
1

IBM MQ V9.1 for Linux (x86-64 platform)

Performance Report

Version 1.0 - September 2018

Paul Harris

IBM MQ Performance

IBM UK Laboratories

Hursley Park

Winchester

Hampshire

Notices

2

Please take Note!

Before using this report, please be sure to read the paragraphs on “disclaimers”,

“warranty and liability exclusion”, “errors and omissions”, and the other general

information paragraphs in the "Notices" section below.

First Edition, August 2018.

This edition applies to IBM MQ V9.1 (and to all subsequent releases and modifications

until otherwise indicated in new editions).

© Copyright International Business Machines Corporation 2018. All rights reserved.

Note to U.S. Government Users

Documentation related to restricted rights.

Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule

contract with IBM Corp.

DISCLAIMERS

The performance data contained in this report was measured in a controlled

environment. Results obtained in other environments may vary significantly.

You should not assume that the information contained in this report has been

submitted to any formal testing by IBM.

Any use of this information and implementation of any of the techniques are the

responsibility of the licensed user. Much depends on the ability of the licensed user to

evaluate the data and to project the results into their own operational environment.

WARRANTY AND LIABILITY EXCLUSION

The following paragraph does not apply to the United Kingdom or any other country

where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION

“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-

INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain

transactions, therefore this statement may not apply to you.

In Germany and Austria, notwithstanding the above exclusions, IBM's warranty and

liability are governed only by the respective terms applicable for Germany and Austria

in the corresponding IBM program license agreement(s).

ERRORS AND OMISSIONS

3

The information set forth in this report could include technical inaccuracies or

typographical errors. Changes are periodically made to the information herein; any

such change will be incorporated in new editions of the information. IBM may make

improvements and/or changes in the product(s) and/or the program(s) described in

this information at any time and without notice.

INTENDED AUDIENCE

This report is intended for architects, systems programmers, analysts and

programmers wanting to understand the performance characteristics of IBM MQ V9.1.

The information is not intended as the specification of any programming interface that

is provided by IBM MQ. It is assumed that the reader is familiar with the concepts and

operation of IBM MQ V9.1.

LOCAL AVAILABILITY

References in this report to IBM products or programs do not imply that IBM intends to

make these available in all countries in which IBM operates. Consult your local IBM

representative for information on the products and services currently available in your

area.

ALTERNATIVE PRODUCTS AND SERVICES

Any reference to an IBM product, program, or service is not intended to state or imply

that only that IBM product, program, or service may be used. Any functionally

equivalent product, program, or service that does not infringe any IBM intellectual

property right may be used instead. However, it is the user’s responsibility to evaluate

and verify the operation of any non-IBM product, program, or service.

USE OF INFORMATION PROVIDED BY YOU

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

TRADEMARKS AND SERVICE MARKS

The following terms used in this publication are trademarks of their respective

companies in the United States, other countries or both:

- IBM Corporation : IBM

- Oracle Corporation : Java

Other company, product, and service names may be trademarks or service marks of

others.

EXPORT REGULATIONS

You agree to comply with all applicable export and import laws and regulations.

4

Preface

Target audience

The report is designed for people who:

• Will be designing and implementing solutions using IBM MQ v9.1 for Linux on

x86_64.

• Want to understand the performance limits of IBM MQ v9.1 for Linux on x86_64.

• Want to understand what actions may be taken to tune IBM MQ v9.1 for Linux on

x86_64.

The reader should have a general awareness of the Linux operating system and of IBM

MQ in order to make best use of this report.

Whilst operating system, and MQ tuning details are given in this report (specific to the

workloads presented), a more general consideration of tuning and best practices, with

regards to application design, MQ topology etc, is no longer included in the platform

performance papers. You may refer to the V8 performance reports, which include

chapters discussing these aspects of performance. It is planned to update those sections

as a stand-alone, platform neutral paper in the future. This will be published on the MQ

performance GitHub page, along with other performance papers already available there:

https://ibm-messaging.github.io/mqperf/

Contents

This report includes:

• Release highlights with performance charts.

• Performance measurements with figures and tables to present the performance

capabilities of IBM MQ, across a range of message sizes, and including distributed

queuing scenarios.

Feedback

We welcome feedback on this report.

• Does it provide the sort of information you want?

• Do you feel something important is missing?

• Is there too much technical detail, or not enough?

• Could the material be presented in a more useful manner?

Specific queries about performance problems on your IBM MQ system should be directed

to your local IBM Representative or Support Centre.

