
1

IBM MQ V9.4 (FP10) for AIX on Power

Performance Report

Version 1.0 - July 2025

Paul Harris

IBM MQ Performance

IBM UK Laboratories

Hursley Park

Winchester

Hampshire

UK

2

Notices

Please take Note!

Before using this report, please be sure to read the paragraphs on “disclaimers”,

“warranty and liability exclusion”, “errors and omissions”, and the other general

information paragraphs in the "Notices" section below.

First Edition, May 2025.

This edition applies to IBM MQ V9.4.0.10 (and to all subsequent releases and

modifications until otherwise indicated in new editions).

© Copyright International Business Machines Corporation 2025. All rights reserved.

Note to U.S. Government Users

Documentation related to restricted rights.

Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule

contract with IBM Corp.

3

DISCLAIMERS

The performance data contained in this report was measured in a controlled

environment. Results obtained in other environments may vary significantly.

You should not assume that the information contained in this report has been submitted

to any formal testing by IBM.

Any use of this information and implementation of any of the techniques are the

responsibility of the licensed user. Much depends on the ability of the licensed user to

evaluate the data and to project the results into their own operational environment.

WARRANTY AND LIABILITY EXCLUSION

The following paragraph does not apply to the United Kingdom or any other country

where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION

“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-

INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain

transactions, therefore this statement may not apply to you.

In Germany and Austria, notwithstanding the above exclusions, IBM's warranty and

liability are governed only by the respective terms applicable for Germany and Austria in

the corresponding IBM program license agreement(s).

ERRORS AND OMISSIONS

The information set forth in this report could include technical inaccuracies or

typographical errors. Changes are periodically made to the information herein; any such

change will be incorporated in new editions of the information. IBM may make

improvements and/or changes in the product(s) and/or the program(s) described in this

information at any time and without notice.

INTENDED AUDIENCE

This report is intended for architects, systems programmers, analysts and programmers

wanting to understand the performance characteristics of IBM MQ V9.4. The information

is not intended as the specification of any programming interface that is provided by IBM

4

MQ. It is assumed that the reader is familiar with the concepts and operation of IBM MQ

V9.4.

LOCAL AVAILABILITY

References in this report to IBM products or programs do not imply that IBM intends to

make these available in all countries in which IBM operates. Consult your local IBM

representative for information on the products and services currently available in your

area.

ALTERNATIVE PRODUCTS AND SERVICES

Any reference to an IBM product, program, or service is not intended to state or imply

that only that IBM product, program, or service may be used. Any functionally equivalent

product, program, or service that does not infringe any IBM intellectual property right

may be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

USE OF INFORMATION PROVIDED BY YOU

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

TRADEMARKS AND SERVICE MARKS

The following terms used in this publication are trademarks of their respective

companies in the United States, other countries or both:

- IBM Corporation : IBM

- Oracle Corporation : Java

Other company, product, and service names may be trademarks or service marks of

others.

EXPORT REGULATIONS

You agree to comply with all applicable export and import laws and regulations.

5

Preface

Target audience

The report is designed for people who:

• Will be designing and implementing solutions using IBM MQ v9.4 for AIX on

Power10.

• Want to understand the performance limits of IBM MQ v9.4 for AIX on Power10.

• Want to understand what actions may be taken to tune IBM MQ v9.4 for AIX on

Power10.

The reader should have a general awareness of the AIX operating system and of IBM MQ to

make best use of this report.

Whilst operating system, and MQ tuning details are given in this report (specific to the

workloads presented), a more general consideration of tuning and best practices, with

regards to application design, MQ topology etc, is no longer included in the platform

performance papers. A separate paper on general performance best practises has been

made available here:

https://ibm-messaging.github.io/mqperf/MQ_Performance_Best_Practices_v1.0.1.pdf

Contents

This report includes:

Release highlights with performance charts for IBM MQ V9.4 with Fix Pack 10 (V9.4.0.10),

the latest available Fix Pack at time of testing.

• Performance measurements with figures and tables to present the performance

capabilities of IBM MQ, across a range of message sizes, and including distributed

queuing scenarios.

Feedback

We welcome feedback on this report.

• Does it provide the sort of information you want?

• Do you feel something important is missing?

• Is there too much technical detail, or not enough?

• Could the material be presented in a more useful manner?

Specific queries about performance problems on your IBM MQ system should be directed

to your local IBM Representative or Support Centre.

Please direct any feedback on this report to paul_harris@uk.ibm.com.

https://ibm-messaging.github.io/mqperf/MQ_Performance_Best_Practices_v1.0.1.pdf
mailto:paul_harris@uk.ibm.com??l?la?lan?lang?lang=?lang=e?lang=en

6

Contents
Preface ... 5
1 Introduction .. 8
2 Release Highlights .. 9

2.1 Environment variables for tuning I/O operations that take too long........................ 9

2.2 LZ4 Compression Options .. 11

2.2.1 Test setup ... 13

3 Base MQ Performance Workloads ... 14
3.1 RR-CC Workload ... 15

3.2 RR-DQ-BB Workload .. 17

4 Non-Persistent Performance Test Results .. 18
4.1 RR-CC Workload ... 18

4.1.1 Test setup ... 19

4.2 RR-DQ-BB Workload .. 19

4.2.1 Test setup ... 20

4.3 RR-CC JMS Workload ... 21

4.3.1 Test setup ... 22

5 Persistent Performance Test Results .. 23
5.1 RR-CC Workload ... 23

5.1.1 Test setup ... 25

5.2 Impact of Different File Systems on Persistent Messaging Performance 26

1.1.1 Test setup ... 27

6 RR-CC Workload with TLS .. 28
6.1 TLS Non-Persistent Results.. 29

6.1.1 Test setup ... 30

6.2 TLS Persistent Results .. 31

6.2.1 Test setup ... 32

6.3 Effect of MQ Recovery Log Performance on TLS Comparisons 32

6.3.1 Test setup ... 34

Appendix A: Test Configurations... 35
A.1 Hardware/Software – Set1 ... 35

A.1.1 Hardware .. 35

A.1.2 Software (AIX Hosts) .. 36

A.1.3 Software (Linux Hosts) ... 36

7

A.2 Tuning Parameters Set for Measurements in This Report..................................... 37

