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Preface  

Target audience 

The report is designed for people who: 

• Will be designing and implementing solutions using IBM MQ v9.2 for Linux on 
x86_64. 

• Want to understand the performance limits of IBM MQ v9.2 for Linux on x86_64. 

• Want to understand what actions may be taken to tune IBM MQ v9.2 for Linux on 

x86_64. 

 

The reader should have a general awareness of the Linux operating system and of IBM 

MQ in order to make best use of this report.  

Whilst operating system, and MQ tuning details are given in this report (specific to the 

workloads presented), a more general consideration of tuning and best practices, with 

regards to application design, MQ topology etc, is no longer included in the platform 

performance papers. A separate paper on general performance best practises has been 

made available here: https://ibm-

messaging.github.io/mqperf/MQ_Performance_Best_Practices_v1.0.1.pdf 

 

Contents 

This report includes: 

• Release highlights with performance charts. 

• Performance measurements with figures and tables to present the performance 
capabilities of IBM MQ, across a range of message sizes, and including distributed 

queuing scenarios. 

 

 

Feedback 

We welcome feedback on this report. 

• Does it provide the sort of information you want? 

• Do you feel something important is missing? 
• Is there too much technical detail, or not enough? 

• Could the material be presented in a more useful manner? 

 

Specific queries about performance problems on your IBM MQ system should be directed 

to your local IBM Representative or Support Centre. 

Please direct any feedback on this report to paul_harris@uk.ibm.com. 

  

 

  

https://ibm-messaging.github.io/mqperf/MQ_Performance_Best_Practices_v1.0.1.pdf
https://ibm-messaging.github.io/mqperf/MQ_Performance_Best_Practices_v1.0.1.pdf
mailto:paul_harris@uk.ibm.com??l?la?lan?lang?lang=?lang=e?lang=en
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1 Introduction 

IBM MQ V9.2 is a long term service (LTS) release of MQ, which includes features made 

available in the V9.1.1, V9.1.2, V9.1.3, V9.1.4 & V9.1.5 continuous delivery (CD) 

releases. Those CD releases  are mainly functional in nature, but there are some 

significant improvements to performance as well 

• Queue manager restart times (see section 1) 

• Improved switch/fail-over times (see section 0) 

 

The release highlights section of this report also includes detail on Uniform Cluster 

function, , first introduced in V9.1.2 CD and rolled into 9.2 LTS.  

Performance data presented in this report does not include release to release 

comparisons, but all tests run showed equal or better performance than V9.0 & V9.1 

releases of IBM MQ. 

 

As with all performance sensitive tests, you should run your own tests where possible, to 

simulate your production environment and circumstances you are catering for. 
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1 Release Highlights 
 

 

1.1 Queue manager restart time improvements 
 

MQ V9.2 includes significant improvements to queue manager restart times, introduced 

in the V9.1.1 CD release of MQ.  

 

FIGURE 1 - RESTART TIMES FOR BUSY QM 
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SAN: SAN hosted file system, using an IBM San Volume Controller (SVC), via 8Gb 

fibre links. 

NFS1: NFS (V4) hosted on RAID cached disks via a dedicated* 10Gb network link. 

NFS2: NFS (V4) hosted on RAID cached disks via a dedicated* 10Gb network link with 

an additional 500us delay on network added in each direction. 

NFS3: NFS (V4) hosted on RAID cached disks via a dedicated* 10Gb network link with 

an additional 1ms delay on network added in each direction. 

 

Figure 1, shows the restart times for a busy queue manager across a number of different 

file systems (see above) hosting the queue files and recovery log. Tests measure restart 

time when there has been a failure of some type, causing the queue manager to 

abruptly end, with potentially in-flight transactions (in our test scenarios we killed the 

queue manager processes).  

Re-start times are improved significantly for slower file systems such as NFS, but 

changes in V9.1.1 also improve re-start times where there are deep queues, regardless 

of where the recovery log is located. 

A paper with fuller details has been published on the MQ performance github site: 

https://ibm-messaging.github.io/mqperf/Queue%20Manager%20Restart%20Times.pdf 

 

 

  

https://ibm-messaging.github.io/mqperf/Queue%20Manager%20Restart%20Times.pdf
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1.1 Improved Switch/Fail-over times 

Improvements introduced in the V9.1.2 CD release of MQ focused on the processing of 

client disconnections, in particular the time it takes to disconnect significant numbers of 

clients when switching queue managers or processing the fail-over of a queue manager. 

Figure 2 shows a comparison of V9.1.0.2 vs V9.1.2 re-start times in three different 

scenarios: 

 

FIGURE 2 – TIME TO RESTART AFTER SWITCHOVER OR FAILOVER (MIQM & RDQM) 

 

Test Description 

S1000 Switch-over with 1000 applications running at a set rate of 1 Put/Get per sec 

(total 1000 round trips/sec) 

S500U Switch-over with 500 applications running unrated* (MIQM total rate ~50,000 

Put/Gets per sec. RDQM total rate ~85,000 Put/Gets per sec). 

FN500U Fail-over (network) with 500 applications running unrated (MIQM total rate 

~50,000 Put/Gets per sec. RDQM totalrate ~85,000 Put/Gets per sec). 

nfsv4leasetime & nfsv4gracetime reduced to 10secs 

*unrated applications execute Put/Get requests at the maximum number/per second 

rather than a set rate (e.g. 1 per second). 

Further details can be found in this blog article: 

https://community.ibm.com/community/user/imwuc/viewdocument/improved-switchfail-

over-times-in 

 

 

https://community.ibm.com/community/user/imwuc/viewdocument/improved-switchfail-over-times-in
https://community.ibm.com/community/user/imwuc/viewdocument/improved-switchfail-over-times-in
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FIGURE 3 – EFFECT OF SYNCPOINT BY NUMBER OF QUEUES 

Figure 3 shows the effect of reducing queue locking by spreading the load across a 

number of queue pairs (REQUEST Q/REPLY Q). All tests use 60 requester applications. 