Please direct any feedback on this report to paul_harris@uk.ibm.com.

https://ibm-messaging.github.io/mqperf/
mailto:paul_harris@uk.ibm.com??l?la?lan?lang?lang=?lang=e?lang=en

5

Contents
Preface .. 4
Contents .. 5
1 Introduction .. 8

1.1 Linear Logging Enhancements ... 10

1.2 Implicit Syncpoints ... 11

2 Workloads .. 13
2.1 RR-CB Workload (Client mode requesters on separate host. Binding mode

responders.) ... 13

2.2 RR-DQ-BB Workload (Distributed queueing between two queue managers on

separate hosts, with binding mode requesters and responders). 15

3 Non-Persistent Performance Test Results .. 16
3.1 RR-CB Workload .. 16

3.1.1 Test setup ... 17

3.2 RR-DQ-BB Workload (Distributed queueing between two queue managers on

separate hosts, with binding mode requesters and responders). 17

3.2.1 Test setup ... 18

3.3 RR-CC JMS Workload .. 19

3.3.1 Test setup ... 19

3.4 RR-CC Workload with TLS (Client mode requesters on separate host. Binding

mode responders.) ... 20

3.4.1 Test setup ... 21

4 Persistent Performance Test Results ... 22
4.1 RR-BB Workload .. 22

4.1.1 Test setup ... 23

4.2 Impact of Different File Systems on Persistent Messaging Performance 23

1.2.1 Test setup ... 24

Appendix A: Test Configurations .. 25
A.1 Hardware/Software – Set1 .. 25

A.1.1 Hardware .. 25

A.1.2 Software ... 25

A.2 Hardware/Software – Set2 (Persistent messaging comparisons) 25

A.2.1 Hardware .. 25

A.2.2 Software ... 26

A.3 Tuning Parameters Set for Measurements in This Report 27

A.3.1 Operating System ... 27

A.3.2 IBM MQ ... 28

Appendix B: Glossary of terms used in this report .. 29
Appendix C: Resources ... 30

6

TABLES

Table 1 - Workload types .. 13
Table 2 - Peak rates for workload RR-CB (non-persistent) .. 16
Table 3 – Full Results for workload RR-DQ-BB (non-persistent) ... 18
Table 4 - Peak rates for JMS (non-persistent) .. 19
Table 5 - Peak rates for MQI client bindings (2KB non-persistent) - SSL .. 21
Table 6 - Peak rates for workload RR-BB (non-persistent) .. 23
Table 7 - Peak rates for workload RR-BB (Persistent) ... 23

7

FIGURES

Figure 1 - Linear logging performance .. 10
Figure 2 - Effect of SYNCPOINT by Number of Applications ... 11
Figure 3 – Effect of SYNCPOINT by Number of Queues ... 12
Figure 4 - Requester-responder with remote queue manager (local responders)................................ 13
Figure 5 - Requester-responder with remote queue manager (remote responders). 15
Figure 6 - Performance results for RR-CB (2KB non-persistent).. 16
Figure 7 - Performance results for RR-DQ-BB (2KB non-persistent) ... 17
Figure 8 - Performance results for RR-CC (2KB JMS non-persistent) ... 19
Figure 9 - Performance Results for RR-CC with TLS ... 20
Figure 10 - Performance results for RR-BB (2KB Non-persistent vs Persistent) 22
Figure 11 - Performance Results for RR-BB Persistent Messaging logging to SSD, SAN & NFS 24

8

1 Introduction

IBM MQ V9.1 is a long term service (LTS) release of MQ, which includes features made

available in the V9.0.1, V9.0.2, V9.0.3, V9.0.4 & V9.0.5 continuous delivery (CD) releases.

Those CD releases are mainly functional in nature, but there are some significant

improvements to performance as well.

• Implicit syncpoints (see section 1.1)

• Automatic linear log management (see section 1.2)

Other areas that are significant to performance are:

• Improved guidance on transaction log sizing

The V9.1 knowledge centre provides much more detail on how you can size you

MQ transaction log. This can be seen in the subsections of the following

knowledge centre item:

https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.c

on.doc/q018470_.htm

• System topics for monitoring enhanced with additional metrics.

System topics for monitoring was introduced in V9.0, and has been enhanced in

the V9.0.x CD releases of the product, and now available in V9.1.

The following new metrics can be subscribed to, or viewed with the sample

program (amqsrua)

Class(DISK), Type(Log):

Log - write size

Log - current primary space in use

Log - workload primary space utilization

Write size reports the average size of a write to the MQ transaction log, which, in

combination with the latency (also reported), can give more insight to the

performance of you transaction logging.

‘Current primary space in use’, and ‘workload primary space utilization’, report

the values for the LOGINUSE, and LOGUTIL attributes of DISPLAY QMSTATUS,

respectively:

https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.r

ef.adm.doc/q086250_.htm

For more information, see the following blog articles and knowledge centre

section.

Blog Article:

https://www.ibm.com/developerworks/community/blogs/messaging/entry/Statisti

cs_published_to_the_system_topic_in_MQ_v9?lang=en_us

Knowledge centre:

https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.

mon.doc/mo00040_.htm

https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.con.doc/q018470_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.con.doc/q018470_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.ref.adm.doc/q086250_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.ref.adm.doc/q086250_.htm
https://www.ibm.com/developerworks/community/blogs/messaging/entry/Statistics_published_to_the_system_topic_in_MQ_v9?lang=en_us
https://www.ibm.com/developerworks/community/blogs/messaging/entry/Statistics_published_to_the_system_topic_in_MQ_v9?lang=en_us
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.mon.doc/mo00040_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.mon.doc/mo00040_.htm

9

Performance data presented in this report does not include release to release

comparisons, but all tests run showed equal or better performance than V8.0 & V9.0

releases of IBM MQ.