A.2.1 Operating System ... 38

A.2.2 IBM MQ ... 39

Appendix B: Glossary of terms used in this report ... 40
Appendix C: Resources ... 41

TABLES

Table 1 - Message Compression Rates .. 13
Table 2 - Workload types ... 14
Table 3 - Peak rates for workload RR-CC (non-persistent) .. 19
Table 4 – Full Results for workload RR-DQ-BB (non-persistent) ... 20
Table 5 - Peak rates for JMS (non-persistent) .. 21
Table 6 - Peak rates for workload RR-CC (non-persistent) .. 24
Table 7 - Peak rates for workload RR-CC (Persistent) ... 24
Table 8 - TABLE 9 - Peak rates for workload RR-CC (Persistent SSD vs SAN vs NFS) 27
Table 9 - Peak rates for MQI client bindings (2KB non-persistent) – TLS 1.2 30
Table 10 - Peak rates for MQI client bindings (2KB non-persistent) – TLS 1.3 30
Table 11 - Peak rates for MQI client bindings (2KB persistent) – TLS 1.2 31
Table 12 - Peak rates for MQI client bindings (2KB persistent) – TLS 1.3 32

FIGURES

Figure 1- Effect of Message Compression over Narrow Bandwidth Network Connection
(10Gb Ethernet) ... 11

Figure 2- Peak Message Rates by Message Size and Compression Algorithm. 12
Figure 3 - RR-CC Topology ... 15
Figure 4 - Requester-responder with remote queue manager (remote responders). 17
Figure 5 - Performance results for RR-CC (2KB non-persistent) ... 18
Figure 6 - Performance results for RR-DQ-BB (2KB non-persistent) 20
Figure 7 - Performance results for RR-CC (2KB JMS non-persistent) 21
Figure 8 - Performance results for RR-CC (2KB Non-persistent vs Persistent) 23
Figure 9 - Performance Results for RR-CC Persistent Messaging logging to SSD, SAN &

NFS .. 26
Figure 10 - Performance Results for RR-CC with TLS ... 29
Figure 11 - Performance Results for RR-CC (2KB Persistent) with TLS 31
Figure 12 - Performance Results for RR-CC (2KB Persistent) with TLS 1.3 (Logging to SAN)

.. 33

8

1 Introduction

IBM MQ V9.4 is a long term service (LTS) release of MQ, which includes features

made available in the V9.3.1, V9.3.2, V9.3.3, V9.3.4 & V9.3.5 continuous

delivery (CD) releases.

All V9.4 tests in this report were run with Fix Pack 10 applied (i.e. IBM MQ

V9.4.0.10)

Performance data presented in this report does not include release to release

comparisons, but all tests run showed equal or better performance than the V9.3

release of IBM MQ.

As with all performance sensitive tests, you should run your own tests where

possible, to simulate your production environment and circumstances you are

catering for.

9

2 Release Highlights

Release highlights are listed in the MQ 9.4 documentation here:

https://www.ibm.com/docs/en/ibm-mq/9.4?topic=mq-whats-new-changed-in-940

2.1 Environment variables for tuning I/O operations that take too long

From IBM MQ 9.4.0, three new environment variables are added to increase or decrease

the threshold at which a warning message is written to the queue manager log if a slow

read/write time is detected. Fine tuning with these environment variables can help with

diagnosing operating system or storage system issues and reduce the number of errors that

are written to the log. For more information, see AMQ_IODELAY, AMQ_IODELAY_INMS and

AMQ_IODELAY_FFST.

For example, if the following 2 environment variables are set, then warnings will be written

to the queue manager error log, when a recovery log write takes over 7000µs (7ms).

export AMQ_IODELAY_INMS=YES

export AMQ_IODELAY=7000

Using these values for a test where the recovery log is hosted on nfs (on an x64 Linux

server), we can introduce a latency of 10ms on the link from the Linux command line (the

interface for the nfs link is ‘ens3f0’ in this case):

tc qdisc add dev ens3f0 root netem delay 10000us

MQ will report the long write time to the recovery log:

25/02/25 14:32:14 - Process(19858088.4) User(mqperf) Program(amqzmuc0)

 Host(server1.hursley.ibm.com) Installation(Installation1)

 VRMF(9.4.0.10) QMgr(PERF0)

 Time(2025-02-25T14:32:14.804Z)

 ArithInsert1(4096)

 CommentInsert1(W)

 CommentInsert2(7000)

 CommentInsert3(10465)

AMQ6729W: Log I/O operation (W) exceeded threshold (7000 microseconds).

EXPLANATION:

A Read (R) or Write (W) of 4096 bytes took longer than expected to complete.

This might indicate a problem with your O/S or storage system. If this occurs

frequently, queue manager performance is likely to be severely impacted.

ACTION:

Investigate cause of long I/O times in your storage provision. If these delays

are expected in your environment, the warning threshold can be increased by

modifying the AMQ_IODELAY environment variable.

----- amqhose0.c : 106 --

https://www.ibm.com/docs/en/ibm-mq/9.4?topic=mq-whats-new-changed-in-940
https://www.ibm.com/docs/en/SSFKSJ_9.4.0/configure/q082720_.html#q082720___amq_iodelay_vars
https://www.ibm.com/docs/en/SSFKSJ_9.4.0/configure/q082720_.html#q082720___amq_iodelay_vars

10

Note the 2nd and 3rd ‘CommentInsert’ fields in the message (highlighted in red), which show

the current value of AMQ_IODELAY in micro-seconds and the length of time the write

operation took that triggered this message.

Setting AMQ_IODELAY to a sensible value (determined by expected peak latency during a

‘normal’ day) enables you determine when the recovery log filesystem may have issues.

