
1

IBM MQ V9.2 for Linux (x86-64 platform)

Performance Report

Version 1.0 - February 2021

Paul Harris

IBM MQ Performance

IBM UK Laboratories

Hursley Park

Winchester

Hampshire

Notices

2

Please take Note!

Before using this report, please be sure to read the paragraphs on “disclaimers”,

“warranty and liability exclusion”, “errors and omissions”, and the other general

information paragraphs in the "Notices" section below.

First Edition, February 2021.

This edition applies to IBM MQ V9.2 (and to all subsequent releases and modifications

until otherwise indicated in new editions).

© Copyright International Business Machines Corporation 2021. All rights reserved.

Note to U.S. Government Users

Documentation related to restricted rights.

Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule

contract with IBM Corp.

DISCLAIMERS

The performance data contained in this report was measured in a controlled

environment. Results obtained in other environments may vary significantly.

You should not assume that the information contained in this report has been

submitted to any formal testing by IBM.

Any use of this information and implementation of any of the techniques are the

responsibility of the licensed user. Much depends on the ability of the licensed user to

evaluate the data and to project the results into their own operational environment.

WARRANTY AND LIABILITY EXCLUSION

The following paragraph does not apply to the United Kingdom or any other country

where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION

“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-

INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain

transactions, therefore this statement may not apply to you.

In Germany and Austria, notwithstanding the above exclusions, IBM's warranty and

liability are governed only by the respective terms applicable for Germany and Austria

in the corresponding IBM program license agreement(s).

ERRORS AND OMISSIONS

3

The information set forth in this report could include technical inaccuracies or

typographical errors. Changes are periodically made to the information herein; any

such change will be incorporated in new editions of the information. IBM may make

improvements and/or changes in the product(s) and/or the program(s) described in

this information at any time and without notice.

INTENDED AUDIENCE

This report is intended for architects, systems programmers, analysts and
programmers wanting to understand the performance characteristics of IBM MQ V9.2.

The information is not intended as the specification of any programming interface that

is provided by IBM MQ. It is assumed that the reader is familiar with the concepts and

operation of IBM MQ V9.2.

LOCAL AVAILABILITY

References in this report to IBM products or programs do not imply that IBM intends to

make these available in all countries in which IBM operates. Consult your local IBM

representative for information on the products and services currently available in your

area.

ALTERNATIVE PRODUCTS AND SERVICES

Any reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally

equivalent product, program, or service that does not infringe any IBM intellectual

property right may be used instead. However, it is the user’s responsibility to evaluate

and verify the operation of any non-IBM product, program, or service.

USE OF INFORMATION PROVIDED BY YOU

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

TRADEMARKS AND SERVICE MARKS

The following terms used in this publication are trademarks of their respective

companies in the United States, other countries or both:

- IBM Corporation : IBM

- Oracle Corporation : Java

Other company, product, and service names may be trademarks or service marks of

others.

EXPORT REGULATIONS

You agree to comply with all applicable export and import laws and regulations.

4

Preface

Target audience

The report is designed for people who:

• Will be designing and implementing solutions using IBM MQ v9.2 for Linux on
x86_64.

• Want to understand the performance limits of IBM MQ v9.2 for Linux on x86_64.

• Want to understand what actions may be taken to tune IBM MQ v9.2 for Linux on

x86_64.

The reader should have a general awareness of the Linux operating system and of IBM

MQ in order to make best use of this report.

Whilst operating system, and MQ tuning details are given in this report (specific to the

workloads presented), a more general consideration of tuning and best practices, with

regards to application design, MQ topology etc, is no longer included in the platform

performance papers. A separate paper on general performance best practises has been

made available here: https://ibm-

messaging.github.io/mqperf/MQ_Performance_Best_Practices_v1.0.1.pdf

Contents

This report includes:

• Release highlights with performance charts.

• Performance measurements with figures and tables to present the performance
capabilities of IBM MQ, across a range of message sizes, and including distributed

queuing scenarios.

Feedback

We welcome feedback on this report.

• Does it provide the sort of information you want?

• Do you feel something important is missing?
• Is there too much technical detail, or not enough?

• Could the material be presented in a more useful manner?

Specific queries about performance problems on your IBM MQ system should be directed

to your local IBM Representative or Support Centre.

Please direct any feedback on this report to paul_harris@uk.ibm.com.

https://ibm-messaging.github.io/mqperf/MQ_Performance_Best_Practices_v1.0.1.pdf
https://ibm-messaging.github.io/mqperf/MQ_Performance_Best_Practices_v1.0.1.pdf
mailto:paul_harris@uk.ibm.com??l?la?lan?lang?lang=?lang=e?lang=en

5

Contents
Preface .. 4
1 Introduction .. 9
1 Release Highlights ... 10

1.1 Queue manager restart time improvements .. 10

1.1 Improved Switch/Fail-over times ... 12

1.2 Uniform Cluster ... 14

1.2.1 Test Topology: ... 14

1.2.2 Test Scenario ... 16

1.2.3 Results .. 18

1.2.4 Comparisons with Alternative Scenarios .. 20

1.2.5 Queue Manager Setup ... 21

1.2.6 Machines used in the Test .. 23

1.2.7 PerfHarness Commands... 23

2 Base MQ Performance Workloads ... 24
2.1 RR-CB Workload (Client mode requesters on separate host. Binding mode

responders.) ... 24

2.2 RR-DQ-BB Workload (Distributed queueing between two queue managers on

separate hosts, with binding mode requesters and responders). 26

3 Non-Persistent Performance Test Results .. 27
3.1 RR-CB Workload .. 27

3.1.1 Test setup ... 28

3.2 RR-DQ-BB Workload (Distributed queueing between two queue managers on

separate hosts, with binding mode requesters and responders). 28

3.2.1 Test setup ... 29

3.3 RR-CC JMS Workload .. 30

3.3.1 Test setup ... 30

3.4 RR-CC Workload with TLS (Client mode requesters and responders on separate

hosts). 31

3.4.1 Test setup ... 33

4 Persistent Performance Test Results ... 34
4.1 RR-BB Workload .. 34

4.1.1 Test setup ... 35

4.2 Impact of Different File Systems on Persistent Messaging Performance 35

1.1.1 Test setup ... 36

Appendix A: Test Configurations .. 37
A.1 Hardware/Software – Set1 .. 37

A.1.1 Hardware .. 37

A.1.2 Software ... 37

A.2 Hardware/Software – Set2 (Persistent messaging comparisons) 37

A.2.1 Hardware .. 37

6

A.2.2 Software ... 38

A.3 Tuning Parameters Set for Measurements in This Report 39

A.3.1 Operating System ... 39

A.3.2 IBM MQ ... 40

Appendix B: Glossary of terms used in this report .. 41
Appendix C: Resources ... 42