10

1.1 Linear Logging Enhancements
MQ V9.1 includes significant improvements to linear logging over MQ V9.0.

• Automatic management of log extents

• Automatic recording of media images

• Increased performance to near circular log performance

See the blog article on developer works for more details:

https://www.ibm.com/developerworks/community/blogs/messaging/entry/Logger_enhan

cements_for_MQ_v9_0_2?lang=en

With automatic log extent re-use, the performance of linear logging approaches that of

circular logging.

These features were performance tested in the V9.0.2 CD release where they were

introduced.

FIGURE 1 - LINEAR LOGGING PERFORMANCE

Figure 1, shows the improvement in linear logging performance, between V9.0.1

(equivalent to V9.0), and V9.0.2 (with automatic log management). A workload was run

that was limited by the rate the queue manager could write to the log files (on SAN

storage). The overall round trip rate is shown, which increases as we add more

applications putting and getting to the queues. For both linear logging tests, media

images were recorded every 10 seconds with rcdmqimg. Whilst the V9.0.1 test will

continue to create and format new linear log files continuously, in V9.0.2, existing log

files are made available for re-use as the media recovery point is moved forward in the

log. Performance is significantly improved in V9.0.2 as a result, coming close the that of

circular logging (with an efficiently sized log). Running the same test with an over-sized

circular log file set (labelled ‘V9.0.2 Circular Log(Large)’) shows a similar level of

performance to linear logging, indicating that the number of files being used is the main

difference between circular and linear logging now, rather than the additional formatting

costs.

0

10,000

20,000

30,000

40,000

50,000

60,000

0 50 100 150 200 250 300 350 400

R
o

u
n

d
 T

ri
p

s/
Se

c

Number of Requester Applications

V9.0.1 Linear Logging vs V9.0.2 Automatic Linear Logging

V9.0.1 Linear Log V9.0.2 Automatic Linear Log V9.0.2 Circular Log (Small) V9.0.2 Circular Log (Large)

https://www.ibm.com/developerworks/community/blogs/messaging/entry/Logger_enhancements_for_MQ_v9_0_2?lang=en
https://www.ibm.com/developerworks/community/blogs/messaging/entry/Logger_enhancements_for_MQ_v9_0_2?lang=en

11

1.2 Implicit Syncpoints

A long term performance recommendation has been to ensure that any MQPUT is

executed within a syncpoint. This ensures that the queue being updated is not locked for

the duration of the update operation, which includes a synchronous write to the

transaction log. Ensuring that all PUTs are inside a syncpoint benefits workloads where

there is a contention for the queue. It is also necessary for an MQGET, though getting a

transactional, persistent message outside of syncpoint does not make sense from a

business logic point of view either (if the message is lost at the network layer, MQ will

already have destroyed it).

It is still good practise to put messages inside a syncpoint, but if an application has not

been written to do this, it can sometimes be difficult to change retrospectively.

Implicit syncpoints, in MQ V9.1 (introduced in V9.0.5) detects PUTs outside of a

syncpoint and ‘wraps’ them in a unit of work, enabling the queue manager to process the

PUT more efficiently. Please refer to the following blog article for more detail:

https://developer.ibm.com/messaging/2018/04/24/implicit-syncpointing-persistent-

messages-put-outside-syncpoint

The figures below illustrate the benefit that can be obtained with implicit syncpoints. All

data has been collected on a Linux machine.

FIGURE 2 - EFFECT OF SYNCPOINT BY NUMBER OF APPLICATIONS

Figure 2 shows performance results for tests where 10 queues pairs are utilised, with an

increasing number of requester applications running, processing 2KiB messages. When

there is only one application, there will never be another MQPUT being processed

alongside that of application 1, so there is little difference between executing the MQPUT

inside, or outside of syncpoint, in the application. Once we add more MQ applications,

the benefits of using syncpoints become evident, particularly with a higher latency

filesystem, as MQPUTs outside of syncpoint will lock the queue while the log record is

0

5,000

10,000

15,000

20,000

25,000

30,000

1 Application 30 Applications 60 Applications

R
o

u
n

d
 T

ri
p

s/
Se

c

Round-Trips across 10 Queue Pairs (SAN)

MQPUT Inside Syncpoint MQPUT Outside Syncpoint (V904) MQPUT Outside Syncpoint (V905)

https://developer.ibm.com/messaging/2018/04/24/implicit-syncpointing-persistent-messages-put-outside-syncpoint
https://developer.ibm.com/messaging/2018/04/24/implicit-syncpointing-persistent-messages-put-outside-syncpoint

12

synchronously forced to disk. Using syncpoints reduces contention with the added

benefit that other applications can write into the log buffer, resulting in more

aggregation of log data, in a single write. With V9.0.5, implicit syncpointing reduces lock

contention, matching the performance of the explicit syncpoint scenario.

FIGURE 3 – EFFECT OF SYNCPOINT BY NUMBER OF QUEUES

Figure 3 shows the effect of reducing queue locking by spreading the load across a

number of queue pairs (REQUEST Q/REPLY Q). All tests use 60 requester applications.