11

2.2 LZ4 Compression Options

With MQ V9.4, new LZ4 compression algorithms are available, see the IBM Integration

Community article here for the general details.

For AIX on Power9 and up, an enhanced version of the zlib compression library (zLinbNX)

that supports hardware-accelerated data compression and decompression by using co-

processors can be used. a

Whilst the zlibNX library can deliver a performance boost, it was not the best option here.

The RR-CC tests scale by adding in ever increasing numbers of client threads, all of which

are utilising compression and can contend for use of the co-processor. ZLIBFAST numbers

below are not utilising the zlibNX library.

FIGURE 1- EFFECT OF MESSAGE COMPRESSION OVER NARROW BANDWIDTH NETWORK

CONNECTION (10GB ETHERNET)

Results presented throughout this report were run against hosts in the same datacentre

and connected via 100Gb network links. In such an environment, setting message

compression is unlikely to increase the throughput, but for smaller bandwidth links, the

effects can be significant.

a To enable a message channel agent (MCA) to use the zlibNX library, set the environment

variable AMQ_USE_ZLIBNX.

https://community.ibm.com/community/user/integration/blogs/jonathan-rumsey/2024/06/17/mqlz4

12

Figure 1 above show the effects of using the ZLIBFAST or LZ4FAST compression algorithms

on the SVRCONN channels used by the requester and responder applications for 20K

messages. The FAST options were found to be more beneficial in this environment for both

algorithms (rather than using ZLIBHIGH or LZ4HIGH). Note that the new LZ4 algorithm

available in MQ V9.4 was a lot faster for smaller numbers of clients, consuming much less

CPU and enabling a higher message rate to be achieved through the bottleneck of the 10Gb

network link. For a larger number of clients (i.e. greater concurrently), the existing

ZLIBHIGH algorithm achieved the higher throughput, but at greater cost in CPU terms. You

should determine which compression algorithm suits your workload through testing.

The benefit of using compression will depend on several factors including:

• Size of message

• Quality of network link (bandwidth and latency).

• Compressibility of the message data.

• Available CPU resource (for both the queue manager host and the hosts where the

applications are running).

For the 10Gb linked environment for the 20K results above, varying degrees of benefit were

recorded when using compression.

FIGURE 2- PEAK MESSAGE RATES BY MESSAGE SIZE AND COMPRESSION ALGORITHM.

Figure 2, shows the peak rate achieved for 2K, 20K and 200K messages, without

compression vs compression (ZLIBFAST or LZ4FAST). For 2KB messages there was no

significant improvement utilising compression.

For larger messages (20KB and 200KB), utilising compression gave significant throughput

benefits. Whilst the ZLIBHIGH gave the best throughput, greater numbers of clients were

required and the CPU cost was higher. In the 200KB case 90 requester applications were

13

needed before ZLIBHIGH achieved a greater throughout than LZ4FAST, at which point it

was using 3x the CPU of LZ4FAST.

As stated above, compressibility of the message will be a factor. For these tests the

message data was comprised of JSON text. Binary data will not benefit as much (or at all)

as this is often of an uncompressible nature (e.g. already a compressed format). Other

messages may be more compressible and exhibit a greater benefit.

The table below shows the compression rates achieved (as reported by the COMPRATE

value in the channel status). Although the HIGH variants of the algorithms compressed

these JSON messages a little more, they did not give as much benefit as the FAST variants

due to the additional time taken for the more aggressive compression.

TABLE 1 - MESSAGE COMPRESSION RATES

The new LZ4 compression algorithm performed significantly better than the existing ZLIB

algorithm for these tests at lower numbers of clients. At higher numbers of clients, the ZLIB

algorithms may achieve more throughput, but at a significantly higher CPU cost. If your

environment is constrained by the network between the clients and the queue manager, it

is worth testing with compression to measure the potential benefit.

Note that compression algorithms can also be set on channels between queue managers,

so consider using them for intra-queue manager traffic where the network bandwidth is a

limiting factor.

2.2.1 Test setup
Workload type: RR-CC (see section 3.1).

Hardware: Server 1, Client 1, Client 1 (see section A.1).

Msg Size Compression Rate

ZLIBFAST LZ4FAST ZLIBHIGH LZ4HIGH

2KB 34% 17% 35% 19%

20KB 56% 43% 58% 47%

200KB 59% 46% 61% 52%

14

3 Base MQ Performance Workloads

Table 2 (below) lists the workloads used in the generation of performance data for base MQ

(that is standard messaging function) in this report. All workloads are requester/responder

(RR) scenarios which are synchronous in style because the application putting a message

on a queue will wait for a response on the reply queue before putting the next message.

They typically run ‘unrated’ (no think time between getting a reply and putting the next

message on the request queue).

Workload Description

RR-DQ-BB Distributed queueing between two queue managers on separate hosts, with binding

mode requesters and responders.

RR-CC Client mode requesters, and responders on separate, unique hosts

TABLE 2 - WORKLOAD TYPES

Binding mode connections use standard MQ bindings. Client mode connections use

fastpath channels and listeners (trusted) and have SHARECNV set to 1, which is the

recommended value for performance.

RR-CB & RR-DQ-BB are described in the following section. The remaining two workloads

differ only in the location of the MQ applications, which is made clear in the results

presented in this report.

Applications, Threads and Processes
From a queue manager’s perspective in the workloads described below, each connection

represents a unique application. The workloads are driven by the MQ-CPH or Perfharness

client emulator tools. Both these tools are multi-threaded so 10 applications may be

represented by 10 threads within a single MQ-CPH process, for instance. If 200 responder

applications are started, this will always be represented by 200 threads, but they could be

spread across 10 processes (each with 20 threads). The main point is that each application

below is a single thread of execution within MQ-CPH or JMSPerfHarness, spread across as

many processes as makes sense.