7

TABLES

Table 1 : Uniform Cluster Results ... 18
Table 2 - Workload types .. 24
Table 3 - Peak rates for workload RR-CB (non-persistent) ... 28
Table 4 – Full Results for workload RR-DQ-BB (non-persistent) .. 29
Table 5 - Peak rates for JMS (non-persistent) .. 30
Table 6 - Peak rates for MQI client bindings (2KB non-persistent) – TLS 1.2 32
Table 7 - Peak rates for MQI client bindings (2KB non-persistent) – TLS 1.3 32
Table 8 - Peak rates for workload RR-BB (non-persistent) ... 35
Table 9 - Peak rates for workload RR-BB (Persistent) .. 35

8

FIGURES

Figure 1 - Restart Times for Busy QM .. 10
Figure 2 – Time to restart after Switchover or Failover (MIQM & RDQM) ... 12
Figure 3 – Effect of SYNCPOINT by Number of Queues .. 13
Figure 4 - Requester-responder with remote queue manager (local responders) 24
Figure 5 - Requester-responder with remote queue manager (remote responders). 26
Figure 6 - Performance results for RR-CB (2KB non-persistent) .. 27
Figure 7 - Performance results for RR-DQ-BB (2KB non-persistent) .. 28
Figure 8 - Performance results for RR-CC (2KB JMS non-persistent) .. 30
Figure 9 - Performance Results for RR-CC with TLS 1.2 .. 31
Figure 10 - Performance results for RR-BB (2KB Non-persistent vs Persistent) 34
Figure 11 - Performance Results for RR-BB Persistent Messaging logging to SSD, SAN & NFS 36

9

1 Introduction

IBM MQ V9.2 is a long term service (LTS) release of MQ, which includes features made

available in the V9.1.1, V9.1.2, V9.1.3, V9.1.4 & V9.1.5 continuous delivery (CD)

releases. Those CD releases are mainly functional in nature, but there are some

significant improvements to performance as well

• Queue manager restart times (see section 1)

• Improved switch/fail-over times (see section 0)

The release highlights section of this report also includes detail on Uniform Cluster

function, , first introduced in V9.1.2 CD and rolled into 9.2 LTS.

Performance data presented in this report does not include release to release

comparisons, but all tests run showed equal or better performance than V9.0 & V9.1

releases of IBM MQ.

As with all performance sensitive tests, you should run your own tests where possible, to

simulate your production environment and circumstances you are catering for.

10

1 Release Highlights

1.1 Queue manager restart time improvements

MQ V9.2 includes significant improvements to queue manager restart times, introduced

in the V9.1.1 CD release of MQ.

FIGURE 1 - RESTART TIMES FOR BUSY QM

SAN NFS1 NFS2 NFS3

V9.1 00:01 00:15 02:37 05:13

V9.1.1 00:01 00:01 00:02 00:03

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

R
e-

St
ar

t
Ti

m
e

(m
m

:s
s)

Filesystem

Restart Times after failure @ 2,500 Request/replies per Second by Recovery
Log Filesystem Type

11

SAN: SAN hosted file system, using an IBM San Volume Controller (SVC), via 8Gb

fibre links.

NFS1: NFS (V4) hosted on RAID cached disks via a dedicated* 10Gb network link.

NFS2: NFS (V4) hosted on RAID cached disks via a dedicated* 10Gb network link with

an additional 500us delay on network added in each direction.

NFS3: NFS (V4) hosted on RAID cached disks via a dedicated* 10Gb network link with

an additional 1ms delay on network added in each direction.

Figure 1, shows the restart times for a busy queue manager across a number of different

file systems (see above) hosting the queue files and recovery log. Tests measure restart

time when there has been a failure of some type, causing the queue manager to

abruptly end, with potentially in-flight transactions (in our test scenarios we killed the

queue manager processes).

Re-start times are improved significantly for slower file systems such as NFS, but

changes in V9.1.1 also improve re-start times where there are deep queues, regardless

of where the recovery log is located.

A paper with fuller details has been published on the MQ performance github site:

https://ibm-messaging.github.io/mqperf/Queue%20Manager%20Restart%20Times.pdf

https://ibm-messaging.github.io/mqperf/Queue%20Manager%20Restart%20Times.pdf

12

1.1 Improved Switch/Fail-over times

Improvements introduced in the V9.1.2 CD release of MQ focused on the processing of

client disconnections, in particular the time it takes to disconnect significant numbers of

clients when switching queue managers or processing the fail-over of a queue manager.

Figure 2 shows a comparison of V9.1.0.2 vs V9.1.2 re-start times in three different

scenarios:

FIGURE 2 – TIME TO RESTART AFTER SWITCHOVER OR FAILOVER (MIQM & RDQM)

Test Description

S1000 Switch-over with 1000 applications running at a set rate of 1 Put/Get per sec

(total 1000 round trips/sec)

S500U Switch-over with 500 applications running unrated* (MIQM total rate ~50,000

Put/Gets per sec. RDQM total rate ~85,000 Put/Gets per sec).

FN500U Fail-over (network) with 500 applications running unrated (MIQM total rate

~50,000 Put/Gets per sec. RDQM totalrate ~85,000 Put/Gets per sec).

nfsv4leasetime & nfsv4gracetime reduced to 10secs

*unrated applications execute Put/Get requests at the maximum number/per second

rather than a set rate (e.g. 1 per second).

Further details can be found in this blog article:

https://community.ibm.com/community/user/imwuc/viewdocument/improved-switchfail-

over-times-in

https://community.ibm.com/community/user/imwuc/viewdocument/improved-switchfail-over-times-in
https://community.ibm.com/community/user/imwuc/viewdocument/improved-switchfail-over-times-in

13

FIGURE 3 – EFFECT OF SYNCPOINT BY NUMBER OF QUEUES

Figure 3 shows the effect of reducing queue locking by spreading the load across a

number of queue pairs (REQUEST Q/REPLY Q). All tests use 60 requester applications.

When the workload is driven through a single pair of queues, the non-syncpoint case has

a low throughput (not much better than the test using 1 requester in chart 1), as each

MQPUT queues up behind the previous one to that queue, with a forced log write being

executed within the scope of the queue lock. Using syncpoints alleviates this issue,

allowing for more concurrency. As we increase the number of queue pairs, the locking

becomes less of an issue, until, at 60 pairs of queues, where there are only 2 requester

applications per queue pair, the non-syncpoint case is not much less than using

syncpoints. Once again, the V.9.0.5 test case, with PUTs outside of syncpoints matches

the explicit syncpoint scenario.

0

5,000

10,000

15,000

20,000

25,000

30,000

1 Q Pair 10 Q Pairs 60 Q Pairs

R
o

u
n

d
 T

ri
p

s/
Se

c
Round-Trips by 60 Applications across n Queue Pairs (SAN)

MQPUT Inside Syncpoint MQPUT Outside Syncpoint (V904) MQPUT Outside Syncpoint (V905)

14

1.2 Uniform Cluster

MQ Uniform cluster, first introduced in V9.1.2 CD and rolled into 9.2 LTS enables

capabilities to horizontally scale applications across a small set of similar horizontally

scaled queue managers. Applications can be moved as necessary by the cluster to

balance the workload as additional cluster members are started.

https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.2.0/com.ibm.mq.con.doc/q1

32725_.html

In this example a simple point-to point messaging test demonstrates how we can start

additional cluster members to distribute the load as the rate of message delivery is

increased, with the existing applications being balanced across all available cluster

members automatically.