When the workload is driven through a single pair of queues, the non-syncpoint case has

a low throughput (not much better than the test using 1 requester in chart 1), as each

MQPUT queues up behind the previous one to that queue, with a forced log write being

executed within the scope of the queue lock. Using syncpoints alleviates this issue,

allowing for more concurrency. As we increase the number of queue pairs, the locking

becomes less of an issue, until, at 60 pairs of queues, where there are only 2 requester

applications per queue pair, the non-syncpoint case is not much less than using

syncpoints. Once again, the V.9.0.5 test case, with PUTs outside of syncpoints matches

the explicit syncpoint scenario.

0

5,000

10,000

15,000

20,000

25,000

30,000

1 Q Pair 10 Q Pairs 60 Q Pairs

R
o

u
n

d
 T

ri
p

s/
Se

c

Round-Trips by 60 Applications across n Queue Pairs (SAN)

MQPUT Inside Syncpoint MQPUT Outside Syncpoint (V904) MQPUT Outside Syncpoint (V905)

13

2 Workloads

Table 1 (below) lists the workloads used in the generation of performance data for this

report. All workloads are requester/responder (RR) scenarios which are synchronous in

style because the application putting a message on a queue will wait for a response on

the reply queue before putting the next message. They typically run ‘unrated’ (no think

time between getting a reply and putting the next message on the request queue).

Workload Description

RR-CB Client mode requesters on separate host. Binding mode responders.

RR-DQ-BB Distributed queueing between two queue managers on separate hosts, with

binding mode requesters and responders.

RR-BB Binding mode requesters and responders

RR-CC Client mode requesters, and responders on separate, unique hosts

TABLE 1 - WORKLOAD TYPES

Binding mode connections use standard MQ bindings, client mode connections use

fastpath channels and listeners (trusted).

RR-CB & RR-DQ-BB are described in the following section. The remaining two workloads

differ only in the location of the MQ applications, which is made clear in the results

presented in this report.

2.1 RR-CB Workload (Client mode requesters on separate host. Binding mode
responders.)

FIGURE 4 - REQUESTER-RESPONDER WITH REMOTE QUEUE MANAGER (LOCAL RESPONDERS)

Figure 4 shows the topology of the RR-CB test. The test simulates multiple ‘requester’

applications which all put messages onto a set of ten request queues. Each requester is

a thread running in an MQI (CPH) or JMS (JMSPerfHarness) application. Additional

MQ-CPH (1)

Server/Responder Machine

Responder 1
MQGet

Responder 2

Requester 1

Requestor 2

Requester 3

Requester 4

MQPut

MQ-CPH (1)

MQ

…Responder 3

Responder 4

MQGet MQPut

Requester Machine(s)

Request queues

Reply queues

…

Requester n Responder n

……

…

14

machines may be used to drive the requester applications where necessary. The threads

utilise the requester queues in a round robin fashion, ensuring even distribution of

traffic.

Another set of ‘responder’ applications retrieve the message from the request queue and

put a reply of the same length onto a set of ten reply queues. Each responder is a thread

of CPH or JMSPerfHarness and there may be multiple instances of these MQI or JMS

applications, similar to the responders. The number of responders is set such that there

is always a waiting ‘getter’ for the request queue.

The flow of the test is as follows:

1. The requester application puts a message to a request queue on the remote

queue manager and holds on to the message identifier returned in the message

descriptor. The requester application then waits indefinitely for a reply to arrive

on the appropriate reply queue.

2. The responder application gets messages from the request queue and places a

reply to the appropriate reply queue. The queue manager copies over the

message identifier from the request message to the correlation identifier of the

reply message.

3. The requester application gets a reply from the reply queue using the message

identifier held when the request message was put to the request queue, as the

correlation identifier in the message descriptor.

This test is executed using client channels as trusted applications programs by specifying

“MQIBindType=FASTPATH” in the qm.ini file. This is recommended generally, but not

advised if you run channel exit programs and do not have a high degree of confidence in

their robustness

Variants of the RR-CB test differ in the location of the applications (RR-BB & RR-CC).

15

2.2 RR-DQ-BB Workload (Distributed queueing between two queue managers
on separate hosts, with binding mode requesters and responders).

FIGURE 5 - REQUESTER-RESPONDER WITH REMOTE QUEUE MANAGER (REMOTE

RESPONDERS).

This is a distributed queuing version of the requester-responder topology detailed in

section 2.1. All MQPUTs are to remote queues so that messages are now transported

across server channels to the queue manager where the queue is hosted.

JMSPerfHarness/CPH (1)

Distributed Server Machine Remote Server Machine

Responder i
MQGet

Responder ii

Requester 1

Requestor 2

Producer 3

Producer 4

MQPut

JMSPerfHarness/CPH (1)
MQ

Responder iii

Responder iv

Reply queue 1

MQGet
MQPut

MQ

Transmission

queue 1

Transmission

queue 2

Channel 1

Channel 1

Local Bindings

Request queue 1

Request queue 2

Transmission

queue 1

Transmission

queue 2

Channel 2

Reply queue 2
Channel 2

Responder v

Responder vi

Transmission

queue n

Transmission

queue n

Request queue n

Reply queue n

16

3 Non-Persistent Performance Test Results
Full performance test results are detailed below. The test results are presented by broad

categories with an illustrative plot in each section followed by the peak throughput

achieved for the remaining tests in that category (the remaining tests are typically for

different message sizes).