15

3.1 RR-CC Workload
(Client mode requesters with client mode responders.)

FIGURE 3 - RR-CC TOPOLOGY

Figure 3 shows the topology of the RR-CC test. The test simulates multiple ‘requester’

applications which all put messages onto a set of ten request queues. Additional machines

may be used to drive the requester applications where necessary.

Another set of ‘responder’ applications retrieve the message from the request queue and

put a reply of the same length onto a set of ten reply queues. The number of responders is

set such that there is always a waiting ‘getter’ for the request queue.

Note that for a lot of the tests in this AIX report, the requesters and responders were

hosted on separate x64 Linux machines, to illustrate how far the AIX server would scale

(these tests would have otherwise peaked when the single AIX client machine reached

100% CPU). Each set of results presented in this report is accompanied by the hardware

used in the test.

The applications utilise the requester and responder queues in a round robin fashion,

ensuring even distribution of traffic, so that in the diagram above CPH11 will wrap round to

use the Rep1/Req1 queues, and CPH 20 will use the Req10/Rep10 queues.

The flow of the test is as follows:

• The requester application puts a message to a request queue on the remote queue

manager and holds on to the message identifier returned in the message descriptor.

16

The requester application then waits indefinitely for a reply to arrive on the

appropriate reply queue.

• The responder application gets messages from the request queue and places a

reply to the appropriate reply queue. The queue manager copies over the message

identifier from the request message to the correlation identifier of the reply

message.

• The requester application gets a reply from the reply queue using the message

identifier held when the request message was put to the request queue, as the

correlation identifier in the message descriptor.

This test is executed using client channels as trusted applications by specifying

“MQIBindType=FASTPATH” in the qm.ini file. This is recommended generally, but not

advised if you run channel exit programs and do not have a high degree of confidence in

their robustness.

Network Flows:

As the topology utilises separate hosts for the requesters and responders, each round trip

will comprise of 2 inbound messages to the server and 2 outbound messages from the

server, all being transmitted across the network. So if the message size is 2048 bytes there

will be 2 x (2048 + metadata) inbound to the MQ server and 2 x (2048 + metadata)

outbound from the server, where metadata is the non-message payload data, comprising of

the MQ and transport headers.

17

3.2 RR-DQ-BB Workload
(Distributed queueing between two queue managers on separate hosts, with binding mode

requesters and responders).

FIGURE 4 - REQUESTER-RESPONDER WITH REMOTE QUEUE MANAGER (REMOTE RESPONDERS).

This is a distributed queuing version of the requester-responder topology detailed in

section 3.2. All MQPUTs are to remote queues (marked with ‘R’ in the diagram above), so

messages are now transported across server channels to the queue manager where the

queue is hosted. Note that remote queues are distributed across multiple pairs of

sender/receiver channels in the tests below, but a single pair or channels may be adequate

in your installation.

Network Flows:

As for the RR-CC topology, each round trip will comprise of 2 inbound messages to the

server and 2 outbound messages from the server, but as the clients are local to the queue

manager these do not utilise network bandwidth. For each round trip there will be a single

outbound and inbound message between the queue managers across the network. So if the

message size is 2048 bytes there will be 1 x (2048 + metadata) inbound to the MQ server

and 1 x (2048 + metadata) outbound from the server, where metadata is the non-message

payload data, comprising of the MQ and transport headers. This scenario therefore uses

half the network bandwidth of RR-CC for a given message rate.

18

4 Non-Persistent Performance Test Results

Full performance test results are detailed below. The test results are presented by broad

categories with an illustrative plot in each section followed by the peak throughput

achieved for the remaining tests in that category (the remaining tests are typically for

different message sizes).

4.1 RR-CC Workload

The following chart illustrates the performance of 2KB non-persistent messaging with

various numbers of requester clients.

FIGURE 5 - PERFORMANCE RESULTS FOR RR-CC (2KB NON-PERSISTENT)

19

The test peaked 300,000 round trips/sec, with the MQ server CPU at around 76% CPU

utilisation.

Peak round trip rates for all message sizes tested can be seen in the table below.

*Round trips/sec

TABLE 3 - PEAK RATES FOR WORKLOAD RR-CC (NON-PERSISTENT)

4.1.1 Test setup
Workload type: RR-CC (see section 3.1).

Hardware: Server 1 (AIX), Client 2 (x64 Linux), Client 3 (x64 Linux) - see section A.1.

4.2 RR-DQ-BB Workload
(Distributed queueing between two queue managers on separate hosts, with binding mode

requesters and responders).

The distributed queuing scenarios use workload type RR-DQ-BB (see section 3.2) where

locally bound requesters put messages onto a remote queue.

The throughput will be sensitive to network tuning and server channel setup amongst other

things. All the tests in this section utilise multiple send/receive channels. This particularly

helps with smaller, non-persistent messages when the network is under-utilised.

Test V9.4 FP10

Max Rate* CPU% Clients

RR-CC (2K Non-persistent) 300,110 76.13 150

RR-CC (20K Non-persistent) 185,016 89.68 350

RR-CC (200K Non-persistent) 21,367 45.38 60

RR-CC (2MB Non-persistent) 1,547 24.8 50

20

FIGURE 6 - PERFORMANCE RESULTS FOR RR-DQ-BB (2KB NON-PERSISTENT)

The distributed queuing test exhibits good scaling to around 64% of the MQ server,

suggesting that multiple QMs would be needed to saturate the network bandwidth for a

server of this size.

Peak round trip rates for all message sizes tested can be seen in the table below. Note that

these rates are higher than the RR-CC test in the previous section as the overall network

traffic is lower per message (see the notes on network traffic in sections 3.1 and 3.2)

*Round trips/sec

TABLE 4 – FULL RESULTS FOR WORKLOAD RR-DQ-BB (NON-PERSISTENT)

4.2.1 Test setup
Workload type: RR-DQ-BB (see section 3.2).

Hardware: Server 1, Client 1 (see section A.1).