When the workload is driven through a single pair of queues, the non-syncpoint case has 

a low throughput (not much better than the test using 1 requester in chart 1), as each 

MQPUT queues up behind the previous one to that queue, with a forced log write being 

executed within the scope of the queue lock. Using syncpoints alleviates this issue, 

allowing for more concurrency. As we increase the number of queue pairs, the locking 

becomes less of an issue, until, at 60 pairs of queues, where there are only 2 requester 

applications per queue pair, the non-syncpoint case is not much less than using 

syncpoints. Once again, the V.9.0.5 test case, with PUTs outside of syncpoints matches 

the explicit syncpoint scenario. 
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1.2 Uniform Cluster 
 

MQ Uniform cluster, first introduced in V9.1.2 CD and rolled into 9.2 LTS enables 

capabilities to horizontally scale applications across a small set of similar horizontally 

scaled queue managers. Applications can be moved as necessary by the cluster to 

balance the workload as additional cluster members are started. 

https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.2.0/com.ibm.mq.con.doc/q1

32725_.html 

In this example a simple point-to point messaging test demonstrates how we can start 

additional cluster members to distribute the load as the rate of message delivery is 

increased, with the existing applications being balanced across all available cluster 

members automatically. 

1.2.1 Test Topology: 
 

In the test that follows, 12 queue managers (‘QMs’) in the uniform cluster ‘UC01’ were 

used. Each QM was started, when required. 

Each queue manager is restricted to 4 cores. With 6 QMs on each of two 24 core 

machines (QMHost1 & QMHost2 below), in its own cgroup. 

This simulates the addition of extra compute capacity added as required to horizontally 

scale the messaging layer, as you would expect in many virtual deployments such as 

cloud VMs and containers (Linux cgroups is the same technology used to control the 

resources used by containers in solutions such as RedHat OpenShift). 

For this simple test all application threads are created using the JMS component of the 

PerfHarness test tool from the start, although in real life these would often be expected 

to ramp up as the load on the system increases. As we’re using MQ’s Uniform Cluster 

topology the application threads will automatically be rebalanced across all available 

queue managers in the cluster. This automatically maximises the capacity of the 

horizontally scaled set of queue managers. 

The PerfHarness sender process was started on host AppHost1 and the PerfHarness 

receiver process was start on host AppHost2. 

All machines in the test are connected via 40Gb network links. 

https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.2.0/com.ibm.mq.con.doc/q132725_.html
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.2.0/com.ibm.mq.con.doc/q132725_.html
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FIGURE 4 : TEST TOPOLOGY - START OF TEST 

 

Again, for the simplicity of the test, all 12 of the uniform cluster queue managers are 

created in advance, although they are started individually over the duration of the test 

as the load ramps up. Pre-creating the queue managers is not necessary in a real 

deployment as MQ supports creating and joining queue managers into a cluster 

dynamically, and for applications to dynamically load new connection information. Figure 

4 shows the topology of the test at the start, with one queue manager started. Figure 5 

Figure 5 shows the topology of the test at the end when all 12 queue managers have 

been started to absorb the increase messaging rate. 
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FIGURE 5: TEST TOPOLOGY - END OF TEST 

 

1.2.2 Test Scenario 
 

The objective of the test is to initially establish all the applications with a single queue 

manager active and progressively increase the messaging load to the point that the 

queue manager becomes the limiting factor. We periodically start up additional queue 

managers and see how the messaging traffic is horizontally balanced to increase 

capacity. The steps are: 

1. A single QM (UC01QM01) on QMHost1 is started in its own cgroup slice, 

restricting it to 4 cores of CPU.  

2. 180 re-connectable sender application threads are started on AppHost1, putting 

2KB non-persistent messages at a rate of 1 message per second (per thread) to a 

single queue. Each thread connects to MQ setting its APPLTAG to ‘mqperf.sender’ 

3. 180 re-connectable receiver application threads are started on AppHost2. Each 

thread connects to MQ setting its APPLTAG to ‘mqperf.receiver’ 
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4. The rate of the existing senders is increased by 115 messages / second (per 

sender) 

5. An additional uniform cluster member is started 

6. Repeat from 4 until all 12 QMs are started. 

The PerfHarness applications use a json CCDT to connect to the queue managers using a 

QM group of ‘UC01QM’. All the cluster QMs are in the UC01QM group and as only 

UC01QM01 is up when the receivers and senders are started, they all connect to that 

QM. Again, this is for simplicity. In real life you can add new entries into a CCDT as you 

create new queue managers in the uniform cluster dynamically. The connected 

applications will automatically reload the new information as they need to. 

The only controls on the test are to increase the message rate of the existing senders 

and to start additional uniform cluster QMs. The increase of rate before each additional 

QM was started caused the existing QMs to be restricted by the cgroup CPU resource 

limit. When an additional QM is started, the senders and receivers are automatically re-

balanced, so the rate achieved increases. 

The rate achieved by the senders was measured after each increase and after each 

additional QM had been started. 
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1.2.3 Results 
 

Message rates and CPU% consumed by the two MQ host machines are shown in the 

table below. Each time the target rate is increased (i.e. the total attempted message 

delivery rate of all senders), the QMs that are started reach the limit of their cgroup.slice 

allocation. The target rate is then achieved when the next QM is started.  