1.2.1 Test Topology:

In the test that follows, 12 queue managers (‘QMs’) in the uniform cluster ‘UC01’ were

used. Each QM was started, when required.

Each queue manager is restricted to 4 cores. With 6 QMs on each of two 24 core

machines (QMHost1 & QMHost2 below), in its own cgroup.

This simulates the addition of extra compute capacity added as required to horizontally

scale the messaging layer, as you would expect in many virtual deployments such as

cloud VMs and containers (Linux cgroups is the same technology used to control the

resources used by containers in solutions such as RedHat OpenShift).

For this simple test all application threads are created using the JMS component of the

PerfHarness test tool from the start, although in real life these would often be expected

to ramp up as the load on the system increases. As we’re using MQ’s Uniform Cluster

topology the application threads will automatically be rebalanced across all available

queue managers in the cluster. This automatically maximises the capacity of the

horizontally scaled set of queue managers.

The PerfHarness sender process was started on host AppHost1 and the PerfHarness

receiver process was start on host AppHost2.

All machines in the test are connected via 40Gb network links.

https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.2.0/com.ibm.mq.con.doc/q132725_.html
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.2.0/com.ibm.mq.con.doc/q132725_.html

15

FIGURE 4 : TEST TOPOLOGY - START OF TEST

Again, for the simplicity of the test, all 12 of the uniform cluster queue managers are

created in advance, although they are started individually over the duration of the test

as the load ramps up. Pre-creating the queue managers is not necessary in a real

deployment as MQ supports creating and joining queue managers into a cluster

dynamically, and for applications to dynamically load new connection information. Figure

4 shows the topology of the test at the start, with one queue manager started. Figure 5

Figure 5 shows the topology of the test at the end when all 12 queue managers have

been started to absorb the increase messaging rate.

MQ
Senders
(x180)

AppHost1

PerfHarness

MQHost1

MQ
Receivers

(x180)

AppHost2

PerfHarness

Cluster: UC01

QM01

16

FIGURE 5: TEST TOPOLOGY - END OF TEST

1.2.2 Test Scenario

The objective of the test is to initially establish all the applications with a single queue

manager active and progressively increase the messaging load to the point that the

queue manager becomes the limiting factor. We periodically start up additional queue

managers and see how the messaging traffic is horizontally balanced to increase

capacity. The steps are:

1. A single QM (UC01QM01) on QMHost1 is started in its own cgroup slice,

restricting it to 4 cores of CPU.

2. 180 re-connectable sender application threads are started on AppHost1, putting

2KB non-persistent messages at a rate of 1 message per second (per thread) to a

single queue. Each thread connects to MQ setting its APPLTAG to ‘mqperf.sender’

3. 180 re-connectable receiver application threads are started on AppHost2. Each

thread connects to MQ setting its APPLTAG to ‘mqperf.receiver’

MQ
Senders
(x180)

AppHost1

PerfHarness

MQHost1

MQ
Receivers

(x180)

AppHost2

PerfHarness

Cluster: UC01

QM01

QM02

QM03

QM04

QM05

QM06

QM07

QM08

QM09

QM10

QM11

QM12

MQHost2

17

4. The rate of the existing senders is increased by 115 messages / second (per

sender)

5. An additional uniform cluster member is started

6. Repeat from 4 until all 12 QMs are started.

The PerfHarness applications use a json CCDT to connect to the queue managers using a

QM group of ‘UC01QM’. All the cluster QMs are in the UC01QM group and as only

UC01QM01 is up when the receivers and senders are started, they all connect to that

QM. Again, this is for simplicity. In real life you can add new entries into a CCDT as you

create new queue managers in the uniform cluster dynamically. The connected

applications will automatically reload the new information as they need to.

The only controls on the test are to increase the message rate of the existing senders

and to start additional uniform cluster QMs. The increase of rate before each additional

QM was started caused the existing QMs to be restricted by the cgroup CPU resource

limit. When an additional QM is started, the senders and receivers are automatically re-

balanced, so the rate achieved increases.

The rate achieved by the senders was measured after each increase and after each

additional QM had been started.

18

1.2.3 Results

Message rates and CPU% consumed by the two MQ host machines are shown in the

table below. Each time the target rate is increased (i.e. the total attempted message

delivery rate of all senders), the QMs that are started reach the limit of their cgroup.slice

allocation. The target rate is then achieved when the next QM is started.

Target Rate Rate
Achieved

#QMs MQHost1
CPU%

MQHost2
CPU%

20,700 20,700 1 10.96 0.00

41,400 21,070 1 16.06 0.06

41,400 41,402 2 26.93 0.02

62,100 42,244 2 32.63 0.00

62,100 62,101 3 44.59 0.00

82,800 63,108 3 49.13 0.00

82,800 82,809 4 63.02 0.00

103,500 84,896 4 65.63 0.00

103,500 103,495 5 79.76 0.00

124,200 106,077 5 82.00 0.00

124,200 124,192 6 94.53 0.00

144,900 125,901 6 95.75 0.00

144,900 144,892 7 94.45 9.12

165,600 146,211 7 95.06 9.13

165,600 165,595 8 94.28 23.02

186,300 165,589 8 94.25 23.06

186,300 186,293 9 93.33 42.60

207,000 186,347 9 93.81 42.69

207,000 206,974 10 96.45 56.05

227,700 206,974 10 95.25 57.81

227,700 227,670 11 96.16 73.03

248,400 227,675 11 96.00 72.81

248,400 248,338 12 96.88 86.95

Table 1 : Uniform Cluster Result

Figure 6 below shows a plot of the message rate and CPU consumption of the QM hosts.

Two points on the graph are indicated to show points where the message rate was

increased and where a QM was subsequently started to accommodate the additional

demand. As the test progresses the fixed increment in rate (representing around 85% of

1 QMs messaging capability) can be accommodated more by the larger number of QMs

already started, so a noticeable step in increase can be seen at that point, followed by a

further increase when the additional QM is started.

19

FIGURE 6: MESSAGE RATE AND MQHOST CPU%

Figure 7 shows the cgroup slice CPU (400% = 4 cores) of a selected number of QMs

(UC01QM01,UC01QM02, UC01QM07 & UC01QM08) and the number of receivers

connected to the first QM (UC01QM01).

When the rate is incremented for the 2nd time (towards the start of the test) UC01QM01

reaches its slice limit of 400% until the 2nd QM is started. Initial QMs on a machine tend

to consume less CPU than subsequent QMs, probably due to the lesser impact of context

switching across the machine. CPU consumption of QMs on MQHost2 (starting with

UC01QM07 & UC01QM08, shown) start out at a lower consumption once again, though

lower still than the initial QMs on MQHost1.