Test V9.4 FP10

Max Rate* CPU% Clients

RR-DQ-BB (2KB Non-persistent) 467,291 64.03 800

RR-DQ-BB (20KB Non-persistent) 237,820 57.07 180

RR-DQ-BB (200KB Non-persistent) 38,036 41.3 60

RR-DQ-BB (2MB Non-persistent) 2,848 25.95 30

21

4.3 RR-CC JMS Workload

This test application is JMSPerfharness, which is run unrated (i.e. each requester sends a

new message as soon as it receives the reply to the previous one). The JMS test is run with

both requesters and responders in client mode on remote hosts as JMSPerfharness is a

relatively resource hungry application, utilising multiple JVMs to scale up the JMS

connections. JMS client applications are running on 2 x64 Linux hosts (see test

configuration below) to maximise the throughput through the AIX QM server.

FIGURE 7 - PERFORMANCE RESULTS FOR RR-CC (2KB JMS NON-PERSISTENT)

This workload peaks at a similar throughput (about 300,000 round trips/sec) as the non-

JMS workload, but required more clients and to reach that point and consumed more CPU.

Peak round trip rates for all message sizes tested can be seen in the table below.

*Round trips/sec

TABLE 5 - PEAK RATES FOR JMS (NON-PERSISTENT)

Test V9.4 FP10

Max Rate* CPU% Clients

RR-CC (2KB JMS Non-persistent) 303,682 99.98 450

RR-CC (20KB JMS Non-persistent) 162,905 82.03 360

RR-CC (200KB JMS Non-persistent) 17,926 50.38 210

RR-CC (2MB JMS Non-persistent) 1,527 46.9 200

22

4.3.1 Test setup
Workload type: RR-CC (see section 3.1).

Message protocol: JMS

Hardware: Server 1, Client 2 (x64 Linux), Client 3 (x64 Linux) (see section A.1).

23

5 Persistent Performance Test Results

The performance of persistent messaging is largely dictated by the capabilities of the

underlying filesystem hosting the queue files, and more critically, the MQ recovery log files.

Writes to the recovery log need to be synchronous to ensure transactional integrity, but

IBM MQ is designed to maximise throughput, by aggregating writes where possible.

Aggregation of log writes is dependent on a concurrent workload (i.e. multiple applications

connected and committing data to the queue manager concurrently, such that the MQ

logger component can aggregate data into larger, more efficient file writes and mitigate the

higher latency of some file systems).

The performance of persistent messaging is therefore dependant on the machine hosting

MQ, the degree of concurrency, and the I/O infrastructure. Some comparisons are shown

below between non-persistent and persistent messaging for local storage and then results

for V9.4 FP10 in a separate environment (AIX with SSD, SAN or NFS filesystems) are shown

to demonstrate the impact of recovery log location.

5.1 RR-CC Workload

FIGURE 8 - PERFORMANCE RESULTS FOR RR-CC (2KB NON-PERSISTENT VS PERSISTENT)

24

Figure 8 shows results from running the RR-CC workload with 2KB non-persistent and

persistent messages, on the same server used for the non-persistent scenarios in the

previous sections.

The non-persistent workload reaches an optimal value at 150 requesters then tailing off as

the CPU approaches 100% utilisation. Adding more requesters degrades performance,

increasing context switching on an already saturated server.

Note that for smaller message sizes (as for 2KB, above), higher rates of throughput in

persistent scenarios are attained when there is a greater deal of concurrency (i.e. requester

applications) as this enables the logger to perform much larger writes (as described above).

In these tests, the machines are connected via 100Gb links in the same data centre. With

network links that are higher latency or lower bandwidth, the difference between non-

persistent and persistent throughput will be less, as the network becomes a significant part

of the bottleneck.

Peak round trip rates for all message sizes tested, for persistent & non-persistent scenarios

can be seen in Table 6 & Table 7 below.

*ROUND TRIPS/ SEC

TABLE 6 - PEAK RATES FOR WORKLOAD RR-CC (NON-PERSISTENT)

*ROUND TRIPS/ SEC

TABLE 7 - PEAK RATES FOR WORKLOAD RR-CC (PERSISTENT)

The non-persistent numbers are for comparison with persistent messaging, to illustrate

what the impact of logging can be.

The recovery log I/O is the limiting factor for the persistent workloads here, as expected. As

the message size goes up, the time spent on the recovery log write becomes a larger factor,

so although the bytes per sec is more, the overall CPU utilisation is lower. The level of

concurrency needed to reach the limitations of the filesystem also drops as the message

size increases.

Test V9.4 FP10

Max Rate* CPU% Clients

RR-CC (2K Non-persistent) 300,110 76.13 150

RR-CC (20K Non-persistent) 185,016 89.68 350

RR-CC (200K Non-persistent) 21,367 45.38 60

RR-CC (2MB Non-persistent) 1,547 24.8 50

Test V9.4 FP10

Max Rate* CPU% Clients

RR-CC (2KB Persistent - SSD) 76,686 59.13 300

RR-CC (20KB Persistent - SSD) 55,088 49.3 270

RR-CC (200KB Persistent - SSD) 6,871 16.68 90

RR-CC (2MB Persistent - SSD) 622 11.65 25

25

5.1.1 Test setup
Workload type: RR-CC (see section 3.1).

Hardware: Server 1 (AIX), Client 2 (x64 Linux), Client 3 (x64 Linux) - see section A.1.

26

5.2 Impact of Different File Systems on Persistent Messaging

Performance

If possible, you should assess the performance of a new application, with non-persistent

messaging first. If the target rate of messaging is met, then calculate the required

bandwidth of the filesystem hosting the recovery logs.

FIGURE 9 - PERFORMANCE RESULTS FOR RR-CC PERSISTENT MESSAGING LOGGING TO SSD,

SAN & NFS

To illustrate the impact that the filesystem hosting the recovery logs can have, Figure 9

shows results from running the RR-CC workload with persistent messaging where the

recovery logs are on a local SSD or hosted remotely (SAN or NFS).

