 variants of the TLS
scenario have been performed with different values for the SSLKeyResetCount. The
SSLKeyResetCount controls how much data flows between the client and the server before the TLS
secret key is renegotiated. A reasonable comparison would be the 64K scenario as that would offer
similar protection (amount of data transmitted between each key renegotiation) as AMS
Confidential(32). Performance data with the SSLKeyResetCount set to 256K and 0 (never renegotiate)
have also been included.

The server CPU is presented (rather than the Client CPU as used in previous graphs) to illustrate the
comparative server CPU utilization between AMS and TLS.

Figure 4 - AMS vs TLS Performance Comparison

This graph shows that in this scenario, TLS will outperform AMS in terms of throughput but will also
use a much larger slice of your Server CPU. Conversely the multiple responders per queue competing
for the same messages causes additional CPU to be utilized by the AMS clients.

0

10

20

30

40

50

60

70

80

90

100

0

5000

10000

15000

20000

25000

30000

0 20 40 60 80 100 120 140 160 180 200

Se
rv

er
 C

P
U

%

R
o

u
n

d
 T

ri
p

/s

Requester Clients

Multiple Queue - AMS vs TLS Performance Comparison

TLS (0) TLS (256KB) TLS (64KB)

Confidentiality(32) TLS (0) - CPU% TLS (256KB) - CPU%

TLS (64KB) - CPU% Confidentiality(32) - CPU%

Page 7

If you convert the throughput rate into an internal transaction rate of the server ((Throughput/Server

CPU)*100), AMS is much more efficient because the encryption is being handled by the clients:

Figure 5 - AMS vs TLS Internal Transaction Rate

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

Confidentiality(32) TLS (0) TLS (256KB) TLS (64KB)

IT
R

 (
R

o
u

n
d

 T
ri

p
s/

s)

AMS vs TLS Internal Transaction Rate

Page 8

Optimizing AMS Performance

In the previous sections the AMS results have used multiple queues (10) over which the workload has

been distributed. One optimization that can be used (if applicable to your scenario) is to use more
queues and have dedicated producers/consumers per queue. The following chart compares the various
encryption scenarios already explored (now using Non Persistent messages), with up to 200 requester
threads across 200 queues with 200 responder threads.

Figure 6 - AMS vs TLS NP Performance Comparison

In this scenario you can see that by avoiding contention by the AMS clients, the throughput is
improved such that AMS(32) is now 72% faster than TLS(0) and is now limited by the CPU on the AMS
clients. AMS(32) is now over 20x faster than AMS Privacy mode.

Conclusions

The new AMS Confidentiality mode provides end to end security for your message payload so that it is
protected in transit and whilst at rest in the Queue Managers filesystem within the MQ Appliance. It

reduces asymmetric key encryption and thus can offer faster performance than previously supported
AMS policies. It also allows the user to define how often to reuse the same symmetric key for payload
encryption, thus providing flexibility in the choice between key regeneration frequency and

performance. AMS Confidentiality mode now outperforms TLS in some scenarios whilst also reducing
CPU utilization at the server.

Author

The author of this whitepaper is Sam Massey who works in the MQ Performance Team at the IBM UK
Laboratory, Hursley. If you have any questions or comments on this paper, please contact him at
smassey@uk.ibm.com

0

10

20

30

40

50

60

70

80

90

100

0

20000

40000

60000

80000

100000

120000

140000

160000

0 20 40 60 80 100 120 140 160 180 200

Se
rv

er
 C

P
U

%

R
o

u
n

d
 T

ri
p

/s

Requester Clients

200 Queue - AMS vs TLS Performance Comparison

None Confidentiality(32) TLS (0)
Privacy None - CPU% Confidentiality(32) - CPU%
TLS (0) - CPU% Privacy - CPU%

Page 9

Appendix A

The three machines used for the performance tests in this report have the following specification:

Category Value

Machine x3550 M5

OS Red Hat Enterprise Linux Server 7.3

CPU 2x12 (2.6Ghz)

RAM 128GB RAM

Network 10Gb/40Gb Ethernet

Disks 2x 480GB SSD

RAID ServeRAID M5210 (4GB Flash RAID cache)

