
IBM MQ for z/OS: Channel Compression Page 1

IBM MQ for z/OS on Channel Compression

Version 1.0 – December 2022

Tony Sharkey

IBM MQ Performance

IBM UK Laboratories

Hursley Park

Winchester

Hampshire

IBM MQ for z/OS: Channel Compression Page 2

Notices

DISCLAIMERS

The performance data contained in this report was measured in a controlled environment.

Results obtained in other environments may vary significantly.

You should not assume that the information contained in this report has been submitted to

any formal testing by IBM.

Any use of this information and implementation of any of the techniques are the

responsibility of the licensed user. Much depends upon the ability of the licensed user to

evaluate the data and to project the results into their own operational environment.

WARRANTY AND LIABILITY EXCLUSION

The following paragraph does not apply to the United Kingdom or any other country where

such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A

PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain

transactions; therefore, this statement may not apply to you.

In Germany and Austria, notwithstanding the above exclusions, IBM's warranty and

liability are governed only by the respective terms applicable for Germany and Austria in

the corresponding IBM program license agreement(s).

ERRORS AND OMISSIONS

The information set forth in this report could include technical inaccuracies or

typographical errors. Changes are periodically made to the information herein; any such

change will be incorporated in new editions of the information. IBM may make

improvements and/or changes in the product(s) and/or the program(s) described in this

information at any time and without notice.

INTENDED AUDIENCE

This report is intended for architects, systems programmers, analysts and programmers

wanting to understand the performance characteristics of IBM MQ for z/OS using channel

compression. The information is not intended as the specification of any programming

interface that is provided by IBM MQ. It is assumed that the reader is familiar with the

concepts and operation of IBM MQ for z/OS.

LOCAL AVAILABILITY

References in this report to IBM products or programs do not imply that IBM intends to

make these available in all countries in which IBM operates. Consult your local IBM

representative for information on the products and services currently available in your area.

IBM MQ for z/OS: Channel Compression Page 3

ALTERNATIVE PRODUCTS AND SERVICES

Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent

product, program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the operation

of any non-IBM product, program, or service.

USE OF INFORMATION PROVIDED BY YOU

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

TRADEMARKS AND SERVICE MARKS

The following terms used in this publication are trademarks of their respective companies

in the United States, other countries, or both:

 - IBM Corporation: IBM  

 - Intel Corporation: Intel, Xeon  

 - Red Hat: Red Hat, Red Hat Enterprise Linux

Other company, product, and service names may be trademarks or service marks of others.

 

EXPORT REGULATIONS  

You agree to comply with all applicable export and import laws and regulations.  

IBM MQ for z/OS: Channel Compression Page 4

Preface

In this paper, I will be looking at MQ for z/OS channel compression performance on IBM z16.

This paper is split into several parts:
Part one - What is data compression?
Part two - IBM zSystems and compression.
Part three - Compression and IBM MQ for z/OS.
Part four - Summary of performance measurements.
Part five - What else to consider

Part one offers a brief overview of compression and why you might consider using it.

Part two discusses IBM zSystems and the history of hardware compression as well as system
level options for monitoring.

Part three discusses where compression might be used on MQ for z/OS, how to monitor the
success of compressing your MQ data and how to ensure you have enough MQ resources to
avoid impacting other workloads. We also discuss how channel compression fits into the
process of sending and receiving messages over MQ channels and which compression
option might be best for you.

Part four looks at the configurations that we used and how compression affected the cost of
the transactions and throughput.

Part five considers the impact of applying Advanced Message Security policies to messages,
the fasp.io gateway on high latency networks and short-lived MQ channels.

IBM MQ for z/OS: Channel Compression Page 5

Table of Contents

Preface ... 4

1. What is data compression? ... 7

When might data compression be useful? ... 7

2. IBM zSystems and compression ... 8
zEDC on PCIe (zEC12 to z14) ... 8
Integrated zEDC (on-chip) compression .. 8

How do I know if zEDC is available? .. 9

How do I know if zEDC compression is using hardware? .. 9

3. Compression and MQ for z/OS ... 10

Compression of active logs.. 10

Compression of archive logs ... 10

MQ Channel Compression, including SVRCONN .. 11
COMPHDR .. 11
COMPMSG .. 11

Does MQ offer monitoring options for channel compression? ... 13
MQSC’s “DISPLAY CHSTATUS” ... 13
MQ class(4) accounting trace ... 14

How does MQ channel compression work? .. 15

Should I use compression with my MQ channels? ... 16
Are you attempting to reduce cost on z/OS? .. 16
Are you attempting to reduce amount of data flowing over the network? ... 16
Are you attempting to improve throughput rate? ... 16
What data does your message contain? Are your messages compressible? ... 16

Which compression option should I use? .. 17
The trade off – dispatcher or SSL tasks .. 18

Do I have enough dispatcher tasks? .. 19

Highly compressible messages and ZLIBFAST ... 20

ZLIBHIGH or ZLIBFAST? ... 22

COMPMSG(ZLIBFAST) using software ... 23
How does ZLIBFAST in hardware compare with ZLIBFAST and ZLIBHIGH in software?..................... 23

4. Using MQ message compression .. 27
How does channel compression affect non-TLS enabled channels? .. 28
How does channel compression affect TLS 1.2 protected channels .. 29
How does channel compression affect TLS 1.3 protected channels .. 30

5. What else to consider .. 31

Short-lived MQ channels .. 31

Advanced Message Security (AMS) ... 31

Aspera fasp.io gateway.. 31

Summary.. 32

Appendix A – Channel Compression over unencrypted channels .. 33

IBM MQ for z/OS: Channel Compression Page 6

Appendix B – Channel Compression over TLS1.2 encrypted channels

(ECDHE_RSA_256_CBC_SHA384) ... 37

Appendix C – Channel Compression over TLS1.2 encrypted channels

(TLS_RSA_WITH_AES_256_CBC_SHA256) .. 40

Appendix D – Channel Compression over TLS 1.3 encrypted channels

(TLS_AES_128_GCM_SHA256) ... 43

Appendix E – Channel Compression over TLS 1.3 encrypted channels

(TLS_CHACHA20_POLY1305_SHA256) ... 47

Appendix F – Useful Links ... 51

Appendix E – Test Environment .. 52

IBM MQ for z/OS: Channel Compression Page 7

1. What is data compression?

Data compression is the process of encoding, re-structuring or otherwise modifying data in
to reduce its size. Fundamentally, it involves re-encoding information using fewer bits than
the original representation.