As expected, logging to a local SSD is a lot faster. The SAN tests are limited by the

bandwidth of the SAN switch (16Gb ports). For NFS, the network link is 100Gb, but

independent tests showed a limit of around 12Gb/s for single threaded transfers (which the

MQ logger must by design perform, to maintain data integrity). The MQ logger will perform

larger writes as the number of applications increase but there is a 512KB write size limit for

NFS, in AIX V7.3 (which was set for these tests).

Table 8 below, shows the peak rates achieved for each filesystem tested, across a range of

message sizes.

27

*Round trips/ sec

TABLE 8 - TABLE 9 - PEAK RATES FOR WORKLOAD RR-CC (PERSISTENT SSD VS SAN VS NFS)

1.1.1 Test setup

Workload type: RR-CC (see section 3.1).

Hardware: Server 1 (AIX), Client 2 (x64 Linux), Client 3 (x64 Linux), NFS Server (x64 Linux) -

see section A.1.

For more information on the impact of filesystems, along with some general guidance, on

best practises, and monitoring see this (Linux x86) paper.

https://ibm-messaging.github.io/mqperf/mqio_v1.pdf

Test V9.4 FP10

Max Rate* CPU% Clients

RR-CC (2KB Persistent - SSD) 76,686 59.13 300

RR-CC (2KB Persistent - SAN) 55,424 41.7 300

RR-CC (2KB Persistent - NFS) 45,435 35.4 300

RR-CC (20KB Persistent - SSD) 55,088 49.3 270

RR-CC (20KB Persistent - SAN) 22,116 20.58 300

RR-CC (20KB Persistent - NFS) 10,161 10.68 270

RR-CC (200KB Persistent - SSD) 6,871 16.68 90

RR-CC (200KB Persistent - SAN) 2,691 7.65 135

RR-CC (200KB Persistent - NFS) 1,117 3.58 45

RR-CC (2MB Persistent - SSD) 622 11.65 25

RR-CC (2MB Persistent - SAN) 263 5.3 25

RR-CC (2MB Persistent - NFS) 109 3.38 45

https://ibm-messaging.github.io/mqperf/mqio_v1.pdf

28

6 RR-CC Workload with TLS
(Client mode requesters and responders on separate hosts).

To illustrate the overhead of enabling TLS to encrypt traffic between the client applications

and the queue manager, results are shown below comparing the performance of the 4

strongest TLS1.2 MQ CipherSpecs, and all TLS1.3 MQ CipherSpecs.

The following TLS 1.2 CipherSpecs were tested (all utilise 256bit encryption and are FIPS

compliant).

• ECDHE_ECDSA_AES_256_CBC_SHA384

• ECDHE_ECDSA_AES_256_GCM_SHA384 (Suite B compliant)

• ECDHE_RSA_AES_256_CBC_SHA384

• ECDHE_RSA_AES_256_GCM_SHA384

Results for the suite B compliant CipherSpec (ECDHE_ECDSA_AES_256_GCM_SHA384),

along with an older, CBC based CipherSpec (ECDHE_RSA_AES_256_CBC_SHA384) and a

TLS 1.3 CipherSpec (TLS_AES_256_GCM_SHA384) are plotted below. As will be seen, the

remaining tested CipherSpecs exhibited a performance profile similar to one of these plots.

29

6.1 TLS Non-Persistent Results

FIGURE 10 - PERFORMANCE RESULTS FOR RR-CC WITH TLS

The ECDHE_ECDSA_AES_256_GCM_SHA384 CipherSpec uses a GCM (Galois/Counter

Mode) symmetric cipher. Performance testing showed that all TLS 1.2 GCM based

CipherSpecs exhibited similar performance. All the TLS 1.2 CipherSpecs utilising the older

CBC (Chain Block Cipher) symmetric cipher exhibited similar to

ECDHE_ECDSA_AES_256_CBC_SHA384 in the plot above. All TLS 1.3 CipherSpecs

exhibited a performance profile similar to TLS_AES_256_GCM_SHA384 in the plot above.

All tests exhibited scaling up to around 100% of the CPU of the machine. Throughput for

GCM based CipherSpecs showed a performance overhead at lower numbers of clients but

reached near parity with the non-TLS workload when the number of clients was high,

approaching CPU saturation. CBC based CipherSpecs exhibited a greater overhead, running

at approximately 74% of a non-encrypted workload. The TLS 1.3 CipherSpec performance

sat between the two levels of TLS 1.2 overhead at about 82% of the non-encrypted rate.

 Table 9 shows the peak rates achieved for all 6 TLS 1.2 CipherSpecs tested, demonstrating

the equivalence of performance, based on whether the symmetric key algorithm is CBC, or

GCM based.

30

*Round trips/sec

TABLE 9 - PEAK RATES FOR MQI CLIENT BINDINGS (2KB NON-PERSISTENT) – TLS 1.2

Table 10 shows the peak rates achieved for all TLS 1.3 CipherSpecs.

*Round trips/sec

TABLE 10 - PEAK RATES FOR MQI CLIENT BINDINGS (2KB NON-PERSISTENT) – TLS 1.3

6.1.1 Test setup
Workload type: RR-CC (see section 3.1).

Hardware: Server 1 (AIX), Client 2 (x64 Linux), Client 3 (x64 Linux) - see section A.1.

TLS 1.2 CipherSpec V9.4 FP10

Max Rate* CPU% Clients

No TLS 294,202 77 150

ECDHE_ECDSA_AES_256_CBC_SHA384 213,861 100 250

ECDHE_ECDSA_AES_256_GCM_SHA384 296,227 100 250

ECDHE_RSA_AES_256_CBC_SHA384 213,464 100 250

ECDHE_RSA_AES_256_GCM_SHA384 294,370 100 250

TLS 1.3 CipherSpec V9.4 FP10

Max Rate* CPU% Clients

No TLS 294,202 77 150

TLS_AES_128_CCM_8_SHA256 227,650 100 250

TLS_AES_256_GCM_SHA384 240,891 97 250

TLS_CHACHA20_POLY1305_SHA256 236,777 98 250

TLS_AES_128_GCM_SHA256 241,130 96 250

TLS_AES_128_CCM_SHA256 219,730 100 250

31

6.2 TLS Persistent Results

FIGURE 11 - PERFORMANCE RESULTS FOR RR-CC (2KB PERSISTENT) WITH TLS

Generally, the persistent TLS measurements showed a similar pattern to non-persistent.