3.1 RR-CB Workload

The following chart illustrates the performance of 2KB Non-persistent messaging with

various numbers of requester clients.

FIGURE 6 - PERFORMANCE RESULTS FOR RR-CB (2KB NON-PERSISTENT)

The test peaked at approximately 134,000 round trips/sec, fully utilising the CPU of the

MQ server.

Peak round trip rates for all message sizes tested can be seen in the table below. The

200KB and 2MB scenarios are being limited by the 40Gb network that links the client and

server machines.

*ROUND TRIPS/ SEC

TABLE 2 - PEAK RATES FOR WORKLOAD RR-CB (NON-PERSISTENT)

0

10

20

30

40

50

60

70

80

90

100

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

1 10 19 28 37 46 55 64 73 82 91 100

C
P

U
%

R
o

u
n

d
 T

ri
p

s
/s

e
c

Requester Applications

RR-CB (2KB Non-persistent)

V9.1 round trips/sec V9.1 CPU%

Test V9.1

Max Rate* CPU% Clients

RR-CB (2KB Non-persistent) 133,588 98.93 60

RR-CB (20KB Non-persistent) 110,517 98.85 60

RR-CB (200KB Non-persistent) 22,624 59.96 50

RR-CB (2MB Non-persistent) 2,220 61.27 50

17

3.1.1 Test setup
Workload type: RR-CB (see section 2.1).

Hardware: Server 1, Client 1, Client 2 (see section A.1).

3.2 RR-DQ-BB Workload (Distributed queueing between two queue managers
on separate hosts, with binding mode requesters and responders).

The distributed queuing scenarios use workload type RR-DQ-BB (see section 0) where

locally bound requesters put messages onto a remote queue.

The throughput will be sensitive to network tuning and server channel setup amongst

other things. All of the tests in this section utilise multiple send/receive channels. This

particularly helps with smaller, non-persistent messages when the network is under-

utilised.

FIGURE 7 - PERFORMANCE RESULTS FOR RR-DQ-BB (2KB NON-PERSISTENT)

0

10

20

30

40

50

60

70

80

90

100

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

1 25 49 73 97 121 145 169 193 217 241

C
P

U
%

R
o

u
n

d
 T

ri
p

s
/s

e
c

Requester Applications

RR-DQ-BB (2KB Non-persistent)

V9.1 round trips/sec V9.1 CPU%

18

The distributed queuing test exhibits good scaling with CPU being the limiting factor as

the number of clients increases.

Peak round trip rates for all message sizes tested can be seen in the table below. The

200KB and 2MB measurements are again network limited by the 40Gb network.

*ROUND TRIPS/ SEC

TABLE 3 – FULL RESULTS FOR WORKLOAD RR-DQ-BB (NON-PERSISTENT)

3.2.1 Test setup
Workload type: RR-DQ-BB (see section 0).

Hardware: Server 1, Client 1 (see section A.1).

Test V9.1

Max Rate* CPU% Clients

RR-DQ-BB (2KB Non-persistent) 168,742 94.74 250

RR-DQ-BB (20KB Non-persistent) 124,653 92.08 150

RR-DQ-BB (200KB Non-persistent) 22,322 54.39 50

RR-DQ-BB (2MB Non-persistent) 2,122 54.29 30

19

3.3 RR-CC JMS Workload

The test application is JMSPerfharness, which is run unrated (i.e. each requester sends a

new message as soon as it receives the reply to the previous one).

FIGURE 8 - PERFORMANCE RESULTS FOR RR-CC (2KB JMS NON-PERSISTENT)

Once again, the workload exhibits good scaling up to 100% of the CPU (the limiting

factor), peaking at approximately 95,000 round trips/sec

Peak round trip rates for all message sizes tested can be seen in the table below. The

200KB and 2MB scenarios are network limited by the 40Gb network; the rates are lower

than the RR-CB network limited scenarios because of the additional network hop to the

responder applications which are local in the RR-CB scenario.

*ROUND TRIPS/ SEC

TABLE 4 - PEAK RATES FOR JMS (NON-PERSISTENT)

3.3.1 Test setup
Workload type: RR-CC (see section 2).

Message protocol: JMS

Hardware: Server 1, Client 1, Client 2 (see section A.1).

0

10

20

30

40

50

60

70

80

90

100

0

20,000

40,000

60,000

80,000

100,000

1 20 39 58 77 96 115 134 153 172 191

C
P

U
%

R
o

u
n

d
 T

ri
p

s
/s

e
c

Requester Applications

RR-CC (2KB JMS Non-persistent)

V9.1 round trips/sec V9.1 CPU%

Test V9.1

Max Rate* CPU% Clients

RR-CC (2KB JMS Non-persistent) 95,166 99.98 180

RR-CC (20KB JMS Non-persistent) 75,376 99.61 150

RR-CC (200KB JMS Non-persistent) 10,499 62.97 100

RR-CC (2MB JMS Non-persistent) 973 57.5 100

20

3.4 RR-CC Workload with TLS (Client mode requesters on separate host.
Binding mode responders.)

To illustrate the overhead of enabling TLS, results are provided comparing the

performance of the 6 strongest TLS1.2 MQ CipherSpecs, with the baseline client bindings

2KB test presented in section 3.1.