When might data compression be useful?

The main advantages of compression are reductions in storage hardware, data transmission
time and communication bandwidth. This can result in significant cost savings. Compressed
data requires less storage capacity than uncompressed files, meaning less expense in
storage. Additionally compressed data requires less time for transfer while consuming less
network bandwidth.

The main disadvantage of compression is there are increased use of computing resources to
apply compression and decompression to the relevant data.

IBM MQ for z/OS: Channel Compression Page 8

2. IBM zSystems and compression

Hardware compression has been available on IBM zSystems since zEC12 for zlib data
compression.

The zlib data compression library provides in-memory compression and decompression
functions, including integrity checks of the uncompressed data. A modified version of the
zlib compression library is used by zEnterprise Data Compression (zEDC). The IBM-provided
zlib compatible C library provides a set of wrapper functions that use zEDC compression
when appropriate and when zEDC is not appropriate, software-based compression services
are used.

From zEC12, zEDC was available as an optional PCIe feature.
However, from z15 zEDC is provided as on-chip integrated compression.

This document will primarily discuss zEDC on IBM z16, but a summary of the differences is
shown following.

zEDC on PCIe (zEC12 to z14)
- The minimum size of data that can processed by zEDC on PCIe is 4KB.
- Thresholds can be altered using the PARMLIB(IQPPRMxx) member

o ZEDC,INFMINREQSIZE=4,DEFMINREQSIZE=4

- The RMF PCIE report details the level of compression achieved.

Integrated zEDC (on-chip) compression
- The minimum size of data that can be processed is 1KB.
- Thresholds can no longer be changed.
- On-chip compression runs in 2 modes – synchronous and asynchronous

o There are no RMF reports for synchronous compression.
o Asynchronous compression performance is reported by RMF using the EADM

(Extended Asynchronous Data Mover) report.

IBM MQ for z/OS: Channel Compression Page 9

How do I know if zEDC is available?

The “D IQP” command reports whether the zEDC feature is enabled and what thresholds

are set to determine whether compression is via software or hardware.

For IBM z15 and later hardware, the output of the command is:
zEDC Information

DEFMINREQSIZE: 1K (STATIC)

INFMINREQSIZE: 1K (STATIC)

Feature Enablement: Enabled

For IBM z15 and later hardware, it is no longer possible to change the thresholds of
compression or decompression using the IQPPRMxx PARMLIB member.

Attempting to alter either the DEFMINREQSIZE or INFMINREQSIZE will return:
IQP062I REQUEST REJECTED - OPTIONS IGNORED

How do I know if zEDC compression is using hardware?

IBM documentation “Integrated Accelerator for z/OS – z/OS applications” discusses support
for in-application compression through zlib, similar to that used by MQ, and provides
options for assessing compression.

• SMF type 113 records – hardware capacity, reporting and statistics will record
synchronous compression at a system level.

• SMF type 30 records include zEDC metrics at a job level. However as the “zEDC usage
statistics section” indicates some of the fields are not set on z15 and later.

o On IBM z15 or later, only authorised compression requests are included – C/Java
are not tracked.

▪ As such, the SMF 30 zEDC data reported for the MQ channel initiator does
not include accurate counts of hardware compression usage.

https://www.ibm.com/docs/en/zos/2.5.0?topic=sys1parmlib-iqpprmxx-pcie-related-parameters
https://www.ibm.com/docs/en/zos/2.5.0?topic=zedc-zos-applications
https://www.ibm.com/docs/en/zos/2.5.0?topic=acza-record-type-113-x71-hardware-capacity-reporting-statistics
https://www.ibm.com/docs/en/zos/2.5.0?topic=mapping-zedc-usage-statistics-section
https://www.ibm.com/docs/en/zos/2.5.0?topic=mapping-zedc-usage-statistics-section

IBM MQ for z/OS: Channel Compression Page 10

3. Compression and MQ for z/OS

Whilst this paper is primarily aimed at MQ for z/OS and channel compression, there are
several areas that MQ for z/OS can make use of compression routines.

MQ generally limits the compression types supported to:

• RLE (Run Length Encoding), which is a form of lossless data compression in which
repeated characters are stored as a single data value and count, rather than as the
original repeating character.

• ZLIB (and variations ZLIBFAST and ZLIBHIGH), which is a library for data compression,
and supports the DEFLATE algorithm.

o ZLIBFAST will where possible, attempt to compress and decompress using zEDC
hardware. If the data to be compressed is not eligible for hardware compression,
the compression or decompression will be performed in software.

o ZLIBHIGH will attempt to compress the data as much as possible, but will be
performed in software, thus adding to MQ address space costs.

Compression of active logs
The queue manager attribute COMPLOG can be set to RLE to compress data written to the
MQ active log datasets. There will be additional CPU cost associated with compression, and
if required during recovery, decompression) but this may be offset by the I/O savings
(subject to the data being suitable for RLE compression).

Compression of archive logs
Compression of archive logs uses the z/OS compression features which are discussed in
detail in the blog “Reducing storage occupancy with IBM zEnterprise Data Compression
(zEDC) on IBM MQ for z/OS”.