 

Target Rate Rate 
Achieved 

#QMs MQHost1 
CPU% 

MQHost2 
CPU% 

20,700 20,700 1 10.96 0.00 

41,400 21,070 1 16.06 0.06 

41,400 41,402 2 26.93 0.02 

62,100 42,244 2 32.63 0.00 

62,100 62,101 3 44.59 0.00 

82,800 63,108 3 49.13 0.00 

82,800 82,809 4 63.02 0.00 

103,500 84,896 4 65.63 0.00 

103,500 103,495 5 79.76 0.00 

124,200 106,077 5 82.00 0.00 

124,200 124,192 6 94.53 0.00 

144,900 125,901 6 95.75 0.00 

144,900 144,892 7 94.45 9.12 

165,600 146,211 7 95.06 9.13 

165,600 165,595 8 94.28 23.02 

186,300 165,589 8 94.25 23.06 

186,300 186,293 9 93.33 42.60 

207,000 186,347 9 93.81 42.69 

207,000 206,974 10 96.45 56.05 

227,700 206,974 10 95.25 57.81 

227,700 227,670 11 96.16 73.03 

248,400 227,675 11 96.00 72.81 

248,400 248,338 12 96.88 86.95 

Table 1 : Uniform Cluster Result 

Figure 6 below shows a plot of the message rate and CPU consumption of the QM hosts. 

Two points on the graph are indicated to show points where the message rate was 

increased and where a QM was subsequently started to accommodate the additional 

demand. As the test progresses the fixed increment in rate (representing around 85% of 

1 QMs messaging capability) can be accommodated more by the larger number of QMs 

already started, so a noticeable step in increase can be seen at that point, followed by a 

further increase when the additional QM is started. 
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FIGURE 6: MESSAGE RATE AND MQHOST CPU% 

 

Figure 7 shows the cgroup slice CPU (400% = 4 cores) of a selected number of QMs 

(UC01QM01,UC01QM02, UC01QM07 & UC01QM08) and the number of receivers 

connected to the first QM (UC01QM01). 

When the rate is incremented for the 2nd time (towards the start of the test) UC01QM01 

reaches its slice limit of 400% until the 2nd QM is started. Initial QMs on a machine tend 

to consume less CPU than subsequent QMs, probably due to the lesser impact of context 

switching across the machine. CPU consumption of QMs on MQHost2 (starting with 

UC01QM07 & UC01QM08, shown) start out at a lower consumption once again, though 

lower still than the initial QMs on MQHost1. 

The numbers of requesters shown connected to UC01QM01 is representative of the 

number of requesters on any active QM at that point in the test. The number of 

connected receivers per QM will be similar, so only the one plot is shown for clarity. 

Note that as the number of applications on each QM approach the same number, re-

balancing takes longer, to avoid continuously moving application to achieve a perfect 

balance, so at the end of the test QMHost2 has some QMs that are hosting slightly less 

requesters than QMHost2. If the test were allowed to continue, the uniform cluster 

function would perfectly balance across all twelve QMs. In production there will probably 

be applications connecting and disconnecting continuously, so constant re-balancing 

when the number of applications on each QM is very close already is not desirable.  
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FIGURE 7: CGROUP CPU% AND RECEIVERS CONNECTED TO UC01QM01 

 

1.2.4 Comparisons with Alternative Scenarios 
 

In addition to the test above, peak rates and CPU were measured for the following 

scenarios: 

Fixed High Rate (1-12QMs) 180 Senders and Receivers were started, connecting 

to a single, active QM (UC01QM). Senders were set to deliver 

248,400 messages per second from the start. Additional QMs 

were started up to a total of 12, to take up the load. 

Fixed High Rate (12QMs) 180 Senders and Receivers were started, connecting to 12 

active QMs (UC01QM-UC01QM12). Senders were set to deliver 

248,400 messages per second from the start. In this case the 

queue manager groups functionality will distribute the 

connections across the 12 QMs from the start. 

 Fixed High Rate (2 QMs) 180 Senders and Receivers were started, connecting to 2 

unrestricted, active QMs (UC01QM01 & UC01QM07) outside of 

a cgroup slice, enabling the single QM on each host to 

consume all the host’s CPU resources. Senders were set to 

deliver 248,400 messages per second from the start. In this 

case the queue manager groups functionality will distribute 

the connections across the 2 QMs from the start. 
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Test Rate Achieved MQHost1 

CPU% 

MQHost2 

CPU% 

Base Test 248,338 97 87 

Fixed High Rate (1-12QMs) 248,300 94 90 

Fixed High Rate (12QMs) 248,400 90 90 

Fixed High Rate (2 

unrestricted QMs) 

248,100 96 95 

Table 2 

Table 2 above shows that with 12 uniform cluster QMs performance was similar. The 

load was slightly more balanced at the end, when the clients were initially connected 

across 12 active QMs, but over time the balancing logic of uniform cluster would expect 

to settle for the other cases as well. 

For 2 large QMs the achieved rate was slightly less, thus, in addition to being able to 

only start QMs as they are needed, (with the associated saving in resources such as 

memory), splitting the load across multiple smaller QM’s can achieve better throughout.  

In production workloads will be different to these scenarios, probably combining surges 

of rates and possibly client connections at peak times. A variety of performance metrics 

can be monitored to establish trigger points for starting additional cluster members to 

take up the load (e.g. CPU usage, queue depth etc). Existing applications will be 

balanced across the cluster, as it expands, whilst newly started applications can use 

queue manager groups to spread connections across the cluster members that are active 

at any point. Similarly a uniform cluster can be contracted as demand decreases by 

issuing ‘endmqm -r <QM>’ which will move applications off the QM being stopped, onto 

the remaining active cluster members.  