Queue manager authentication is used to setup the TLS conversation.

The TLS 1.2 ciphers under test are shown below (all utilise 256bit encryption, and are

FIPS compliant).

CipherSpec SuiteB

TLS_RSA_WITH_AES_256_CBC_SHA256 No

TLS_RSA_WITH_AES_256_GCM_SHA384 No

ECDHE_ECDSA_AES_256_CBC_SHA384 No

ECDHE_ECDSA_AES_256_GCM_SHA384 Yes

ECDHE_RSA_AES_256_CBC_SHA384 No

ECDHE_RSA_AES_256_GCM_SHA384 No

Results for the suite B compliant cipherspec (ECDHE_ECDSA_AES_256_GCM_SHA384)

are plotted below. This cipherspec uses a GCM (Galois/Counter Mode) symmetric cipher.

Performance testing showed that all GCM based cipherpecs exhibited similar

performance. Cipherspecs utilising the older CBC (Chain Block Cipher) symmetric cipher

also exhibited similar performance to each other. One CBC cipherspec

(ECDHE_ECDSA_AES_256_CBC_SHA384) is included in the plot below, for comparison.

FIGURE 9 - PERFORMANCE RESULTS FOR RR-CC WITH TLS

0

10

20

30

40

50

60

70

80

90

100

0

20,000

40,000

60,000

80,000

100,000

120,000

0 10 20 30 40 50 60 70 80 90 100

C
P

U
%

R
o

u
n

d
 T

ri
p

s
/s

e
c

Requester Connections

RR-CC (2KB Non-persistent) : TLS comparison

No TLS

ECDHE_ECDSA_AES_256_CBC_SHA384

ECDHE_ECDSA_AES_256_GCM_SHA384

No TLS CPU%

ECDHE_ECDSA_AES_256_CBC_SHA384 CPU%

ECDHE_ECDSA_AES_256_GCM_SHA384 CPU%

21

All tests exhibited good scaling up to 100% of the CPU of the machine. Throughput for

GCM based cipherspecs ran at approximately 61% of the throughput of a non-encrypted

workload. CBC based cipherspecs exhibited a greater overhead, running at

approximately 39% of a non-encrypted workload.

*Round trips/ sec

Table 5 shows the peak rates achieved for all 6 cipherspecs tested, demonstrating the

equivalence of performance, based on whether the symmetric key algorithm is CBC, or

GCM based.

*ROUND TRIPS/ SEC

TABLE 5 - PEAK RATES FOR MQI CLIENT BINDINGS (2KB NON-PERSISTENT) - SSL

3.4.1 Test setup
Workload type: RR-CC (see section 2).

Hardware: Server 1, Client 1, Client 2 (see section A.1).

Cipher V9.1GM

Max Rate* CPU% Clients

No TLS 99,829 100 100

TLS_RSA_WITH_AES_256_CBC_SHA256 38,441 100 100

TLS_RSA_WITH_AES_256_GCM_SHA384 60,891 100 100

ECDHE_ECDSA_AES_256_CBC_SHA384 38,530 100 100

ECDHE_ECDSA_AES_256_GCM_SHA384 60,736 100 100

ECDHE_RSA_AES_256_CBC_SHA384 38,317 100 100

ECDHE_RSA_AES_256_GCM_SHA384 60,923 100 100

Cipher V9.1GM

Max Rate* CPU% Clients

No TLS 99,829 100 100

TLS_RSA_WITH_AES_256_CBC_SHA256 38,441 100 100

TLS_RSA_WITH_AES_256_GCM_SHA384 60,891 100 100

ECDHE_ECDSA_AES_256_CBC_SHA384 38,530 100 100

ECDHE_ECDSA_AES_256_GCM_SHA384 60,736 100 100

ECDHE_RSA_AES_256_CBC_SHA384 38,317 100 100

ECDHE_RSA_AES_256_GCM_SHA384 60,923 100 100

22

4 Persistent Performance Test Results

The performance of persistent messaging is largely dictated by the capabilities of the

underlying filesystem hosting the queue files, and more critically, the transaction log

files. IBM MQ is designed to maximise throughput, regardless of the technology used, by

aggregating writes where possible, to the transaction log, where they need to be

synchronous to ensure transactional integrity.

The performance of persistent messaging is therefore dependant on the machine hosting

MQ, and the I/O infrastructure. Some comparisons are shown below between non-

persistent and persistent messaging for local storage, and then results for V9.1 in a

separate environment (x64 Linux with SAN, SSD & NFS filesystems) are shown to

demonstrate the impact of transaction log location.

4.1 RR-BB Workload

FIGURE 10 - PERFORMANCE RESULTS FOR RR-BB (2KB NON-PERSISTENT VS

PERSISTENT)

Figure 10 shows results from running the RR-BB workload with 2KB non-persistent and

persistent messages, on the same server used for the non-persistent scenarios in the

previous sections.