From IBM z15, this form of compression using zEDC uses the asynchronous compression and
can be monitored using the RMF EADM (Extended Asynchronous Data Mover) report.

https://en.wikipedia.org/wiki/Deflate
https://community.ibm.com/community/user/integration/viewdocument/reducing-storage-occupancy-with-ibm
https://community.ibm.com/community/user/integration/viewdocument/reducing-storage-occupancy-with-ibm

IBM MQ for z/OS: Channel Compression Page 11

MQ Channel Compression, including SVRCONN

MQ channels offer 2 options to compress data flowing over channels:

COMPHDR

This attribute is a list of header data compression techniques supported by the channel.

For sender, server, cluster-sender, cluster-receiver, and client-connection channels the
values specified are in order of preference with the first compression technique supported
by the remote end of the channel being used. The channels' mutually supported
compression techniques are passed to the sending channel's message exit where the
compression technique used can be altered on a per message basis. Compression alters the
data passed to send and receive exits.

Possible values are:
NONE

No header data compression is performed. This value is the default value.
SYSTEM

Header data compression is performed in software.

COMPMSG

This attribute is a list of message data compression techniques supported by the channel.

For sender, server, cluster-sender, cluster-receiver, and client-connection channels the
values specified are in order of preference. The first compression technique supported by
the remote end of the channel is used. The channels' mutually supported compression
techniques are passed to the sending channel's message exit where the compression
technique used can be altered on a per message basis. Compression alters the data passed
to send and receive exits.

The possible values are:
NONE

No message data compression is performed. This value is the default value.
RLE

Message data compression is performed using run-length encoding.
ZLIBFAST

Message data compression is performed using the zlib compression technique. A fast
compression time is preferred.
ZLIBFAST can optionally be offloaded to the zEnterprise® Data Compression facility.
See zEDC Express facility for further information.

ZLIBHIGH

Message data compression is performed using the zlib compression technique. A
high level of compression is preferred.

ANY

https://www.ibm.com/docs/en/SSFKSJ_9.3.0/configure/q117610_.html

IBM MQ for z/OS: Channel Compression Page 12

Allows the channel to support any compression technique that the queue manager
supports. Only supported for Receiver, Requester and Server-Connection channels.

This attribute is valid for all channel types.

COMPMSG(ZLIBFAST)

MQ channel compression using COMPMSG(ZLIBFAST) can use zEDC synchronous
compression, and as such there are no specific RMF reports to indicate whether the data
compressed using ZLIBFAST used hardware or software compression in the specific MQ
channel initiator address space.

IBM MQ for z/OS: Channel Compression Page 13

Does MQ offer monitoring options for channel compression?

Yes – there are two options, which both require MONCHL(LOW|MEDIUM|HIGH) to be

enabled. On z/OS there is no difference between low, medium, and high for the MONCHL
attribute.

MQSC’s “DISPLAY CHSTATUS” command returns the COMPRATE and COMPTIME values.

COMPRATE:

The compression rate achieved displayed to the nearest percentage; that is, a rate of 25
indicates messages are being compressed to 75% of their original length. Two values are
displayed:

• The first value based on recent activity over a short period.
• The second value based on activity over a longer period.

These values are reset every time the channel is started and are displayed only when the
STATUS of the channel is RUNNING. If monitoring data is not being collected, or if no
messages have been sent by the channel, the values are shown as blank.

COMPTIME:

On z/OS, COMPTIME is the amount of time for each message, provided that the message
does not have to be processed in segments. This segmenting of the message on z/OS occurs
when the message is:

• 32 KB or larger, or
• 16 KB or larger, and the channel has TLS encryption.

If the message is split into segments, COMPTIME is the time spent compressing each
segment. This means that a message that is split into 8 segments spends “COMPTIME
multiplied by 8” microseconds during compression or decompression.

In the following examples the message size is 63KB and the channels have TLS encryption.

ZLIBFAST ZLIBHIGH

CHSTATUS(VTS1_VTS2_0001)
MONCHL(HIGH)
COMPTIME(9,9)
COMPRATE(76,74)

CHSTATUS(VTS1_VTS2_0001)
MONCHL(HIGH)
COMPTIME(116,106)
COMPRATE(76,75)

As the message is 63KB, there are four segments – to the total time spent compressing the
message can be determined thus:
ZLIBFAST: 36 microseconds
ZLIBHIGH: 464 microseconds

IBM MQ for z/OS: Channel Compression Page 14

For both ZLIBFAST and ZLIBHIGH, the message was compressed to approximately 25% of the
original size.

Note: The DISPLAY CHSTATUS command can also report the COMPMSG setting using on
the channel.

MQ class(4) accounting trace provides the compression rate, which can be formatted using
the MQSMF program provided as part of supportPac MP1B “Interpreting accounting and
statistics data”. The DCHS report shows the compression rate achieved, for example:

VTS1_VTS2_0001 10.20.20.20 Compression rate 76

https://www.ibm.com/support/pages/mp1b-ibm-mq-interpreting-accounting-and-statistics-data-and-other-utilities

IBM MQ for z/OS: Channel Compression Page 15

How does MQ channel compression work?

The MQ channel initiator has several different types of tasks including:

- Adaptor provides the interface between the channel initiator and the queue manager.
- Dispatchers manipulate and send/receive the message over the network.
- SSL task provides secure environment for secret key negotiation, encryption of data etc.

The dispatcher task is responsible for any channel compression activity.

Sample flows for MQ channel with COMPMSG(ZLIBFAST)

Sender-side:

1. Message is put to a queue which results in the message arriving on a transmit queue.

2. Channel initiator adaptor task gets the message and holds the message in a buffer,
notifying the dispatcher.

3. The dispatcher will assess the message to determine whether it can be processed in a
single chunk.

a. For channels with SSLCIPH specified, the maximum 'chunk' size is 16KB

b. For all other channels, the maximum chunk size is 32KB.

c. Each chunk of data will be compressed individually.

d. A 33KB message on an encrypted channel would be 3 chunks of 16, 16 and 1KB.

e. On IBM z15 or later, each chunk would be compressed in hardware.

f. On IBM z14, the 16KB chunks would use hardware and the 1KB would be in
software.