 

1.2.5 Queue Manager Setup 
 

The uniform cluster configuration utilises the -ii, -ic and -iv flags of the crtmqm 

command, allowing every queue manager to use exactly the same configuration which 

makes horizontal scaling very easy. So, to create the first QM (UC01QM01), which is also 

repository one of the uniform cluster: 

crtmqm -lc -p 1414 -ii /nfs1/uniclus.ini -ic /nfs1/uniclus.mqsc -iv 

CONNAME=MQHost1(1414) UC01QM01 

The -ii parameter points to a file of qm.ini attributes which is used to add or modify 

entries for the QM being created. For uniform cluster it must at least contain the 

essential entries defining the cluster (see below). It can also contain additional entries, 

applied to any QM created with it, like enabling FastPath channels, as in the example 

below. The same file can be used for all queue managers, so could be located on an NFS 

file system for access by QM’s being created on different hosts for example. 
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AutoCluster: 

Repository1Conname=MQhost1(1414) 

Repository1Name=UC01QM01 

Repository2Conname=MQhost2(1414) 

Repository2Name=UC01QM07 

ClusterName=UC01 

Type=Uniform 

# 

# Custom entries 

Channels: 

   MQIBindType=FASTPATH 
Sample uniform cluster ini file used by the -ii parameter 

 

The -ic parameter points to an mqsc command file that is run by the queue manager 

created with this, on every start-up. It must contain at least the cluster receiver channel 

for the QM and can make use of in-built variables and variables specified on the crtmqm 

command (-iv parameter). 

# Uniform cluster receiver channel 

define channel('+AUTOCL+_+QMNAME+') chltype(clusrcvr) trptype(tcp) 

conname('+CONNAME+') cluster('+AUTOCL+') replace 

 

# Uniform cluster receiver channel 

alter LISTENER(SYSTEM.LISTENER.TCP.1) TRPTYPE(TCP) BACKLOG(5000) 

define channel(PERF.APP.CHL) chltype(svrconn) trptype(tcp) replace 

alter channel(PERF.APP.CHL) chltype(SVRCONN) sharecnv(1) 

define qlocal(request1) replace 

define qlocal(request2) replace 

… 
Sample mqsc file used by the -ic parameter of crtmqm 

In the sample file above, the mqsc file makes use of the +AUTOCL+ & +QMNAME+ 

inbuilt variables and the +CONNAME+ variable specified on the command line to create 

the cluster receiver channel 

When the -ii and -ic files are set up in this way, very little needs to be changed to create 

multiple cluster members. In this example we merely change the QM name, host and 

listener port on the crtmqm command. E.g. to create QMs UC01QM01 to UC01QM03 on 

QMHost1 and QMs UC01QM07 to UC01QM09 on QMHost2: 

On QMHost1 execute: 

crtmqm -lc -p 1414 -ii /nfs1/uniclus.ini -ic /nfs1/uniclus.mqsc -iv 

CONNAME=MQHost1(1414) UC01QM01 

crtmqm -lc -p 1415 -ii /nfs1/uniclus.ini -ic /nfs1/uniclus.mqsc -iv 

CONNAME=MQHost1(1415) UC01QM02 

crtmqm -lc -p 1416 -ii /nfs1/uniclus.ini -ic /nfs1/uniclus.mqsc -iv 

CONNAME=MQHost1(1416) UC01QM03 
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On QMHost2 execute: 

crtmqm -lc -p 1414 -ii /nfs1/uniclus.ini -ic /nfs1/uniclus.mqsc -iv 

CONNAME=MQHost2(1414) UC01QM07 

crtmqm -lc -p 1415 -ii /nfs1/uniclus.ini -ic /nfs1/uniclus.mqsc -iv 

CONNAME=MQHost2(1415) UC01QM08 

crtmqm -lc -p 1416 -ii /nfs1/uniclus.ini -ic /nfs1/uniclus.mqsc -iv 

CONNAME=MQHost2(1416) UC01QM09 

 

 

1.2.6 Machines used in the Test 
QM_host1 ThinkSystem SR630 

CPU 2 x 12: Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHz 

QM_host2 ThinkSystem SR630 

CPU 2 x 12: Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHz 

App_host1 System x3550 M5 

CPU 2 x 14 Intel(R) Xeon(R) E5-2690 v4 @ 2.60GHz  

App_host2 System x3550 M5 

CPU 2 x 14 Intel(R) Xeon(R) E5-2690 v4 @ 2.60GHz  

 

1.2.7 PerfHarness Commands 
 

For the main test above, the following PerfHarness commands were used, should you 

wish to run something similar. Note that you will need an up to date version of 

PerfHarness from  Github (link below) to pick up some of the recent changes to support 

uniform cluster testing. The SocketCommandProcessor class was used to control the rate 

of the senders. 

Receivers: 

java  -Xms768M -Xmx768M -Xmn600M JMSPerfHarness -su -wt 10 -wi 0 -nt 180 -ss 5 -

sc BasicStats -rl 0 -id 5 -tc jms.r11.Receiver -d REQUEST -to 20 -db 1 -dx 1 -dn 1 -jb 

*UC01QM -jt mqc -pc WebSphereMQ -ccdt file:///nfs1/UC01.json -ar 

WMQ_CLIENT_RECONNECT -an mqperf.receiver -wp true -wc 4 

 

Senders: 

java  -Xms768M -Xmx768M -Xmn600M JMSPerfHarness -su -wt 10 -wi 0 -nt 180 -ss 5 -

sc BasicStats -rl 0 -id 5 -tc jms.r11.Sender -d REQUEST -to 20 -db 1 -dx 1 -dn 1 -jb 

*UC01QM -jt mqc -pc WebSphereMQ -ms 2048 -rt 1  -ccdt file:///nfs1/UC01.json -ar 

WMQ_CLIENT_RECONNECT -an mqperf.senders -cmd_c SocketCommandProcessor 
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2 Base MQ Performance Workloads 
 

Table 2 (below) lists the workloads used in the generation of performance data for base 

MQ (that is standard messaging function) in this report. All workloads are 

requester/responder (RR) scenarios which are synchronous in style because the 

application putting a message on a queue will wait for a response on the reply queue 

before putting the next message. They typically run ‘unrated’ (no think time between 

getting a reply and putting the next message on the request queue). 