The numbers of requesters shown connected to UC01QM01 is representative of the

number of requesters on any active QM at that point in the test. The number of

connected receivers per QM will be similar, so only the one plot is shown for clarity.

Note that as the number of applications on each QM approach the same number, re-

balancing takes longer, to avoid continuously moving application to achieve a perfect

balance, so at the end of the test QMHost2 has some QMs that are hosting slightly less

requesters than QMHost2. If the test were allowed to continue, the uniform cluster

function would perfectly balance across all twelve QMs. In production there will probably

be applications connecting and disconnecting continuously, so constant re-balancing

when the number of applications on each QM is very close already is not desirable.

20

FIGURE 7: CGROUP CPU% AND RECEIVERS CONNECTED TO UC01QM01

1.2.4 Comparisons with Alternative Scenarios

In addition to the test above, peak rates and CPU were measured for the following

scenarios:

Fixed High Rate (1-12QMs) 180 Senders and Receivers were started, connecting

to a single, active QM (UC01QM). Senders were set to deliver

248,400 messages per second from the start. Additional QMs

were started up to a total of 12, to take up the load.

Fixed High Rate (12QMs) 180 Senders and Receivers were started, connecting to 12

active QMs (UC01QM-UC01QM12). Senders were set to deliver

248,400 messages per second from the start. In this case the

queue manager groups functionality will distribute the

connections across the 12 QMs from the start.

 Fixed High Rate (2 QMs) 180 Senders and Receivers were started, connecting to 2

unrestricted, active QMs (UC01QM01 & UC01QM07) outside of

a cgroup slice, enabling the single QM on each host to

consume all the host’s CPU resources. Senders were set to

deliver 248,400 messages per second from the start. In this

case the queue manager groups functionality will distribute

the connections across the 2 QMs from the start.

21

Test Rate Achieved MQHost1

CPU%

MQHost2

CPU%

Base Test 248,338 97 87

Fixed High Rate (1-12QMs) 248,300 94 90

Fixed High Rate (12QMs) 248,400 90 90

Fixed High Rate (2

unrestricted QMs)

248,100 96 95

Table 2

Table 2 above shows that with 12 uniform cluster QMs performance was similar. The

load was slightly more balanced at the end, when the clients were initially connected

across 12 active QMs, but over time the balancing logic of uniform cluster would expect

to settle for the other cases as well.

For 2 large QMs the achieved rate was slightly less, thus, in addition to being able to

only start QMs as they are needed, (with the associated saving in resources such as

memory), splitting the load across multiple smaller QM’s can achieve better throughout.

In production workloads will be different to these scenarios, probably combining surges

of rates and possibly client connections at peak times. A variety of performance metrics

can be monitored to establish trigger points for starting additional cluster members to

take up the load (e.g. CPU usage, queue depth etc). Existing applications will be

balanced across the cluster, as it expands, whilst newly started applications can use

queue manager groups to spread connections across the cluster members that are active

at any point. Similarly a uniform cluster can be contracted as demand decreases by

issuing ‘endmqm -r <QM>’ which will move applications off the QM being stopped, onto

the remaining active cluster members.

1.2.5 Queue Manager Setup

The uniform cluster configuration utilises the -ii, -ic and -iv flags of the crtmqm

command, allowing every queue manager to use exactly the same configuration which

makes horizontal scaling very easy. So, to create the first QM (UC01QM01), which is also

repository one of the uniform cluster:

crtmqm -lc -p 1414 -ii /nfs1/uniclus.ini -ic /nfs1/uniclus.mqsc -iv

CONNAME=MQHost1(1414) UC01QM01

The -ii parameter points to a file of qm.ini attributes which is used to add or modify

entries for the QM being created. For uniform cluster it must at least contain the

essential entries defining the cluster (see below). It can also contain additional entries,

applied to any QM created with it, like enabling FastPath channels, as in the example

below. The same file can be used for all queue managers, so could be located on an NFS

file system for access by QM’s being created on different hosts for example.

22

AutoCluster:

Repository1Conname=MQhost1(1414)

Repository1Name=UC01QM01

Repository2Conname=MQhost2(1414)

Repository2Name=UC01QM07

ClusterName=UC01

Type=Uniform

Custom entries

Channels:

 MQIBindType=FASTPATH
Sample uniform cluster ini file used by the -ii parameter

The -ic parameter points to an mqsc command file that is run by the queue manager

created with this, on every start-up. It must contain at least the cluster receiver channel

for the QM and can make use of in-built variables and variables specified on the crtmqm

command (-iv parameter).

Uniform cluster receiver channel

define channel('+AUTOCL+_+QMNAME+') chltype(clusrcvr) trptype(tcp)

conname('+CONNAME+') cluster('+AUTOCL+') replace

Uniform cluster receiver channel

alter LISTENER(SYSTEM.LISTENER.TCP.1) TRPTYPE(TCP) BACKLOG(5000)

define channel(PERF.APP.CHL) chltype(svrconn) trptype(tcp) replace

alter channel(PERF.APP.CHL) chltype(SVRCONN) sharecnv(1)

define qlocal(request1) replace

define qlocal(request2) replace

…
Sample mqsc file used by the -ic parameter of crtmqm

In the sample file above, the mqsc file makes use of the +AUTOCL+ & +QMNAME+

inbuilt variables and the +CONNAME+ variable specified on the command line to create

the cluster receiver channel

When the -ii and -ic files are set up in this way, very little needs to be changed to create

multiple cluster members. In this example we merely change the QM name, host and

listener port on the crtmqm command. E.g. to create QMs UC01QM01 to UC01QM03 on

QMHost1 and QMs UC01QM07 to UC01QM09 on QMHost2:

On QMHost1 execute:

crtmqm -lc -p 1414 -ii /nfs1/uniclus.ini -ic /nfs1/uniclus.mqsc -iv

CONNAME=MQHost1(1414) UC01QM01

crtmqm -lc -p 1415 -ii /nfs1/uniclus.ini -ic /nfs1/uniclus.mqsc -iv

CONNAME=MQHost1(1415) UC01QM02

crtmqm -lc -p 1416 -ii /nfs1/uniclus.ini -ic /nfs1/uniclus.mqsc -iv

CONNAME=MQHost1(1416) UC01QM03

23

On QMHost2 execute:

crtmqm -lc -p 1414 -ii /nfs1/uniclus.ini -ic /nfs1/uniclus.mqsc -iv

CONNAME=MQHost2(1414) UC01QM07

crtmqm -lc -p 1415 -ii /nfs1/uniclus.ini -ic /nfs1/uniclus.mqsc -iv

CONNAME=MQHost2(1415) UC01QM08

crtmqm -lc -p 1416 -ii /nfs1/uniclus.ini -ic /nfs1/uniclus.mqsc -iv

CONNAME=MQHost2(1416) UC01QM09

1.2.6 Machines used in the Test
QM_host1 ThinkSystem SR630

CPU 2 x 12: Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHz

QM_host2 ThinkSystem SR630

CPU 2 x 12: Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHz

App_host1 System x3550 M5

CPU 2 x 14 Intel(R) Xeon(R) E5-2690 v4 @ 2.60GHz

App_host2 System x3550 M5

CPU 2 x 14 Intel(R) Xeon(R) E5-2690 v4 @ 2.60GHz

1.2.7 PerfHarness Commands

For the main test above, the following PerfHarness commands were used, should you

wish to run something similar. Note that you will need an up to date version of

PerfHarness from Github (link below) to pick up some of the recent changes to support

uniform cluster testing. The SocketCommandProcessor class was used to control the rate

of the senders.