4. Once each chunk is compressed, if SSLCIPH was set the message would be encrypted.

5. The compressed (and optionally encrypted) chunk is sent.

Receiver-side:

1. Dispatcher receives the chunk of data from the socket.

2. If required, decrypts the data.

3. Inflate the message – if the message is below threshold, inflate in software.

4. Reconstruct the message chunks into the full message.

5. When the full message has been re-assembled, notify adaptor task.

6. Adaptor puts the message to the desired queue.

IBM MQ for z/OS: Channel Compression Page 16

Should I use compression with my MQ channels?

Consider why you might want to use compression.

Are you attempting to reduce cost on z/OS?
Channel compression occurs at non-zero cost. To reduce the overall cost, this additional cost
of compressing and decompressing the data needs to be offset.
Using MQ channels with TLS protection may offer some opportunity to offset the increased
cost of compression by reducing the cost of both encryption and more significantly secret
key negotiation at the interval controlled by SSLRKEYC.

Are you attempting to reduce amount of data flowing over the network?
If your network is limited on bandwidth or is high latency or unreliable, or indeed charged
for usage, channel compression may provide some benefit in reducing the amount of data
flowing, provided the data is compressible.
In the case of usage charges, whether the reduction in network usage offsets the increased
CPU cost from compression is something for you to determine.

Are you attempting to improve throughput rate?
Compressing messages may result in improved throughput provided the compression
option selected is sufficiently efficient (COMPTIME and COMPRATE). Does the data
compress sufficiently that network or SSL encryption times are reduced?
On IBM z14, we found that whilst ZLIBFAST running on zEDC (PCIe) was efficient, there was
added latency from the switch to/from the PCIe feature that made the use of compression
less desirable.

What data does your message contain? Are your messages compressible?
If your data is already compressed, for example you are sending a ZIP file across your
channel, attempting to re-compress the message may not provide any further benefit but
may add additional cost from attempting to compress.

If you are sending a report, perhaps with many repeating space characters, RLE might offer a
simple and cheap compression routine. Similarly, the ZLIB-prefixed compression types can
compress RLE data and depending on the size of the data to be compressed, you may find
ZLIBFAST using hardware compression is more effective than regular RLE compression.

IBM MQ for z/OS: Channel Compression Page 17

Which compression option should I use?

Ultimately you know your data – it is impossible for MQ to determine whether your data is
compressible until the dispatcher attempts to compress it. Similarly, MQ cannot determine
which compression type might best suit the message payload for any channel.

All we can offer is guidelines on cost and benefits for compression types and compressibility
of data on our low-latency networks.

IBM MQ for z/OS: Channel Compression Page 18

The trade off – dispatcher or SSL tasks

MQ channel compression will increase the cost of the work performed by the dispatcher
task, regardless of the compression type specified.

How much that cost increases will depend on the compression type as well as the size and
compressibility of the data.

Attempting to compress data that is either incompressible or largely incompressible may
see the cost of compression increase significantly. Data that is easily compressible, such as
data with large numbers of repeating characters may be ideal for RLE compression, but both
ZLIBHIGH and ZLIBFAST can also perform RLE compression.

Whilst compressing data will increase MQ dispatcher usage, for channels protected using
TLS ciphers, the compressed data may result in two benefits:

1. Less data to encrypt
2. More messages can flow over the channel before the SSLRKEYC threshold for

secret key re-negotiation is reached.

For workloads where the messages are compressible, the reduction in SSL task cost for
certain TLS ciphers with secret key negotiation enabled can offset the additional dispatcher
task cost such that the overall transaction cost is reduced.

The following table offers an example analysis of the costs attributed to MQ channel
initiator tasks for a requester-side request/reply flow of a 16KB message that was 40%
compressible flowing over a channel protected with cipher
ECDHE_RSA_256_CBC_SHA384. Compression is provided using ZLIBFAST.

CPU by task Non-Compressed Compressed
Adaptor 10 10

Dispatcher 35 68

SSL Task 75 52

Total 120 microseconds 130 microseconds

By compressing the data, the SSL task has reduced cost from 75 to 52 CPU microseconds, a
reduction of 23 microseconds.
However, the dispatcher task has increased cost by 33 microseconds, so overall there is a
net increase of 10 microseconds per transaction in the channel initiator.

IBM MQ for z/OS: Channel Compression Page 19

Do I have enough dispatcher tasks?

When using channel compression, there may be increased use of the dispatcher tasks.

It is advisable to monitor the class(4) statistics trace data for dispatcher usage. This can be
viewed in MQSMF’s “DISP” report.

Task,Type,Requests,Busy %, CPU used, CPU %,"avg CPU","avg ET"

 , , , , Seconds, , uSeconds,uSeconds

 0,DISP, 166073, 97.6, 58.111662, 96.9, 350, 353

 1,DISP, 164092, 3.7, 2.308928, 3.8, 14, 14

Summ,DISP, 330189, 2.0, 60.420713, 2.0, 183, 184

 0,DISP, number of channels on this TCB, 1

 1,DISP, number of channels on this TCB, 1

Summ,DISP, number of channels on all TCBs, 2 task MQSMF’s

In this example report the channel initiator is running with just 2 dispatcher tasks and 2
active channels.

The channels have been configured with COMPMSG(ZLIBHIGH) and the workload is 100KB
non-persistent messages.

Dispatcher 0 is being used for the outbound channel – where compression is occurring.
Dispatcher 1 is being used for the inbound channel – where decompression is occurring.

Even with a single outbound channel, dispatcher 0 is 97.6% busy through the interval, and as
such would be unlikely to support additional channels without affecting the performance of
the channels.