 

Workload Description 

RR-CB Client mode requesters on separate host. Binding mode responders. 

RR-DQ-BB Distributed queueing between two queue managers on separate hosts, with 

binding mode requesters and responders. 

RR-BB Binding mode requesters and responders  

RR-CC Client mode requesters, and responders on separate, unique hosts  

TABLE 2 - WORKLOAD TYPES 

 

Binding mode connections use standard MQ bindings, client mode connections use 

fastpath channels and listeners (trusted). 

RR-CB & RR-DQ-BB are described in the following section. The remaining two workloads 

differ only in the location of the MQ applications, which is made clear in the results 

presented in this report. 

 

2.1 RR-CB Workload (Client mode requesters on separate host. Binding mode 
responders.) 

 

FIGURE 8 - REQUESTER-RESPONDER WITH REMOTE QUEUE MANAGER (LOCAL RESPONDERS) 

 

Figure 8 shows the topology of the RR-CB test. The test simulates multiple ‘requester’ 

applications which all put messages onto a set of ten request queues. Each requester is 
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a thread running in an MQI (CPH) or JMS (JMSPerfHarness) application. Additional 

machines may be used to drive the requester applications where necessary. The threads 
utilise the requester queues in a round robin fashion, ensuring even distribution of 

traffic. 

Another set of ‘responder’ applications retrieve the message from the request queue and 

put a reply of the same length onto a set of ten reply queues. Each responder is a thread 
of CPH or JMSPerfHarness and there may be multiple instances of these MQI or JMS 

applications, similar to the responders. The number of responders is set such that there 

is always a waiting ‘getter’ for the request queue. 

The flow of the test is as follows: 

 

1. The requester application puts a message to a request queue on the remote 

queue manager and holds on to the message identifier returned in the message 

descriptor. The requester application then waits indefinitely for a reply to arrive 

on the appropriate reply queue. 

2. The responder application gets messages from the request queue and places a 

reply to the appropriate reply queue. The queue manager copies over the 

message identifier from the request message to the correlation identifier of the 

reply message. 

3. The requester application gets a reply from the reply queue using the message 

identifier held  when the request message was put to the request queue, as the 

correlation identifier in the message descriptor. 

 

This test is executed using client channels as trusted applications programs by specifying 

“MQIBindType=FASTPATH” in the qm.ini file. This is recommended generally, but not 

advised if you run channel exit programs and do not have a high degree of confidence in 

their robustness 

Variants of the RR-CB test differ in the location of the applications (RR-BB & RR-CC). 
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2.2 RR-DQ-BB Workload (Distributed queueing between two queue managers 
on separate hosts, with binding mode requesters and responders).  

 

 

FIGURE 9 - REQUESTER-RESPONDER WITH REMOTE QUEUE MANAGER (REMOTE 

RESPONDERS). 

This is a distributed queuing version of the requester-responder topology detailed in 

section 2.1. All MQPUTs are to remote queues so that messages are now transported 

across server channels to the queue manager where the queue is hosted. 
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3 Non-Persistent Performance Test Results 
Full performance test results are detailed below. The test results are presented by broad 

categories with an illustrative plot in each section followed by the peak throughput 

achieved for the remaining tests in that category (the remaining tests are typically for 

different message sizes). 

 

3.1 RR-CB Workload  
 

The following chart illustrates the performance of 2KB Non-persistent messaging with 

various numbers of requester clients. 

  

 

FIGURE 10 - PERFORMANCE RESULTS FOR RR-CB (2KB NON-PERSISTENT) 

 

The test peaked at approximately 142,000 round trips/sec, fully utilising the CPU of the 

MQ server. 

Peak round trip rates for all message sizes tested can be seen in the table below. The 

200KB and 2MB scenarios are being limited by the 40Gb network that links the client and 

server machines. 
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TABLE 3 - PEAK RATES FOR WORKLOAD RR-CB (NON-PERSISTENT) 

3.1.1 Test setup 
Workload type: RR-CB (see section 2.1). 

Hardware: Server 1, Client 1, Client 2 (see section A.1). 

 

 

3.2 RR-DQ-BB Workload (Distributed queueing between two queue managers 
on separate hosts, with binding mode requesters and responders).  

 

The distributed queuing scenarios use workload type RR-DQ-BB (see section 0) where 

locally bound requesters put messages onto a remote queue. 

 

The throughput will be sensitive to network tuning and server channel setup amongst 

other things. All of the tests in this section utilise multiple send/receive channels. This 

particularly helps with smaller, non-persistent messages when the network is under-

utilised. 

 

 

FIGURE 11 - PERFORMANCE RESULTS FOR RR-DQ-BB (2KB NON-PERSISTENT) 
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The distributed queuing test exhibits good scaling with CPU being the limiting factor as 

the number of clients increases.  

Peak round trip rates for all message sizes tested can be seen in the table below. The 

200KB and 2MB measurements are again network limited by the 40Gb network. 

 

 
*ROUND TRIPS/ SEC 

TABLE 4 – FULL RESULTS FOR WORKLOAD RR-DQ-BB (NON-PERSISTENT) 

 

3.2.1 Test setup 
Workload type: RR-DQ-BB (see section 0). 

Hardware: Server 1, Client 1 (see section A.1). 