The differences between the performance of the various CipherSpecs is less obvious due to

impact of recovery logging.

Table 11 and Table 12 show the peak throughputs for TLS 1.2 & TLS1.3 CipherSpecs.

*Round trips/sec

TABLE 11 - PEAK RATES FOR MQI CLIENT BINDINGS (2KB PERSISTENT) – TLS 1.2

TLS 1.2 CipherSpec V9.4 FP10

Max Rate* CPU% Clients

No TLS 76,275 57 250

ECDHE_ECDSA_AES_256_CBC_SHA384 65,684 71 250

ECDHE_ECDSA_AES_256_GCM_SHA384 71,693 65 250

ECDHE_RSA_AES_256_CBC_SHA384 65,409 71 250

ECDHE_RSA_AES_256_GCM_SHA384 71,026 64 250

32

*Round trips/sec

TABLE 12 - PEAK RATES FOR MQI CLIENT BINDINGS (2KB PERSISTENT) – TLS 1.3

6.2.1 Test setup
Workload type: RR-CC (see section 3.1).

Hardware: Server 1 (AIX), Client 2 (x64 Linux), Client 3 (x64 Linux) - see section A.1

6.3 Effect of MQ Recovery Log Performance on TLS Comparisons

With persistent messaging, file I/O to the MQ recovery log is a significant throttling factor.

This might show the impact of TLS to be lower in this environment. For TLS 1.3 there is a

small improvement in the overhead (expressed as a ratio below) but this is close to the

margin of error for the tests. Non-persistent and persistent TLS tests actually exhibited

similar TLS overheads. As more work is done outside of the messaging (e.g. in any local

applications, these overhead of TLS would be expected to reduce further).

Scenario Rate

No-TLS 294,202

ECDHE_ECDSA_AES_256_GCM_SHA384 (TLS 1.2) 296,227

TLS_AES_256_GCM_SHA384 (TLS 1.3) 240,891

Non-persistent ratio (No-TLS/TLS 1.2) = 0.99

Non-persistent ratio (No-TLS/TLS 1.3) = 1.22

For persistent messaging:

Scenario Rate

No-TLS 76,275

ECDHE_ECDSA_AES_256_GCM_SHA384 (TLS 1.2) 71,693

TLS_AES_256_GCM_SHA384 (TLS 1.3) 66,366

Persistent ratio (No-TLS/TLS 1.2) = 1.06

Persistent ratio (No-TLS/TLS 1.3) = 1.15

 V9.4 FP10

Max Rate* CPU% Clients

No TLS 76,275 57 250

TLS_AES_128_CCM_8_SHA256 65,879 69 250

TLS_AES_256_GCM_SHA384 66,336 67 250

TLS_CHACHA20_POLY1305_SHA256 67,660 68 250

TLS_AES_128_GCM_SHA256 67,401 67 250

TLS_AES_128_CCM_SHA256 65,167 69 250

33

The persistent tests were run with the MQ recovery logs hosted on local, enterprise class

NVMe devices, which are very fast. Hosting the recovery log off-box will result in lower

throughputs for persistent messaging and the comparison between non-TLS and TLS

results will be more favourable (in throughput terms) though the CPU cost will be similar.

FIGURE 12 - PERFORMANCE RESULTS FOR RR-CC (2KB PERSISTENT) WITH TLS 1.3

(LOGGING TO SAN)

Figure 12 shows results for the RR-CC workload where the MQ recovery log is hosted on a

SAN device (see appendix A.1 for details). In this case the throughputs are lower, as the

recovery log file writes to the SAN filesystem are slower. As a result the comparison (in

throughput terms) between non-TLS and TLS is more favourable (see below).

Scenario Rate

No-TLS 53,161

TLS_AES_256_GCM_SHA384 (TLS 1.3) 51,775

Persistent ratio (No-TLS/TLS 1.3) = 1.03

34

Note that the CPU overhead between non-TLS and TLS 1.3 (per round trip) remains similar

however. For SAN and local storage, TLS 1.3 CPU was about 1.3 times that for non-TLS, per

round-trip (calculated at the rates achieved with 250 clients).

When evaluating TLS, you need to understand the performance capabilities of your

infrastructure. Whilst there is a CPU cost incurred with encryption, if you have enough

capacity the throughput impact may not be as much as the worst case for persistent

message, as shown in Figure 11.

As for all performance evaluations, testing an environment as close as possible to that used

in production is highly desirable. This will result in a much better understanding of the

performance capabilities of the various components making up the environment your

workload is running in.

6.3.1 Test setup
Workload type: RR-CC (see section 3.1).

Hardware: Server 1 (AIX), Client 2 (x64 Linux), Client 3 (x64 Linux) - see section A.1

35

Appendix A: Test Configurations

A.1 Hardware/Software – Set1

All the testing in this document (apart from when testing results are shown from a different

platform and are clearly identified as such) was performed on the following hardware and

software configuration:

A.1.1 Hardware

Server1 (AIX on Power 10 Machine)

• IBM Power S1022 (9105-22A)

• 2CPU x 16-Cores (SMT8) 2.75 - 4.0 GHz (max)

o Configured as SMT4 (optimal for typical MQ workloads)

• 2 x 1.6TB NVMe 4K Gen4 U.2 (ES4B) Enterprise SSDs (hosting queue manager data

and log filesystems).

• 2 x 800GB NVMe Gen4 U.2 Slim SSD

• 512GB RAM

• 100Gb network adapter on an isolated performance LAN.