Receivers:

java -Xms768M -Xmx768M -Xmn600M JMSPerfHarness -su -wt 10 -wi 0 -nt 180 -ss 5 -

sc BasicStats -rl 0 -id 5 -tc jms.r11.Receiver -d REQUEST -to 20 -db 1 -dx 1 -dn 1 -jb

*UC01QM -jt mqc -pc WebSphereMQ -ccdt file:///nfs1/UC01.json -ar

WMQ_CLIENT_RECONNECT -an mqperf.receiver -wp true -wc 4

Senders:

java -Xms768M -Xmx768M -Xmn600M JMSPerfHarness -su -wt 10 -wi 0 -nt 180 -ss 5 -

sc BasicStats -rl 0 -id 5 -tc jms.r11.Sender -d REQUEST -to 20 -db 1 -dx 1 -dn 1 -jb

*UC01QM -jt mqc -pc WebSphereMQ -ms 2048 -rt 1 -ccdt file:///nfs1/UC01.json -ar

WMQ_CLIENT_RECONNECT -an mqperf.senders -cmd_c SocketCommandProcessor

24

2 Base MQ Performance Workloads

Table 2 (below) lists the workloads used in the generation of performance data for base

MQ (that is standard messaging function) in this report. All workloads are

requester/responder (RR) scenarios which are synchronous in style because the

application putting a message on a queue will wait for a response on the reply queue

before putting the next message. They typically run ‘unrated’ (no think time between

getting a reply and putting the next message on the request queue).

Workload Description

RR-CB Client mode requesters on separate host. Binding mode responders.

RR-DQ-BB Distributed queueing between two queue managers on separate hosts, with

binding mode requesters and responders.

RR-BB Binding mode requesters and responders

RR-CC Client mode requesters, and responders on separate, unique hosts

TABLE 2 - WORKLOAD TYPES

Binding mode connections use standard MQ bindings, client mode connections use

fastpath channels and listeners (trusted).

RR-CB & RR-DQ-BB are described in the following section. The remaining two workloads

differ only in the location of the MQ applications, which is made clear in the results

presented in this report.

2.1 RR-CB Workload (Client mode requesters on separate host. Binding mode
responders.)

FIGURE 8 - REQUESTER-RESPONDER WITH REMOTE QUEUE MANAGER (LOCAL RESPONDERS)

Figure 8 shows the topology of the RR-CB test. The test simulates multiple ‘requester’

applications which all put messages onto a set of ten request queues. Each requester is

MQ-CPH (1)

Server/Responder Machine

Responder 1
MQGet

Responder 2

Requester 1

Requestor 2

Requester 3

Requester 4

MQPut

MQ-CPH (1)

MQ

…Responder 3

Responder 4

MQGet MQPut

Requester Machine(s)

Request queues

Reply queues

…

Requester n Responder n

……

…

25

a thread running in an MQI (CPH) or JMS (JMSPerfHarness) application. Additional

machines may be used to drive the requester applications where necessary. The threads
utilise the requester queues in a round robin fashion, ensuring even distribution of

traffic.

Another set of ‘responder’ applications retrieve the message from the request queue and

put a reply of the same length onto a set of ten reply queues. Each responder is a thread
of CPH or JMSPerfHarness and there may be multiple instances of these MQI or JMS

applications, similar to the responders. The number of responders is set such that there

is always a waiting ‘getter’ for the request queue.

The flow of the test is as follows:

1. The requester application puts a message to a request queue on the remote

queue manager and holds on to the message identifier returned in the message

descriptor. The requester application then waits indefinitely for a reply to arrive

on the appropriate reply queue.

2. The responder application gets messages from the request queue and places a

reply to the appropriate reply queue. The queue manager copies over the

message identifier from the request message to the correlation identifier of the

reply message.

3. The requester application gets a reply from the reply queue using the message

identifier held when the request message was put to the request queue, as the

correlation identifier in the message descriptor.

This test is executed using client channels as trusted applications programs by specifying

“MQIBindType=FASTPATH” in the qm.ini file. This is recommended generally, but not

advised if you run channel exit programs and do not have a high degree of confidence in

their robustness

Variants of the RR-CB test differ in the location of the applications (RR-BB & RR-CC).

26

2.2 RR-DQ-BB Workload (Distributed queueing between two queue managers
on separate hosts, with binding mode requesters and responders).

FIGURE 9 - REQUESTER-RESPONDER WITH REMOTE QUEUE MANAGER (REMOTE

RESPONDERS).

This is a distributed queuing version of the requester-responder topology detailed in

section 2.1. All MQPUTs are to remote queues so that messages are now transported

across server channels to the queue manager where the queue is hosted.

JMSPerfHarness/CPH (1)

Distributed Server Machine Remote Server Machine

Responder i
MQGet

Responder ii

Requester 1

Requestor 2

Producer 3

Producer 4

MQPut

JMSPerfHarness/CPH (1)
MQ

Responder iii

Responder iv

Reply queue 1

MQGet
MQPut

MQ

Transmission

queue 1

Transmission

queue 2

Channel 1

Channel 1

Local Bindings

Request queue 1

Request queue 2

Transmission

queue 1

Transmission

queue 2

Channel 2

Reply queue 2
Channel 2

Responder v

Responder vi

Transmission

queue n

Transmission

queue n

Request queue n

Reply queue n

27

3 Non-Persistent Performance Test Results
Full performance test results are detailed below. The test results are presented by broad

categories with an illustrative plot in each section followed by the peak throughput

achieved for the remaining tests in that category (the remaining tests are typically for

different message sizes).

3.1 RR-CB Workload

The following chart illustrates the performance of 2KB Non-persistent messaging with

various numbers of requester clients.

FIGURE 10 - PERFORMANCE RESULTS FOR RR-CB (2KB NON-PERSISTENT)

The test peaked at approximately 142,000 round trips/sec, fully utilising the CPU of the

MQ server.

Peak round trip rates for all message sizes tested can be seen in the table below. The

200KB and 2MB scenarios are being limited by the 40Gb network that links the client and

server machines.