 

 

 

  

Test V9.2

Max Rate* CPU% Clients

RR-DQ-BB (2KB Non-persistent) 170,191 96.57 250

RR-DQ-BB (20KB Non-persistent) 121,909 91.82 120

RR-DQ-BB (200KB Non-persistent) 22,653 48 30

RR-DQ-BB (2MB Non-persistent) 2,161 53.57 25



30 

3.3 RR-CC JMS Workload  
 

The test application is JMSPerfharness, which is run unrated (i.e. each requester sends a 

new message as soon as it receives the reply to the previous one).  

 

 

FIGURE 12 - PERFORMANCE RESULTS FOR RR-CC (2KB JMS NON-PERSISTENT) 

Once again, the workload exhibits good scaling up to 100% of the CPU (the limiting 

factor), peaking at approximately 95,000 round trips/sec 

Peak round trip rates for all message sizes tested can be seen in the table below. The 

200KB and 2MB scenarios are network limited by the 40Gb network; the rates are lower 

than the RR-CB network limited scenarios because of the additional network hop to the 

responder applications which are local in the RR-CB scenario. 

 
*ROUND TRIPS/ SEC 

TABLE 5 - PEAK RATES FOR JMS (NON-PERSISTENT) 

3.3.1 Test setup 
Workload type: RR-CC (see section 2). 

Message protocol: JMS 

Hardware: Server 1, Client 1, Client 2 (see section A.1). 
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RR-CC (20KB JMS Non-persistent) 81,072 99.96 150

RR-CC (200KB JMS Non-persistent) 10,912 57.29 100
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3.4 RR-CC Workload with TLS (Client mode requesters and responders on 
separate hosts). 

 

To illustrate the overhead of enabling TLS to encrypt traffic between the client 

applications and the queue manager, results are shown below comparing the 

performance of the 6 strongest TLS1.2 MQ CipherSpecs, and all TLS1.3 MQ CipherSpecs 

(support for TLS 1.3 encryption was introduced in MQ V9.1.4). 

The following TLS 1.2 CipherSpecs were tested (all utilise 256bit encryption, and are 

FIPS compliant).   

• TLS_RSA_WITH_AES_256_CBC_SHA256 

• TLS_RSA_WITH_AES_256_GCM_SHA384 

• ECDHE_ECDSA_AES_256_CBC_SHA384 

• ECDHE_ECDSA_AES_256_GCM_SHA384 (Suite B compliant) 

• ECDHE_RSA_AES_256_CBC_SHA384   

• ECDHE_RSA_AES_256_GCM_SHA384  

Results for the suite B compliant  CipherSpec (ECDHE_ECDSA_AES_256_GCM_SHA384), 

along with an older, CBC based CipherSpec (ECDHE_RSA_AES_256_CBC_SHA384) and a 

TLS 1.3 CipherSpec (TLS_AES_128_CCM_8_SHA256) are plotted below. As will be seen, 

the remaining tested CipherSpecs exhibited a performance profile similar to one of these 

plots. 

 

FIGURE 13 - PERFORMANCE RESULTS FOR RR-CC WITH TLS 1.2 
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CipherSpecs exhibited similar performance. All of the TLS 1.2 CipherSpecs utilising the 

older CBC (Chain Block Cipher) symmetric cipher exhibited similar to 

ECDHE_ECDSA_AES_256_CBC_SHA384 in the plot above. All TLS 1.3 CipherSpecs 

exhibited a performance profile similar to TLS_AES_128_CCM_8_SHA256 in the plot 

above. 

All tests exhibited scaling up to 100% of the CPU of the machine. Throughput for GCM 

based CipherSpecs ran at  approximately 61% of the throughput of a non-encrypted 

workload. CBC based CipherSpecs exhibited a greater overhead, running at  

approximately 39% of a non-encrypted workload. TLS 1.3 encryption is more expensive, 

acheiving rates slightly below the TLS 1.2 CBC based CipherSpecs. 

  
*Round trips/ sec 

Table 6 shows the peak rates achieved for all 6 TLS 1.2 CipherSpecs tested, 

demonstrating the equivalence of performance, based on whether the symmetric key 

algorithm is CBC, or GCM based.  

  
*ROUND TRIPS/ SEC 

TABLE 6 - PEAK RATES FOR MQI CLIENT BINDINGS (2KB NON-PERSISTENT) – TLS 1.2 

 

Table 7 shows the peak rates achieved for all TLS 1.3 CipherSpecs. 

  
*Round trips/ sec 

TABLE 7 - PEAK RATES FOR MQI CLIENT BINDINGS (2KB NON-PERSISTENT) – TLS 1.3 

 

TLS 1.2 CipherSpec V9.2 GM

Max Rate* CPU% Clients

No TLS 106,826 100 80

TLS_RSA_WITH_AES_256_CBC_SHA256 43,914 100 100

TLS_RSA_WITH_AES_256_GCM_SHA384 66,592 98 60

ECDHE_ECDSA_AES_256_CBC_SHA384 44,132 100 100

ECDHE_ECDSA_AES_256_GCM_SHA384 66,594 98 60

ECDHE_RSA_AES_256_CBC_SHA384 43,893 100 100

ECDHE_RSA_AES_256_GCM_SHA384 66,626 99 70

TLS 1.2 CipherSpec V9.2 GM

Max Rate* CPU% Clients

No TLS 106,826 100 80

TLS_RSA_WITH_AES_256_CBC_SHA256 43,914 100 100

TLS_RSA_WITH_AES_256_GCM_SHA384 66,592 98 60

ECDHE_ECDSA_AES_256_CBC_SHA384 44,132 100 100

ECDHE_ECDSA_AES_256_GCM_SHA384 66,594 98 60

ECDHE_RSA_AES_256_CBC_SHA384 43,893 100 100

ECDHE_RSA_AES_256_GCM_SHA384 66,626 99 70

TLS 1.3 CipherSpec V9.2 GM

Max Rate* CPU% Clients

No TLS 106,826 100 80

TLS_AES_128_CCM_8_SHA256 42,539 100 100

TLS_AES_256_GCM_SHA384 44,237 100 100

TLS_CHACHA20_POLY1305_SHA256 43,079 100 100

TLS_AES_128_GCM_SHA256 44,165 100 100

TLS_AES_128_CCM_SHA256 42,809 100 100
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3.4.1 Test setup 
Workload type: RR-CC (see section 2). 