Client1 (AIX on Power 10 Machine)

• IBM Power S1022 (9105-22A)

• 2CPU x 16-Cores (SMT8) 2.75 - 4.0 GHz (max)

o Configured as SMT4 (optimal for typical MQ workloads)

• 2 x 1.6TB NVMe Gen4 U.2 SSDs

• 2 x 800GB NVMe Gen4 U.2 Slim SSD

• 512GB RAM

• 100Gb network adapter on an isolated performance LAN.

Client2

• ThinkSystem SR630 V3, Model:7D73CTO1WW

• 2 x 16 core INTEL(R) XEON(R) GOLD 6544Y CPU @3.60GHz

• 2 x LENOVO 03GX685 - ThinkSystem 2.5in PM1655 800GB Mixed Use SAS 24Gb

HS SSDs.

• 2 x 1.6TB NVMe SSD devices configured as a RAID0 array.

• 100Gb network adapter on an isolated performance LAN.

• Hyper-Threading is enabled but Turbo Boost is disabled. This is to assist with

achieving the best performance that is also consistent.

36

Client3

• ThinkSystem SR630 V3, Model:7D73CTO1WW

• 2 x 16 core INTEL(R) XEON(R) GOLD 6544Y CPU @3.60GHz

• 2 x LENOVO 03GX685 - ThinkSystem 2.5in PM1655 800GB Mixed Use SAS 24Gb

HS SSDs.

• 2 x 1.6TB NVMe SSD devices configured as a RAID0 array.

• 100Gb network adapter on an isolated performance LAN.

• Hyper-Threading is enabled but Turbo Boost is disabled. This is to assist with

achieving the best performance that is also consistent.

NFS Server:

• ThinkSystem SR630 V2– [7Z71CTO1WW]

• 2 x 16 core CPUs.

Core: Intel(R) Xeon(R) Gold 6346 CPU @ 3.10GHz

• 256GB RAM

• 2x3TB NVMe drives configured as a RAID0 array hosting NFS exported directories.

• 100Gb ethernet adapter on an isolated performance LAN.

• Hyper-Threading is enabled but Turbo Boost is disabled. This is to assist with

achieving the best performance that is also consistent.

A.1.2 Software (AIX Hosts)

• IBM AIX V7.3.0.0 TL03 SP00

• MQ-CPH MQI test driver (see Appendix C:)

• IBM MQ V9.4.0.10 (V9.4 with Fix Pack 10)

A.1.3 Software (Linux Hosts)

• RedHat Enterprise Linux V9.5 (Plow)

• MQ-CPH MQI test driver (see Appendix C:)

• JMSPerfharness test driver (see Appendix C:)

• IBM MQ V9.4.0.10 (V9.4 with Fix Pack 10)

37

A.2 Tuning Parameters Set for Measurements in This Report

The tuning detailed below was set specifically for the tests being run for this performance

report but in general follow the best practises.

38

A.2.1 Operating System

A good starting point is to run the IBM supplied program mqconfig. The following AIX

parameters were set for measurements in this report.

Malloc environment variables:

MALLOCOPTIONS=multiheap

MALLOCTYPE=buckets

100Gb network settings overriding system defaults:

tcp_nodelay 1 Enable/Disable TCP_NODELAY Option

tcp_recvspace 1048576 Set Socket Buffer Space for Receiving

tcp_sendspace 1048576 Set Socket Buffer Space for Sending

Network Settings (system defaults):

rfc1323 = 1

sb_max = 1300000

User limits

core file size (blocks, -c) 0

data seg size (kbytes, -d) unlimited

file size (blocks, -f) unlimited

max memory size (kbytes, -m) 32768

open files (-n) 100000

pipe size (512 bytes, -p) 64

stack size (kbytes, -s) 4194304

cpu time (seconds, -t) unlimited

max user processes (-u) 4096

virtual memory (kbytes, -v) unlimited

NFS

NFS mount for the MQ recovery log in NFS tests used the following parameters:

rsize=524288,wsize=524288

39

A.2.2 IBM MQ

The following parameters are added or modified in the qm.ini files for the tests run in this

report:

Channels:

 MQIBindType=FASTPATH

 MaxActiveChannels=5000

 MaxChannels=5000

Log:

 LogBufferPages=4096

 LogFilePages=32767

 LogPrimaryFiles=64

 LogSecondaryFiles=2

 LogType=CIRCULAR

 LogWriteIntegrity=TripleWrite

TuningParameters:

 DefaultPQBufferSize=10485760

 DefaultQBufferSize=10485760

For large message sizes (200K & 2MB), the queue buffers were increased further to:

DefaultPQBufferSize=104857600

DefaultQBufferSize=104857600

Note that large queue buffers may not be needed in your configuration. Writes to the queue

files are asynchronous, taking advantage of OS buffering. Large buffers were set in the runs

here, as a precaution only.

All client channels were configured with SHARECNV(1), which is the recommendation for

performance.

40

Appendix B: Glossary of terms used in this report

CD Continuous delivery.

JMSPerfharness JMS based, performance test application

(https://github.com/ot4i/perf-harness)

LTS Long term service.

MQ-CPH C based, performance test application

(https://github.com/ibm-messaging/mq-cph)

https://github.com/ot4i/perf-harness
https://github.com/ibm-messaging/mq-cph

41

Appendix C: Resources

MQ Performance GitHub Site

https://ibm-messaging.github.io/mqperf/

IBM MQ Performance: Best Practises, and Tuning Paper:

https://ibm-messaging.github.io/mqperf/MQ_Performance_Best_Practices_v1.0.1.pdf

MQ-CPH (The IBM MQ Performance Harness for MQI in C)

https://github.com/ibm-messaging/mq-cph

 Tutorial:

JMSPerfHarness (The IBM MQ Performance Harness for JMS)

https://github.com/ot4i/perf-harness

 Tutorial:

https://ibm-messaging.github.io/mqperf/
https://ibm-messaging.github.io/mqperf/MQ_Performance_Best_Practices_v1.0.1.pdf
https://github.com/ibm-messaging/mq-cph
https://github.com/ot4i/perf-harness