*ROUND TRIPS/ SEC

0

10

20

30

40

50

60

70

80

90

100

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

0 10 20 30 40 50 60 70 80 90 100

C
P

U
%

R
o

u
n

d

T

ri
p

s
/s

e
c

Requester Applications

RR-CB (2KB Non-persistent)

V9.2 round trips/sec V9.2 CPU%

Test V9.2

Max Rate* CPU% Clients

RR-CB (2KB Non-persistent) 141,554 99.27 60

RR-CB (20KB Non-persistent) 114,930 99.23 60

RR-CB (200KB Non-persistent) 22,639 57.39 50

RR-CB (2MB Non-persistent) 2,194 63.01 50

28

TABLE 3 - PEAK RATES FOR WORKLOAD RR-CB (NON-PERSISTENT)

3.1.1 Test setup
Workload type: RR-CB (see section 2.1).

Hardware: Server 1, Client 1, Client 2 (see section A.1).

3.2 RR-DQ-BB Workload (Distributed queueing between two queue managers
on separate hosts, with binding mode requesters and responders).

The distributed queuing scenarios use workload type RR-DQ-BB (see section 0) where

locally bound requesters put messages onto a remote queue.

The throughput will be sensitive to network tuning and server channel setup amongst

other things. All of the tests in this section utilise multiple send/receive channels. This

particularly helps with smaller, non-persistent messages when the network is under-

utilised.

FIGURE 11 - PERFORMANCE RESULTS FOR RR-DQ-BB (2KB NON-PERSISTENT)

0

10

20

30

40

50

60

70

80

90

100

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

0 25 50 75 100 125 150 175 200 225 250

C
P

U
%

R
o

u
n

d

T

ri
p

s
/s

e
c

Requester Applications

RR-DQ-BB (2KB Non-persistent)

V9.2 round trips/sec V9.2 CPU%

29

The distributed queuing test exhibits good scaling with CPU being the limiting factor as

the number of clients increases.

Peak round trip rates for all message sizes tested can be seen in the table below. The

200KB and 2MB measurements are again network limited by the 40Gb network.

*ROUND TRIPS/ SEC

TABLE 4 – FULL RESULTS FOR WORKLOAD RR-DQ-BB (NON-PERSISTENT)

3.2.1 Test setup
Workload type: RR-DQ-BB (see section 0).

Hardware: Server 1, Client 1 (see section A.1).

Test V9.2

Max Rate* CPU% Clients

RR-DQ-BB (2KB Non-persistent) 170,191 96.57 250

RR-DQ-BB (20KB Non-persistent) 121,909 91.82 120

RR-DQ-BB (200KB Non-persistent) 22,653 48 30

RR-DQ-BB (2MB Non-persistent) 2,161 53.57 25

30

3.3 RR-CC JMS Workload

The test application is JMSPerfharness, which is run unrated (i.e. each requester sends a

new message as soon as it receives the reply to the previous one).

FIGURE 12 - PERFORMANCE RESULTS FOR RR-CC (2KB JMS NON-PERSISTENT)

Once again, the workload exhibits good scaling up to 100% of the CPU (the limiting

factor), peaking at approximately 95,000 round trips/sec

Peak round trip rates for all message sizes tested can be seen in the table below. The

200KB and 2MB scenarios are network limited by the 40Gb network; the rates are lower

than the RR-CB network limited scenarios because of the additional network hop to the

responder applications which are local in the RR-CB scenario.

*ROUND TRIPS/ SEC

TABLE 5 - PEAK RATES FOR JMS (NON-PERSISTENT)

3.3.1 Test setup
Workload type: RR-CC (see section 2).

Message protocol: JMS

Hardware: Server 1, Client 1, Client 2 (see section A.1).

0

10

20

30

40

50

60

70

80

90

100

0

20,000

40,000

60,000

80,000

100,000

0 20 40 60 80 100 120 140 160 180 200

C
P

U
%

R
o

u
n

d

T

ri
p

s
/s

e
c

Requester Applications

RR-CC (2KB JMS Non-persistent)

V9.2 round trips/sec V9.2 CPU%

Test V9.2

Max Rate* CPU% Clients

RR-CC (2KB JMS Non-persistent) 100,136 99.99 180

RR-CC (20KB JMS Non-persistent) 81,072 99.96 150

RR-CC (200KB JMS Non-persistent) 10,912 57.29 100

RR-CC (2MB JMS Non-persistent) 1,011 52.47 90

31

3.4 RR-CC Workload with TLS (Client mode requesters and responders on
separate hosts).

To illustrate the overhead of enabling TLS to encrypt traffic between the client

applications and the queue manager, results are shown below comparing the

performance of the 6 strongest TLS1.2 MQ CipherSpecs, and all TLS1.3 MQ CipherSpecs

(support for TLS 1.3 encryption was introduced in MQ V9.1.4).

The following TLS 1.2 CipherSpecs were tested (all utilise 256bit encryption, and are

FIPS compliant).

• TLS_RSA_WITH_AES_256_CBC_SHA256

• TLS_RSA_WITH_AES_256_GCM_SHA384

• ECDHE_ECDSA_AES_256_CBC_SHA384

• ECDHE_ECDSA_AES_256_GCM_SHA384 (Suite B compliant)

• ECDHE_RSA_AES_256_CBC_SHA384

• ECDHE_RSA_AES_256_GCM_SHA384

Results for the suite B compliant CipherSpec (ECDHE_ECDSA_AES_256_GCM_SHA384),

along with an older, CBC based CipherSpec (ECDHE_RSA_AES_256_CBC_SHA384) and a

TLS 1.3 CipherSpec (TLS_AES_128_CCM_8_SHA256) are plotted below. As will be seen,

the remaining tested CipherSpecs exhibited a performance profile similar to one of these

plots.

FIGURE 13 - PERFORMANCE RESULTS FOR RR-CC WITH TLS 1.2

The ECDHE_ECDSA_AES_256_GCM_SHA384 CipherSpec uses a GCM (Galois/Counter

Mode) symmetric cipher. Performance testing showed that all TLS 1.2 GCM based

0

10

20

30

40

50

60

70

80

90

100

0

20,000

40,000

60,000

80,000

100,000

120,000

0 10 20 30 40 50 60 70 80 90 100

C
P

U
%

R
o

u
n

d

T

ri
p

s
/s

e
c

Requester Connections

RR-CC (2KB Non-persistent) : TLS comparison

No TLS ECDHE_ECDSA_AES_256_CBC_SHA384 (TLS 1.2)

ECDHE_ECDSA_AES_256_GCM_SHA384 (TLS 1.2) TLS_AES_128_CCM_8_SHA256 (TLS 1.3)

No TLS CPU% ECDHE_ECDSA_AES_256_CBC_SHA384 (TLS 1.2) CPU%

ECDHE_ECDSA_AES_256_GCM_SHA384 (TLS 1.2) CPU% TLS_AES_128_CCM_8_SHA256 (TLS 1.3) CPU%

32

CipherSpecs exhibited similar performance. All of the TLS 1.2 CipherSpecs utilising the

older CBC (Chain Block Cipher) symmetric cipher exhibited similar to

ECDHE_ECDSA_AES_256_CBC_SHA384 in the plot above. All TLS 1.3 CipherSpecs

exhibited a performance profile similar to TLS_AES_128_CCM_8_SHA256 in the plot

above.