RR-BB is a variant of RR-CB (see section 2.1) where all applications are connected in

bindings mode. This accentuates the impact of persistent messaging since we are no

longer limited by network bandwidth.

Note that for smaller message sizes (as for 2KB, above), higher rates of throughput in

persistent scenarios are attained when there is a greater deal of concurrency (i.e.

requester applications) as this enables the logger component of IBM MQ to aggregate log

data into larger, more efficient writes to disk.

0

10

20

30

40

50

60

70

80

90

100

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

0 20 40 60 80 100 120 140 160 180 200

C
P

U
%

R
o

u
n

d
 T

ri
p

s
/s

e
c

Requester Applications

RR-BB (2KB)

V9.1 round trips/sec (Non-Persistent) V9.1 round trips/sec (Persistent) V9.1 CPU% (Non-Persistent) V9.1 CPU% (Persistent)

23

Peak round trip rates for all message sizes tested, for persistent & non-persistent

scenarios can be seen in the tables below.

Non-persistent workloads are typically limited by the CPU, whilst the transaction log I/O

is the limiting factor for the persistent workloads. As the message size goes up, the time

spent on the transaction log write becomes a larger factor, so although the bytes per sec

is more, the overall CPU utilisation is lower. The level of concurrency needed to reach

the limitations of the filesystem also drops as the message size increases.

*ROUND TRIPS/ SEC

TABLE 6 - PEAK RATES FOR WORKLOAD RR-BB (NON-PERSISTENT)

*ROUND TRIPS/ SEC

TABLE 7 - PEAK RATES FOR WORKLOAD RR-BB (PERSISTENT)

4.1.1 Test setup
Workload type: RR-BB (see section 2).

Hardware: Server 1 (see section A.1).

4.2 Impact of Different File Systems on Persistent Messaging Performance

A separate paper has been published, with illustrative results, for SSD, SAN and NFS

hosted filesystems, along with some guidance, on best practises, and monitoring.

https://ibm-messaging.github.io/mqperf/mqio_v1.pdf

If possible, you should assess the performance of a new application, with non-persistent

messaging first. If the target rate of messaging is met, then calculate the required

bandwidth of the filesystem hosting the transaction logs.

Test V9.1

Max Rate* CPU% Clients

RR-BB (2K Non-persistent) 198,448 99.96 50

RR-BB (20K Non-persistent) 132,699 99.68 50

RR-BB (200K Non-persistent) 64,741 92.79 24

RR-BB (2MB Non-persistent) 3,249 80.41 20

Test V9.1

Max Rate* CPU% Clients

RR-BB (2KB Persistent) 58,539 94.75 200

RR-BB (20KB Persistent) 39,050 71.61 100

RR-BB (200KB Persistent) 5,615 19.97 20

RR-BB (2MB Persistent) 634 16.7 10

https://ibm-messaging.github.io/mqperf/mqio_v1.pdf

24

FIGURE 11 - PERFORMANCE RESULTS FOR RR-BB PERSISTENT MESSAGING LOGGING TO

SSD, SAN & NFS

To illustrate the impact that the filesystem hosting the transaction logs can have, Figure

11 shows results from running the RR-BB workload with non-persistent and persistent

messaging (hosted on different filesystems).

RR-BB is a variant of RR-CB (see section 2.1) where all applications are connected in

bindings mode, eliminating the network as a bottleneck (except in the case of NFS,

where there is a 10Gb link from the MQ server to the NFS server).

As expected, the non-persistent case is limited by CPU

1.2.1 Test setup

Workload type: RR-BB (see section 2).

Hardware: x64 Linux MQ server, x64 Linux NFS server, IBM SAN Volume Controller, and

Storwise V7000 – see section A.2.

0

10

20

30

40

50

60

70

80

90

100

0

50,000

100,000

150,000

200,000

0 50 100 150 200 250 300

C
P

U
%

R
o

u
n

d
 T

ri
p

s
/s

e
c

Requester Applications

RR-BB (2KB Persistent) Messaging

Non-persistent round trips/sec Persistent (SAN) round trips/sec Persistent (SSD) round trips/sec Persistent (NFS) round trips/sec

Non-persistent CPU% Persistent (SAN) CPU% Persistent (SSD) CPU% Persistent (NFS) CPU%

25

Appendix A: Test Configurations

A.1 Hardware/Software – Set1

All of the testing in this document (apart from when testing results are shown from a

different platform and are clearly identified as such) was performed on the following

hardware and software configuration:

A.1.1 Hardware

Server1, client1 & client2 are three identical machines:

Lenovo System x3550 M5 – [5463-L2G]

2 x 12 core CPUs.

Core: Intel® Xeon® E5-2690 v3 @ 2.60GHz

128GB RAM

40Gb ethernet adapters connect all three machines via an isolated performance LAN.