Hardware: Server 1, Client 1, Client 2 (see section A.1). 
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4 Persistent Performance Test Results 
 

The performance of persistent messaging is largely dictated by the capabilities of the 

underlying filesystem hosting the queue files, and more critically, the transaction log 

files. IBM MQ is designed to maximise throughput, regardless of the technology used, by 

aggregating writes where possible, to the transaction log, where they need to be 

synchronous to ensure transactional integrity. 

The performance of persistent messaging is therefore dependant on the machine hosting 

MQ, and the I/O infrastructure. Some comparisons are shown below between non-

persistent and persistent messaging for local storage, and then results for V9.2 in a 

separate environment (x64 Linux with SAN, SSD & NFS filesystems) are shown to 

demonstrate the impact of transaction log location. 

 

4.1 RR-BB Workload  
 

 

FIGURE 14 - PERFORMANCE RESULTS FOR RR-BB (2KB NON-PERSISTENT VS 

PERSISTENT) 

Figure 14 shows results from running the RR-BB workload with 2KB non-persistent and 

persistent messages, on the same server used for the non-persistent scenarios in the 

previous sections. 

RR-BB is a variant of RR-CB (see section 2.1) where all applications are connected in 

bindings mode. This accentuates the impact of persistent messaging since we are no 

longer limited by network bandwidth. 
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The non-persistent workload reaches an optimal value at 60 requesters where, the CPU 

reaches 100% utilisation. Adding more requesters degrades performance, increasing 

context switching on an already saturated server.  

Note that for smaller message sizes (as for 2KB, above), higher rates of throughput in 

persistent scenarios are attained when there is a greater deal of concurrency (i.e. 

requester applications) as this enables the logger component of IBM MQ to aggregate log 

data into larger, more efficient writes to disk.  

 

Peak round trip rates for all message sizes tested, for persistent & non-persistent 

scenarios can be seen in the tables below. 

Non-persistent workloads are typically limited by the CPU, whilst the transaction log I/O 

is the limiting factor for the persistent workloads. As the message size goes up, the time 

spent on the transaction log write becomes a larger factor, so although the bytes per sec 

is more, the overall CPU utilisation is lower. The level of concurrency needed to reach 

the limitations of the filesystem also drops as the message size increases. 

 

 
*ROUND TRIPS/ SEC 

TABLE 8 - PEAK RATES FOR WORKLOAD RR-BB (NON-PERSISTENT) 

 

 
*ROUND TRIPS/ SEC 

TABLE 9 - PEAK RATES FOR WORKLOAD RR-BB (PERSISTENT) 

 

4.1.1 Test setup 
Workload type: RR-BB (see section 2). 

Hardware: Server 1 (see section A.1). 

 

4.2 Impact of Different File Systems on Persistent Messaging Performance 
 

A separate paper has been published, with illustrative results, for SSD, SAN and NFS 

hosted filesystems, along with some guidance, on best practises, and monitoring. 

https://ibm-messaging.github.io/mqperf/mqio_v1.pdf 

Test V9.2

Max Rate* CPU% Clients

RR-BB (2K Non-persistent) 199,421 99.99 60

RR-BB (20K Non-persistent) 130,598 99.62 50

RR-BB (200K Non-persistent) 52,270 93.04 27

RR-BB (2MB Non-persistent) 3,377 80.12 20

Test V9.2

Max Rate* CPU% Clients

RR-BB (2KB Persistent) 58,515 95.76 200

RR-BB (20KB Persistent) 41,615 79.68 100

RR-BB (200KB Persistent) 6,912 25.99 20

RR-BB (2MB Persistent) 744 21.17 10

https://ibm-messaging.github.io/mqperf/mqio_v1.pdf
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If possible, you should assess the performance of a new application, with non-persistent 

messaging first. If the target rate of messaging is met, then calculate the required 

bandwidth of the filesystem hosting the transaction logs. 

 

FIGURE 15 - PERFORMANCE RESULTS FOR RR-BB PERSISTENT MESSAGING LOGGING TO 

SSD, SAN & NFS 

To illustrate the impact that the filesystem hosting the transaction logs can have, Figure 

15 shows results from running the RR-BB workload with non-persistent and persistent 

messaging (hosted on different filesystems). 

RR-BB is a variant of RR-CB (see section 2.1) where all applications are connected in 

bindings mode, eliminating the network as a bottleneck (except in the case of NFS, 

where there is a 10Gb link from the MQ server to the NFS server). 

As expected, the non-persistent case is limited by CPU 

1.1.1 Test setup 

Workload type: RR-BB (see section 2). 

Hardware: x64 Linux MQ server, x64 Linux NFS server, IBM SAN Volume Controller, and 

Storwise V7000 – see section A.2. 
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Appendix A: Test Configurations 
 

A.1 Hardware/Software – Set1 

All of the testing in this document (apart from when testing results are shown from a 

different platform and are clearly identified as such) was performed on the following 

hardware and software configuration:  

 

A.1.1 Hardware 

 

Server1, client1 & client2 are three identical machines: 

Lenovo System x3550 M5 – [5463-L2G] 

2 x 12 core CPUs. 