All tests exhibited scaling up to 100% of the CPU of the machine. Throughput for GCM

based CipherSpecs ran at approximately 61% of the throughput of a non-encrypted

workload. CBC based CipherSpecs exhibited a greater overhead, running at

approximately 39% of a non-encrypted workload. TLS 1.3 encryption is more expensive,

acheiving rates slightly below the TLS 1.2 CBC based CipherSpecs.

*Round trips/ sec

Table 6 shows the peak rates achieved for all 6 TLS 1.2 CipherSpecs tested,

demonstrating the equivalence of performance, based on whether the symmetric key

algorithm is CBC, or GCM based.

*ROUND TRIPS/ SEC

TABLE 6 - PEAK RATES FOR MQI CLIENT BINDINGS (2KB NON-PERSISTENT) – TLS 1.2

Table 7 shows the peak rates achieved for all TLS 1.3 CipherSpecs.

*Round trips/ sec

TABLE 7 - PEAK RATES FOR MQI CLIENT BINDINGS (2KB NON-PERSISTENT) – TLS 1.3

TLS 1.2 CipherSpec V9.2 GM

Max Rate* CPU% Clients

No TLS 106,826 100 80

TLS_RSA_WITH_AES_256_CBC_SHA256 43,914 100 100

TLS_RSA_WITH_AES_256_GCM_SHA384 66,592 98 60

ECDHE_ECDSA_AES_256_CBC_SHA384 44,132 100 100

ECDHE_ECDSA_AES_256_GCM_SHA384 66,594 98 60

ECDHE_RSA_AES_256_CBC_SHA384 43,893 100 100

ECDHE_RSA_AES_256_GCM_SHA384 66,626 99 70

TLS 1.2 CipherSpec V9.2 GM

Max Rate* CPU% Clients

No TLS 106,826 100 80

TLS_RSA_WITH_AES_256_CBC_SHA256 43,914 100 100

TLS_RSA_WITH_AES_256_GCM_SHA384 66,592 98 60

ECDHE_ECDSA_AES_256_CBC_SHA384 44,132 100 100

ECDHE_ECDSA_AES_256_GCM_SHA384 66,594 98 60

ECDHE_RSA_AES_256_CBC_SHA384 43,893 100 100

ECDHE_RSA_AES_256_GCM_SHA384 66,626 99 70

TLS 1.3 CipherSpec V9.2 GM

Max Rate* CPU% Clients

No TLS 106,826 100 80

TLS_AES_128_CCM_8_SHA256 42,539 100 100

TLS_AES_256_GCM_SHA384 44,237 100 100

TLS_CHACHA20_POLY1305_SHA256 43,079 100 100

TLS_AES_128_GCM_SHA256 44,165 100 100

TLS_AES_128_CCM_SHA256 42,809 100 100

33

3.4.1 Test setup
Workload type: RR-CC (see section 2).

Hardware: Server 1, Client 1, Client 2 (see section A.1).

34

4 Persistent Performance Test Results

The performance of persistent messaging is largely dictated by the capabilities of the

underlying filesystem hosting the queue files, and more critically, the transaction log

files. IBM MQ is designed to maximise throughput, regardless of the technology used, by

aggregating writes where possible, to the transaction log, where they need to be

synchronous to ensure transactional integrity.

The performance of persistent messaging is therefore dependant on the machine hosting

MQ, and the I/O infrastructure. Some comparisons are shown below between non-

persistent and persistent messaging for local storage, and then results for V9.2 in a

separate environment (x64 Linux with SAN, SSD & NFS filesystems) are shown to

demonstrate the impact of transaction log location.

4.1 RR-BB Workload

FIGURE 14 - PERFORMANCE RESULTS FOR RR-BB (2KB NON-PERSISTENT VS

PERSISTENT)

Figure 14 shows results from running the RR-BB workload with 2KB non-persistent and

persistent messages, on the same server used for the non-persistent scenarios in the

previous sections.

RR-BB is a variant of RR-CB (see section 2.1) where all applications are connected in

bindings mode. This accentuates the impact of persistent messaging since we are no

longer limited by network bandwidth.

0

10

20

30

40

50

60

70

80

90

100

0

50,000

100,000

150,000

200,000

0 20 40 60 80 100 120 140 160 180 200

C
P

U
%

R
o

u
n

d

T

ri
p

s
/s

e
c

Requester Applications

RR-BB (2KB)

V9.2 round trips/sec (non-persistent) V9.2 round trips/sec (persistent) V9.2 CPU% (non-persistent) V9.2 CPU% (persistent)

35

The non-persistent workload reaches an optimal value at 60 requesters where, the CPU

reaches 100% utilisation. Adding more requesters degrades performance, increasing

context switching on an already saturated server.

Note that for smaller message sizes (as for 2KB, above), higher rates of throughput in

persistent scenarios are attained when there is a greater deal of concurrency (i.e.

requester applications) as this enables the logger component of IBM MQ to aggregate log

data into larger, more efficient writes to disk.

Peak round trip rates for all message sizes tested, for persistent & non-persistent

scenarios can be seen in the tables below.

Non-persistent workloads are typically limited by the CPU, whilst the transaction log I/O

is the limiting factor for the persistent workloads. As the message size goes up, the time

spent on the transaction log write becomes a larger factor, so although the bytes per sec

is more, the overall CPU utilisation is lower. The level of concurrency needed to reach

the limitations of the filesystem also drops as the message size increases.

*ROUND TRIPS/ SEC

TABLE 8 - PEAK RATES FOR WORKLOAD RR-BB (NON-PERSISTENT)

*ROUND TRIPS/ SEC

TABLE 9 - PEAK RATES FOR WORKLOAD RR-BB (PERSISTENT)

4.1.1 Test setup
Workload type: RR-BB (see section 2).

Hardware: Server 1 (see section A.1).

4.2 Impact of Different File Systems on Persistent Messaging Performance

A separate paper has been published, with illustrative results, for SSD, SAN and NFS

hosted filesystems, along with some guidance, on best practises, and monitoring.

https://ibm-messaging.github.io/mqperf/mqio_v1.pdf

Test V9.2

Max Rate* CPU% Clients

RR-BB (2K Non-persistent) 199,421 99.99 60

RR-BB (20K Non-persistent) 130,598 99.62 50

RR-BB (200K Non-persistent) 52,270 93.04 27

RR-BB (2MB Non-persistent) 3,377 80.12 20

Test V9.2

Max Rate* CPU% Clients

RR-BB (2KB Persistent) 58,515 95.76 200

RR-BB (20KB Persistent) 41,615 79.68 100

RR-BB (200KB Persistent) 6,912 25.99 20

RR-BB (2MB Persistent) 744 21.17 10

https://ibm-messaging.github.io/mqperf/mqio_v1.pdf

36

If possible, you should assess the performance of a new application, with non-persistent

messaging first. If the target rate of messaging is met, then calculate the required

bandwidth of the filesystem hosting the transaction logs.