In this environment, it would be advisable to have additional dispatcher tasks available and
to ensure that the ratio of dispatchers to maximum channels is set appropriately. The
relationship between dispatchers and maximum channels is discussed in performance
report MP16 “Capacity Planning and Tuning guide” in the “CHIDISPS and MAXCHL” section.

https://ibm-messaging.github.io/mqperf/mp16.pdf

IBM MQ for z/OS: Channel Compression Page 20

Highly compressible messages and ZLIBFAST

For messages that are highly compressible and flow over MQ channels where
COMPMSG(ZLIBFAST) is set, the inflate may occur in software which can significantly
reduce the benefits of compressing the message data.

This inflate in software may occur due to the size of the compressed data being below the
1KB “INFMINREQSIZE” threshold.

To demonstrate the impact of this software inflation, we ran the following measurements:
Request/reply workload between 2 z/OS-based queue managers using sender-receiver
channels configured with COMPMSG(ZLIBFAST).
The measurement used 100KB non-persistent messages of varying compressibility.

This first chart shows that when the 100KB message is highly compressible (95%), the
transaction rate is 50% of when the message is 78% compressible.

IBM MQ for z/OS: Channel Compression Page 21

If we look at the COMPTIME data from the sender channel (compression) and the receiver
channel (decompression) we see the reason why the transaction rate dropped:

As the message becomes more compressible, the data received falls below the 1KB
threshold and must use software to decompress. This COMPTIME value increases from 7
microseconds for a 100KB message that was 78% compressible, up to 46 microseconds for a
message that was 95% compressible.

Additionally, due to the size of the message, it is processed in 32KB chunks, which means
there are multiple decompress calls per received message – for a 100KB message we would
expect 4 decompress calls. This means that the compression time goes up from 28
microseconds for the 78% compressible message to 188 microseconds for the 95%
compressible message.

It is worth noting that neither ZLIBHIGH nor RLE would see a similar increase in decompress
costs, but that is because all their decompression is already performed in software.

IBM MQ for z/OS: Channel Compression Page 22

ZLIBHIGH or ZLIBFAST?

ZLIBHIGH is more aggressive at compressing the message data than ZLIBFAST, but this
comes at additional cost.

This is true regardless of whether the ZLIBFAST compression is performed by zEDC or in
software.

As such, the question is, what is my aim from compressing the data – is maximum
compression the aim, regardless of cost?

If the only requirement is maximum compression, then use ZLIBHIGH.

IBM MQ for z/OS: Channel Compression Page 23

COMPMSG(ZLIBFAST) using software

Enabling IBM MQ for z/OS channels with COMPMSG(ZLIBFAST) on IBM z15 or later will
attempt to use zEDC hardware compression.

Should it be necessary to disable hardware compression for COMPMSG(ZLIBFAST), discuss
this with your IBM MQ Service representative, who can provide MQ configuration options.

How does ZLIBFAST in hardware compare with ZLIBFAST and ZLIBHIGH in software?
To demonstrate the impact of this forcing ZLIBFAST to use software inflation, we ran the
following measurements:
32KB non-persistent request/reply workload between 2 z/OS-based queue managers using
sender-receiver channels configured with:

• COMPMSG(ZLIBFAST) using hardware.

• COMPMSG(ZLIBFAST) using software.
• COMPMSG(ZLIBHIGH).

The workload is run using messages of increasing compressibility.

IBM MQ for z/OS: Channel Compression Page 24

Transaction rate

In this configuration ZLIBFAST in hardware can achieve up to 7 times the transaction rate of
either ZLIBFAST in software or ZLIBHIGH for a 32KB non-persistent message.

Transaction cost

For a 32KB message compressed using ZLIBFAST where zEDC is available, the transaction
cost does not change significantly regardless of how compressible the message may be.

When ZLIBFAST is prevented from using zEDC hardware, the compression rate achieved of
the message significantly affects the cost of the transaction – where a highly compressible
message may be 50% of the cost of an incompressible message.

IBM MQ for z/OS: Channel Compression Page 25

Compression Time

ZLIBFAST using zEDC can compress the message data much more quickly than when the
compression is performed in software.
ZLIBFAST in software can compress the message data faster than ZLIBHIGH but does not
attempt to compress the message so aggressively.

Decompress Time

Inflating compressed data using ZLIBFAST in software is considerably more expensive than
inflating either using zEDC or even ZLIBHIGH.

It is not clear why ZLIBHIGH is so much better at decompressing data than ZLIBFAST in
software.

IBM MQ for z/OS: Channel Compression Page 26

Using IBM’s Application Performance Analyser (APA) against the channel initiator suggests:

ZLIBHIGH spending time in: ZLIBFAST (software) spends time in:

CSQXZDEF 41%
CSQXZTRE 24%
CSQXZIFF 19%
CSQXZADL 5%

CSQXZDEF 63%
CSQXZTRE 24%

CSQXZADL 2.5%

ZLIBFAST using zEDC will see CPU usage in FPZINLPA – the proportions will depend upon the
workload.

IBM MQ for z/OS: Channel Compression Page 27

4. Using MQ message compression

The measurements used in this paper are based on simple request/reply workloads
between two z/OS queue managers using two pairs of sender-receiver channels – one
channel for outbound and one channel for inbound messages on each queue manager.

The channels are configured with COMPMSG(NONE|RLE|ZLIBFAST|ZLIBHIGH).

Messages range from 2KB to 100KB and are non-persistent.

Messages are generated to range from 0 (incompressible) to 80% (highly compressible).
For the messages we have classified as “incompressible”, ZLIB is able to achieve a small
degree of compression - up to 3% compressible.

The applications are lightweight and contain minimal processing and are used in our
standard micro-benchmark measurements.
Multiple request applications generate the messages, put to a common request queue, and
wait for the specific reply messages.
The multiple server applications get-wait for a message and generate the reply message
using the message contents.