A.1.2 Software

Red Hat Enterprise Linux Server release 7.4 (Maipo)

JMSPerfHarness test driver (see Appendix C:)

MQ-CPH MQI test driver (see Appendix C:)

IBM MQ V9.1

A.2 Hardware/Software – Set2 (Persistent messaging comparisons)

The persistent messaging tests in section 4.2, comparing different filesystems used to

host the MQ transaction logs, were run with the following hardware/software.

A.2.1 Hardware

The MQ Server and NFS Server are two identical machines:

Lenovo System x3550 M5 – [8869-AC1]

2 x 14 core CPUs.

Core: Intel® Xeon® E5-2690 v4 @ 2.60GHz

128GB RAM

10Gb ethernet adapters connected the QM server to the NFS server, via an isolated

performance LAN.

26

The SAN test used an IBM Storwize V7000 populated with 10,000 rpm disks configured

in a RAID 10 array, and fronted by an IBM SAN Volume Controller (SVC) with 20GB of

RAM. The SVC was connected to the MQ server via a dual-port 8Gb fibre channel

adapter.

A.2.2 Software

Red Hat Enterprise Linux Server release 7.4 (Maipo)

MQ-CPH MQI test driver (see Appendix C:)

IBM MQ V9.1

27

A.3 Tuning Parameters Set for Measurements in This Report

The tuning detailed below was set specifically for the tests being run for this

performance report but in general follow the best practises.

A.3.1 Operating System

A good starting point is to run the IBM supplied program mqconfig. The following Linux

parameters were set for measurements in this report.

/etc/sysctl.conf

fs.file-max = 13121479

net.ipv4.ip_local_port_range = 1024 65535

vm.max_map_count = 1966080

kernel.pid_max = 655360

kernel.sem = 1000 1024000 500 8192

kernel.msgmnb = 131072

kernel.msgmax = 131072

kernel.msgmni = 32768

kernel.shmmni = 8192

kernel.shmall = 4294967296

kernel.shmmax = 137438953472

kernel.sched_latency_ns = 2000000

kernel.sched_min_granularity_ns = 1000000

kernel.sched_wakeup_granularity_ns = 400000

/etc/security/limits.d/mqm.conf

@mqm soft nofile 1048576

@mqm hard nofile 1048576

@mqm soft nproc 1048576

@mqm hard nproc 1048576

@mqm soft core unlimited

@mqm hard core unlimited

28

A.3.2 IBM MQ

The following parameters are added or modified in the qm.ini files for the tests run in

section 3 of this report:

Channels:

 MQIBindType=FASTPATH

 MaxActiveChannels=5000

 MaxChannels=5000

Log:

 LogBufferPages=4096

 LogFilePages=16384

 LogPrimaryFiles=16

 LogSecondaryFiles=2

 LogType=CIRCULAR

 LogWriteIntegrity=TripleWrite

TuningParameters:

 DefaultPQBufferSize=10485760

 DefaultQBufferSize=10485760

For large message sizes (200K & 2MB), the queue buffers were increased further to:

DefaultPQBufferSize=104857600

DefaultQBufferSize=104857600

Note that large queue buffers may not be needed in your configuration. Writes to the

queue files are asynchronous, taking advantage of OS buffering. Large buffers were set

in the runs here, as a precaution only.

29

Appendix B: Glossary of terms used in this report

CD Continuous delivery.

JMSPerfharness JMS based, performance test application

(https://github.com/ot4i/perf-harness)

LTS Long term service.

MQ-CPH C based, performance test application

(https://github.com/ibm-messaging/mq-cph)

https://github.com/ot4i/perf-harness
https://github.com/ibm-messaging/mq-cph

30

Appendix C: Resources

MQ Performance GitHub Site

https://ibm-messaging.github.io/mqperf/

Linear Logging Improvements Blog Article

https://www.ibm.com/developerworks/community/blogs/messaging/entry/Logger_enhan

cements_for_MQ_v9_0_2?lang=en

Implicit Syncpoint Blog Article

https://developer.ibm.com/messaging/2018/04/24/implicit-syncpointing-persistent-

messages-put-outside-syncpoint

MQ-CPH (The IBM MQ C Performance Harness)

https://github.com/ibm-messaging/mq-cph

JMSPerfHarness

https://github.com/ot4i/perf-harness

Persistent Messaging Performance Paper

https://ibm-messaging.github.io/mqperf/mqio_v1.pdf

Transaction Log Sizing Documentation

https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.con.doc/

q018470_.htm

https://ibm-messaging.github.io/mqperf/
https://www.ibm.com/developerworks/community/blogs/messaging/entry/Logger_enhancements_for_MQ_v9_0_2?lang=en
https://www.ibm.com/developerworks/community/blogs/messaging/entry/Logger_enhancements_for_MQ_v9_0_2?lang=en
https://developer.ibm.com/messaging/2018/04/24/implicit-syncpointing-persistent-messages-put-outside-syncpoint
https://developer.ibm.com/messaging/2018/04/24/implicit-syncpointing-persistent-messages-put-outside-syncpoint
https://github.com/ibm-messaging/mq-cph
https://github.com/ot4i/perf-harness
https://ibm-messaging.github.io/mqperf/mqio_v1.pdf
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.con.doc/q018470_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.con.doc/q018470_.htm