FIGURE 15 - PERFORMANCE RESULTS FOR RR-BB PERSISTENT MESSAGING LOGGING TO

SSD, SAN & NFS

To illustrate the impact that the filesystem hosting the transaction logs can have, Figure

15 shows results from running the RR-BB workload with non-persistent and persistent

messaging (hosted on different filesystems).

RR-BB is a variant of RR-CB (see section 2.1) where all applications are connected in

bindings mode, eliminating the network as a bottleneck (except in the case of NFS,

where there is a 10Gb link from the MQ server to the NFS server).

As expected, the non-persistent case is limited by CPU

1.1.1 Test setup

Workload type: RR-BB (see section 2).

Hardware: x64 Linux MQ server, x64 Linux NFS server, IBM SAN Volume Controller, and

Storwise V7000 – see section A.2.

0

10

20

30

40

50

60

70

80

90

100

0

50,000

100,000

150,000

200,000

0 50 100 150 200 250 300

C
P

U
%

R
o

u
n

d

T

ri
p

s
/s

e
c

Requester Applications

RR-BB (2KB Persistent) Messaging

Non-persistent round trips/sec Persistent (SAN) round trips/sec Persistent (SSD) round trips/sec

Persistent (NFS) round trips/sec Non-persistent CPU% Persistent (SAN) CPU%

Persistent (SSD) CPU% Persistent (NFS) CPU%

37

Appendix A: Test Configurations

A.1 Hardware/Software – Set1

All of the testing in this document (apart from when testing results are shown from a

different platform and are clearly identified as such) was performed on the following

hardware and software configuration:

A.1.1 Hardware

Server1, client1 & client2 are three identical machines:

Lenovo System x3550 M5 – [5463-L2G]

2 x 12 core CPUs.

Core: Intel® Xeon® E5-2690 v3 @ 2.60GHz

128GB RAM

40Gb ethernet adapters connect all three machines via an isolated performance LAN.

A.1.2 Software

Red Hat Enterprise Linux Server release 7.7 (Maipo)

JMSPerfHarness test driver (see Appendix C:)

MQ-CPH MQI test driver (see Appendix C:)

IBM MQ V9.2

A.2 Hardware/Software – Set2 (Persistent messaging comparisons)

The persistent messaging tests in section 4.2, comparing different filesystems used to

host the MQ transaction logs, were run with the following hardware/software.

A.2.1 Hardware

The MQ Server and NFS Server are two identical machines:

Lenovo System x3550 M5 – [8869-AC1]

2 x 14 core CPUs.

Core: Intel® Xeon® E5-2690 v4 @ 2.60GHz

128GB RAM

10Gb ethernet adapters connected the QM server to the NFS server, via an isolated

performance LAN.

38

The SAN test used an IBM Storwize V7000 populated with 10,000 rpm disks configured

in a RAID 10 array, and fronted by an IBM SAN Volume Controller (SVC) with 20GB of

RAM. The SVC was connected to the MQ server via a dual-port 8Gb fibre channel

adapter.

A.2.2 Software

Red Hat Enterprise Linux Server release 7.7 (Maipo)

MQ-CPH MQI test driver (see Appendix C:)

IBM MQ V9.2

39

A.3 Tuning Parameters Set for Measurements in This Report

The tuning detailed below was set specifically for the tests being run for this

performance report but in general follow the best practises.

A.3.1 Operating System

A good starting point is to run the IBM supplied program mqconfig. The following Linux

parameters were set for measurements in this report.

/etc/sysctl.conf

fs.file-max = 13121479

net.ipv4.ip_local_port_range = 1024 65535

vm.max_map_count = 1966080

kernel.pid_max = 655360

kernel.sem = 1000 1024000 500 8192

kernel.msgmnb = 131072

kernel.msgmax = 131072

kernel.msgmni = 32768

kernel.shmmni = 8192

kernel.shmall = 4294967296

kernel.shmmax = 137438953472

kernel.sched_latency_ns = 2000000

kernel.sched_min_granularity_ns = 1000000

kernel.sched_wakeup_granularity_ns = 400000

/etc/security/limits.d/mqm.conf

@mqm soft nofile 1048576

@mqm hard nofile 1048576

@mqm soft nproc 1048576

@mqm hard nproc 1048576

@mqm soft core unlimited

@mqm hard core unlimited

40

A.3.2 IBM MQ

The following parameters are added or modified in the qm.ini files for the tests run in

section 3 of this report:

Channels:

 MQIBindType=FASTPATH

 MaxActiveChannels=5000

 MaxChannels=5000

Log:

 LogBufferPages=4096

 LogFilePages=16384

 LogPrimaryFiles=16

 LogSecondaryFiles=2

 LogType=CIRCULAR

 LogWriteIntegrity=TripleWrite

TuningParameters:

 DefaultPQBufferSize=10485760

 DefaultQBufferSize=10485760

For large message sizes (200K & 2MB), the queue buffers were increased further to:

DefaultPQBufferSize=104857600

DefaultQBufferSize=104857600

Note that large queue buffers may not be needed in your configuration. Writes to the

queue files are asynchronous, taking advantage of OS buffering. Large buffers were set

in the runs here, as a precaution only.

41

Appendix B: Glossary of terms used in this report

CD Continuous delivery.

JMSPerfharness JMS based, performance test application

(https://github.com/ot4i/perf-harness)

LTS Long term service.

MQ-CPH C based, performance test application

(https://github.com/ibm-messaging/mq-cph)

https://github.com/ot4i/perf-harness
https://github.com/ibm-messaging/mq-cph

42

Appendix C: Resources

MQ Performance GitHub Site

https://ibm-messaging.github.io/mqperf/

Queue Manager Restart Time Improvements in V9.1.1 Performance Paper

https://ibm-messaging.github.io/mqperf/Queue%20Manager%20Restart%20Times.pdf

Improved Switch/Fail-over times in MQ V9.1.2 Blog Article

https://community.ibm.com/community/user/imwuc/viewdocument/improved-switchfail-

over-times-in

IBM MQ Performance: Best Practises, and Tuning Paper:

https://ibm-messaging.github.io/mqperf/MQ_Performance_Best_Practices_v1.0.1.pdf

MQ-CPH (The IBM MQ C Performance Harness)

https://github.com/ibm-messaging/mq-cph

JMSPerfHarness

https://github.com/ot4i/perf-harness

https://ibm-messaging.github.io/mqperf/
https://ibm-messaging.github.io/mqperf/Queue%20Manager%20Restart%20Times.pdf
https://community.ibm.com/community/user/imwuc/viewdocument/improved-switchfail-over-times-in
https://community.ibm.com/community/user/imwuc/viewdocument/improved-switchfail-over-times-in
https://ibm-messaging.github.io/mqperf/MQ_Performance_Best_Practices_v1.0.1.pdf
https://github.com/ibm-messaging/mq-cph
https://github.com/ot4i/perf-harness