For the purposes of this paper, we run in three configurations:

1. Channel compression over non-TLS enabled channels.
2. Channel compression over TLS 1.2 protected channels. In this configuration the

secret key negotiation is configured to run at 1MB intervals.
3. Channel compression over TLS 1.3 protected channels. As discussed in the MQ for

z/OS 9.2 performance report , TLS 1.3 ciphers have secret key re-negotiation
included as part of the protocol and therefore measurements are run with
SSLRKEYC(0).

What is clear is that when using TLS-protected channels, the cipher selected makes a
significant difference to whether the cost of compression is offset by reducing the impact of
encryption and secret key negotiation on each transaction.

https://ibm-messaging.github.io/mqperf/MQ_for_zOS_V920_Performance.pdf
https://ibm-messaging.github.io/mqperf/MQ_for_zOS_V920_Performance.pdf

IBM MQ for z/OS: Channel Compression Page 28

How does channel compression affect non-TLS enabled channels?

In our measurements, once message compression was enabled, the cost per transaction
exceeded that of workloads run with message compression disabled for all message sizes
and compressibility of messages.

Similarly on our low-latency networks, the time taken to compress and decompress the
messages meant that we were never able to match the transaction rates achieved when no
compression was enabled.

Appendix A shows the sets of data collected in the non-TLS enabled channel configuration,
including the transaction cost, transaction rate and compress/decompress times.

With regards to transaction cost, generally ZLIBFAST offered the lowest overhead across the
range of message sizes, but for 2KB messages RLE was able to offer a lower cost than
ZLIBFAST.

In all message sizes, ZLIBHIGH was prohibitively expensive (2-3 times the cost) when
compared to ZLIBFAST but did provide a slightly (1-2%) greater amount of compression.

IBM MQ for z/OS: Channel Compression Page 29

How does channel compression affect TLS 1.2 protected channels

The TLS 1.2 cipher used to protect the MQ channels does make a difference as to when or
indeed whether the added cost of compression is offset by the reduction in cost of
encryption and secret key negotiation.

For all TLS 1.2 ciphers the cost of encrypting the data is relatively similar, regardless of
actual cipher, and this is shown in the MQ for z/OS on z16 report as part of the “no
renegotiation of secret key” section.

Where the transaction cost was most affected was with secret key negotiation, such that
TLS_RSA prefixed ciphers were approximately 33% lower cost than 50% of the cost of ECDHE
prefixed ciphers.

For the purposes of this paper, there are 2 sections reporting the data for TLS 1.2 protected
ciphers:

• Appendix B shows the performance of compression when using channels protected
with cipher ECDHE_RSA_256_CBC_SHA384.

• Appendix C shows the performance of compression when using channels protected
with cipher TLS_RSA_WITH_AES_256_CBC_SHA256.

For ECDHE prefixed ciphers the compressed configurations frequently resulted in an overall
reduction in transaction cost, occasionally where the message was compressed by 40% but
more often when compressing the message by 60%.

For the TLS_RSA prefixed ciphers, the reduced cost of SSL processing was rarely sufficient to
offset the increase in cost from compression, such that only highly compressible messages
achieved an overall decrease in transaction cost compared to the baseline runs where
compression was not used.

It is worth re-iterating that TLS-protected channels process messages in chunks of 16KB
whereas non-TLS protected channels process messages up to 32KB in a chunk. The value
reported by COMPTIME is the average time per compression request, and therefore there
may be additional compression requests for a 32KB message over a TLS-enabled channel
than over a non-TLS enabled channel.

As the message compression occurs before an TLS-protection is applied, the cipher used has
no impact to the COMPTIME or COMPRATE for either compressing or decompressing the
message.

https://ibm-messaging.github.io/mqperf/MQ_for_zOS_on_z16.pdf

IBM MQ for z/OS: Channel Compression Page 30

How does channel compression affect TLS 1.3 protected channels

As TLS 1.3 ciphers have secret key re-negotiation included as part of the protocol, there is
less opportunity for the cost of compression to be cancelled out solely by reducing the cost
of encryption.

Currently MQ for z/OS 9.2 onwards supports 3 TLS 1.3 ciphers:

• TLS_AES_128_GCM_SHA256
• TLS_AES_256_GCM_SHA384
• TLS_CHACHA20_POLY1305_SHA256

Of the 3 ciphers, the encryption costs for the TLS_AES prefixed ciphers are similar, with
TLS_CHACHA20_POLY1305_SHA256 cipher being significantly more expensive as it is unable
to make full use of CPACF.

As a result, there are 2 sections reporting the data for TLS 1.3 protected ciphers:

• Appendix D shows the performance of compression when using channels protected
with cipher TLS_AES_128_GCM_SHA256.

• Appendix E shows the performance of compression when using channels protected
with cipher TLS_CHACHA20_POLY1305_SHA256.

For the TLS_AES prefixed ciphers, the reduced cost of encryption processing was never
sufficient to offset the increase in cost from compression, resulting in an overall increase in
transaction cost, regardless of compressibility or size.

For the TLS_CHACHA20_POLY1305_SHA245 cipher, compression can demonstrate benefits
to both transaction cost and throughput achieved. The relatively high cost of encrypting
data using this cipher means that compressing prior to encryption can reduce the overall
transaction cost for all sizes of messages, even messages that are just a few percent
compressible.

IBM MQ for z/OS: Channel Compression Page 31

5. What else to consider

Short-lived MQ channels

The report has discussed the benefits of channel compression particularly over TLS-enabled
channels due to reducing the number of secret key negotiations.

Channel start of a TLS-enabled channel also include the relatively expensive process of
secret key negotiation and use of channel compression will not reduce the frequency of key
negotiation if the channel is running for only a short time.

Advanced Message Security (AMS)

Policies applied to messages may result in encrypted data – which may be largely
incompressible.