Core: Intel® Xeon® E5-2690 v3 @ 2.60GHz 

128GB RAM 

 

40Gb ethernet adapters connect all three machines via an isolated performance LAN. 

 

A.1.2 Software 

Red Hat Enterprise Linux Server release 7.7 (Maipo)  

JMSPerfHarness test driver (see Appendix C:)  

MQ-CPH MQI test driver (see Appendix C:) 

IBM MQ V9.2 

 

A.2 Hardware/Software – Set2 (Persistent messaging comparisons) 

The persistent messaging tests in section 4.2, comparing different filesystems used to 

host the MQ transaction logs, were run with the following hardware/software. 

A.2.1 Hardware 

 

The MQ Server and NFS Server are two identical machines: 

Lenovo System x3550 M5 – [8869-AC1] 

2 x 14 core CPUs. 

Core: Intel® Xeon® E5-2690 v4 @ 2.60GHz 

128GB RAM 

 

10Gb ethernet adapters connected the QM server to the NFS server, via an isolated 

performance LAN. 
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The SAN test used an IBM Storwize V7000 populated with 10,000 rpm disks configured 

in a RAID 10 array, and fronted by an IBM SAN Volume Controller (SVC) with 20GB of 

RAM. The SVC was connected to the MQ server via a dual-port 8Gb fibre channel 

adapter.  

 

A.2.2 Software 

Red Hat Enterprise Linux Server release 7.7 (Maipo)  

MQ-CPH MQI test driver (see Appendix C:) 

IBM MQ V9.2 
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A.3 Tuning Parameters Set for Measurements in This Report 

The tuning detailed below was set specifically for the tests being run for this 

performance report but in general follow the best practises.  

 

A.3.1 Operating System 

 

A good starting point is to run the IBM supplied program mqconfig. The following Linux 

parameters were set for measurements in this report. 

 

/etc/sysctl.conf 

fs.file-max = 13121479 

net.ipv4.ip_local_port_range = 1024 65535 

vm.max_map_count = 1966080 

kernel.pid_max = 655360 

kernel.sem = 1000 1024000 500 8192 

kernel.msgmnb = 131072 

kernel.msgmax = 131072 

kernel.msgmni = 32768 

kernel.shmmni = 8192 

kernel.shmall = 4294967296 

kernel.shmmax = 137438953472 

kernel.sched_latency_ns = 2000000 

kernel.sched_min_granularity_ns = 1000000 

kernel.sched_wakeup_granularity_ns = 400000 

 

/etc/security/limits.d/mqm.conf 

@mqm soft nofile 1048576 

@mqm hard nofile 1048576 

@mqm soft nproc  1048576 

@mqm hard nproc  1048576 

@mqm soft core unlimited 

@mqm hard core unlimited 
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A.3.2 IBM MQ  

The following parameters are added or modified in the qm.ini files for the tests run in 

section 3 of this report: 

 

Channels: 

   MQIBindType=FASTPATH 

   MaxActiveChannels=5000 

   MaxChannels=5000 

Log: 

   LogBufferPages=4096 

   LogFilePages=16384 

   LogPrimaryFiles=16 

   LogSecondaryFiles=2 

   LogType=CIRCULAR 

   LogWriteIntegrity=TripleWrite 

TuningParameters: 

   DefaultPQBufferSize=10485760 

   DefaultQBufferSize=10485760 

 

For large message sizes (200K & 2MB), the queue buffers were increased further to: 

DefaultPQBufferSize=104857600 

DefaultQBufferSize=104857600 

Note that large queue buffers may not be needed in your configuration. Writes to the 

queue files are asynchronous, taking advantage of OS buffering. Large buffers were set 

in the runs here, as a precaution only. 
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Appendix B: Glossary of terms used in this report 

 

CD Continuous delivery. 

JMSPerfharness JMS based, performance test application 

(https://github.com/ot4i/perf-harness) 

LTS Long term service. 

MQ-CPH C based, performance test application  

(https://github.com/ibm-messaging/mq-cph) 

 

 

 

  

https://github.com/ot4i/perf-harness
https://github.com/ibm-messaging/mq-cph
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Appendix C: Resources 

  

MQ Performance GitHub Site 

https://ibm-messaging.github.io/mqperf/ 

Queue Manager Restart Time Improvements in V9.1.1 Performance Paper 

https://ibm-messaging.github.io/mqperf/Queue%20Manager%20Restart%20Times.pdf 

Improved Switch/Fail-over times in MQ V9.1.2 Blog Article 

https://community.ibm.com/community/user/imwuc/viewdocument/improved-switchfail-

over-times-in 

IBM MQ Performance: Best Practises, and Tuning Paper: 

https://ibm-messaging.github.io/mqperf/MQ_Performance_Best_Practices_v1.0.1.pdf 

MQ-CPH (The IBM MQ C Performance Harness) 

https://github.com/ibm-messaging/mq-cph 

JMSPerfHarness 

https://github.com/ot4i/perf-harness 

 

 

https://ibm-messaging.github.io/mqperf/
https://ibm-messaging.github.io/mqperf/Queue%20Manager%20Restart%20Times.pdf
https://community.ibm.com/community/user/imwuc/viewdocument/improved-switchfail-over-times-in
https://community.ibm.com/community/user/imwuc/viewdocument/improved-switchfail-over-times-in
https://ibm-messaging.github.io/mqperf/MQ_Performance_Best_Practices_v1.0.1.pdf
https://github.com/ibm-messaging/mq-cph
https://github.com/ot4i/perf-harness