As this encryption occurs at the time the message is put, channel compression is unlikely to
provide any benefit, and indeed may degrade performance as there will be cost incurred
from attempting to compress a message that is incompressible.

This differs to channels protected by TLS-encryption, where the message is compressed
before encryption.

Aspera fasp.io gateway

TCP/IP does not perform particularly well over large distances, due to its relatively
conversational mode of operation.

Since MQ 9.2, MQ for z/OS supports the Aspera fasp.io gateway which can improve the flow
of data between geographically remote partners.

The fasp.io gateway can run on a Linux on Z LPAR or from z/OS v2r4 on a zCX “container
extension” address space.

The performance of MQ channels over high latency networks using the fasp.io gateway is
discussed in "MQ with zCX”.

Messages compressed using COMPMSG(ZLIBFAST) can further improve the rate of
transfer.

https://ibm-messaging.github.io/mqperf/MQ%20with%20zCX.pdf

IBM MQ for z/OS: Channel Compression Page 32

Summary

As we have discussed throughout this paper, compression is not free, even when MQ is able
to use zEDC hardware compression. To have the possibility of saving CPU cycles in the MQ
channel initiator whilst using compression, that additional cost needs to be offset by saving
cycles elsewhere.

For channels configured with ZLIBFAST where zEDC may be used there is still some
additional cost in setting up the environment to request compression. The actual decision to
compress ZLIBFAST in zEDC or in software cycles is taken at a lower level than MQ for z/OS.

The most likely candidate for saving cycles is for channels using TLS ciphers to encrypt the
data. With constant improvements to encryption processing, largely performed by CPACF on
z/OS, the best opportunity comes from compressing the data so that the secret key
negotiation happens less frequently (TLS 1.2 ciphers).

Whether the cost of compression is offset by the lower cost incurred from fewer secret key
negotiations will depend on several variables:

• Value of SSLRKEYC.
• Compression type used.
• The contents of the message - How compressible is the data?
• The size of the messages.

TLS 1.3 ciphers do not use the traditional secret key renegotiation process, but the
TLS_CHACHA20_POLY1305_SHA256 cipher is not able to encrypt data using CPACF, so does
offer an opportunity for compression to assist in reducing the overall cost within the
channel initiator address space.

Ultimately, whether you can see performance benefits from compression will depend on
the type of data you are sending/receiving over MQ channels and the network between the
queue managers, or indeed the queue manager and client(s).

When considering compression, it is worth:

• Monitor your channel performance – whether using the DISPLAY CHSTATUS
command or using MQ’s Accounting trace – class(4).

• Know your data – is it suitable for compression, and if so, what type of compression.
• Know your why – what are you trying to achieve, i.e., is it reducing the z/OS cost,

improving transfer rate or something else?

From a general performance perspective, you should always be monitoring your systems, so
that you can identify bad performance from good performance, but particularly around
compression. Firmware / microcode updates can affect the tipping point for compression
versus encryption – at IBM z15 GA with CryptoExpress7S, it was more likely that TLS-
protected channels would benefit from compression. By the time our systems migrated to
IBM z16, encryption costs had improved such that the benefits of compression were harder
to identify.

IBM MQ for z/OS: Channel Compression Page 33

Appendix A – Channel Compression over unencrypted channels

This section provides a summary of the data collected when comparing message
compression options over unencrypted channels, i.e., where SSLCIPH was not configured.

1. Transaction cost in CPU microseconds. Cost includes MQ MSTR and CHIN address
spaces plus TCP/IP and lightweight application cost.

2. Achieved transaction rate.
3. Time spent in compression, as per COMPTIME.
4. Time spent in decompression, as per COMPTIME.

Table 1: Transaction cost in CPU microseconds

Message

Size

Compress 0% 20% 40% 60% 80%

2KB NONE 107.81 107.81 107.81 107.81 107.81

 RLE 122.03 120.88 118.19 116.85 114.43

 ZLIBFAST 136.24 135.49 135.44 152.61 149.72

 ZLIBHIGH 216.86 236.66 251.81 283.87 294.33

8KB NONE 117.40 117.40 117.40 117.40 117.40

 RLE 164.57 159.80 155.36 147.52 140.71

 ZLIBFAST 152.85 150.83 149.14 146.59 145.31

 ZLIBHIGH 365.25 427.83 470.23 490.89 433.44

16KB NONE 125.79 125.79 125.79 125.79 125.79

 RLE 217.24 205.81 194.38 180.59 169.35

 ZLIBFAST 172.07 168.74 164.77 161.62 158.78

 ZLIBHIGH 624.82 731.64 785.86 690.71 562.94

32KB NONE 183.80 183.80 183.80 183.80 183.80

 RLE 283.47 344.03 319.59 296.52 272.42

 ZLIBFAST 277.67 271.88 264.99 259.07 252.64

 ZLIBHIGH 1194.68 1233.32 1187.76 1058.11 810.86

64KB NONE 260.17 260.17 260.17 260.17 260.17

 RLE 392.43 577.26 524.88 475.94 429.44

 ZLIBFAST 416.68 412.37 397.50 378.19 367.58

 ZLIBHIGH 2590.26 2403.52 1944.41 1683.54 1323.54

100KB NONE 323.13 323.13 323.13 323.13 323.13

 RLE 483.28 817.84 737.62 659.18 581.15

 ZLIBFAST 553.40 541.18 528.95 498.51 480.96

 ZLIBHIGH 3948.07 3536.07 2795.96 2311.06 1813.80

IBM MQ for z/OS: Channel Compression Page 34

Table 2: Transaction rate

Message

Size

Compress 0% 20% 40% 60% 80%

2KB NONE 37433 37433 37433 37433 37433

 RLE 33728 34231 35253 35741 36483

 ZLIBFAST 30396 30720 30592 26399 27456

 ZLIBHIGH 13364 11752 10855 10148 9108

8KB NONE 33276 33276 33276 33276 33276

 RLE 23160 24449 25784 28131 29929

 ZLIBFAST 27067 27689 27866 28557 28854

 ZLIBHIGH 6935 5684 5054 4788 5548

16KB NONE 29858 29858 29858 29858 29858

 RLE 16297 17633 19377 21975 24532

 ZLIBFAST 23625 24378 25133 25855 26485

 ZLIBHIGH 3720 3091 2845 3284 4139

32KB NONE 21006 21006 21006 21006 21006

 RLE 11277 10063 11175 12217 14782

 ZLIBFAST 14737 15034 15399 15672 16108

 ZLIBHIGH 1886 1814 1885 2142 2903

64KB NONE 12738 12738 12738 12738 12738

 RLE 8136 5727 6522 7537 8806

 ZLIBFAST 9710 9527 9941 10582 10973

 ZLIBHIGH 831 905 1138 1330 1740

100KB NONE 10287 10287 10287 10287 10287

 RLE 6714 3984 4497 5334 6405

 ZLIBFAST 7264 7466 7525 7971 8286

 ZLIBHIGH 543 610 785 965 1259

IBM MQ for z/OS: Channel Compression Page 35

Table 3: Compression time – using COMPTIME

Message

Size

Compress 0% 20% 40% 60% 80%

2KB RLE 4 4 3 2 1

 ZLIBFAST 7 7 7 7 7

 ZLIBHIGH 48 59 67 75 84

8KB RLE 16 14 12 9 6

 ZLIBFAST 8 8 8 8 8

 ZLIBHIGH 7 6 6 5 5

16KB RLE 33 28 23 18 12

 ZLIBFAST 10 10 10 9 9

 ZLIBHIGH 245 295 324 278 216

32KB RLE 43 28 23 20 12

 ZLIBFAST 10 10 10 9 9

 ZLIBHIGH 439 255 247 222 153

64KB RLE 61 37 30 24 16

 ZLIBFAST 13 11 10 10 9

 ZLIBHIGH 374 379 272 230 170

100KB RLE 70 42 35 24 26

 ZLIBFAST 12 12 11 10 10

 ZLIBHIGH 438 412 358 247 192

IBM MQ for z/OS: Channel Compression Page 36

Table 4: De-compression time – using COMPTIME

Message

Size

Compress 0% 20% 40% 60% 80%

2KB RLE 1 1 1 1 1

 ZLIBFAST 5 4 4 15 13

 ZLIBHIGH 5 5 4 15 8

8KB RLE 6 6 6 5 4

 ZLIBFAST 7 6 6 5 5

 ZLIBHIGH 7 6 6 5 5

16KB RLE 13 12 11 10 8

 ZLIBFAST 9 8 7 7 6

 ZLIBHIGH 9 8 7 7 6

32KB RLE 0 12 11 9 8

 ZLIBFAST 9 8 8 7 6

 ZLIBHIGH 10 8 7 7 6

64KB RLE 0 16 14 12 10

 ZLIBFAST 11 10 9 8 7

 ZLIBHIGH 11 10 9 8 7

100KB RLE 0 18 16 14 12

 ZLIBFAST 12 11 9 8 7

 ZLIBHIGH 13 11 37 8 7

IBM MQ for z/OS: Channel Compression Page 37

Appendix B – Channel Compression over TLS1.2 encrypted channels
(ECDHE_RSA_256_CBC_SHA384)

This section provides a summary of the data collected when comparing message
compression options over TLS 1.2 encrypted channels where the cipher used was
ECDHE_RSA_256_CBC_SHA384.

As we saw with the non-encrypted channels, ZLIBHIGH was prohibitively expensive and
provided little benefit for the small increase in compression achieved, so only values for
COMPMSG(NONE|RLE|ZLIBFAST) are included.

As with Appendix A, there are 4 tables representing the data collected for this configuration.

Table 5: Transaction cost in CPU microseconds

Message

Size

Compress 0% 20% 40% 60% 80%

2KB NONE 162.56 162.56 162.56 162.56 162.56

 RLE 178.35 174.93 165.10 160.78 155.02

 ZLIBFAST 190.16 186.98 175.00 194.71 184.57

8KB NONE 228.70 228.70 228.70 228.70 228.70

 RLE 267.24 250.58 231.52 211.71 192.66

 ZLIBFAST 257.25 244.80 223.23 211.99 196.45

16KB NONE 376.97 376.97 376.97 376.97 376.97

 RLE 420.18 426.86 377.93 346.09 304.62

 ZLIBFAST 442.94 414.77 370.91 348.39 321.37

32KB NONE 602.16 602.16 602.16 602.16 602.16

 RLE 655.85 703.16 624.57 532.37 457.30

 ZLIBFAST 711.75 652.00 590.25 515.95 464.63

64KB NONE 1087.03 1087.03 1087.03 1087.03 1087.03

 RLE 1127.21 1249.08 1081.76 904.42 768.41

 ZLIBFAST 1210.74 1106.25 954.61 874.13 755.41

100KB NONE 1545.73 1545.73 1545.73 1545.73 1545.73

 RLE 1573.83 1819.16 1570.27 1302.00 1020.30

 ZLIBFAST 1766.84 1582.82 1402.95 1209.30 988.83

IBM MQ for z/OS: Channel Compression Page 38

Table 6: Transaction rate

Message

Size

Compress 0% 20% 40% 60% 80%

2KB NONE 9188 9188 9188 9188 9188

 RLE 13104 13681 15514 16697 18188

 ZLIBFAST 8902 9310 9600 9713 10670

8KB NONE 5025 5025 5025 5025 5025

 RLE 6786 7703 9006 10578 12859

 ZLIBFAST 5129 5504 6405 7334 9134

16KB NONE 3108 3108 3108 3108 3108

 RLE 3753 4123 5096 5864 7361

 ZLIBFAST 3112 3382 4036 4526 5855

32KB NONE 1927 1927 1927 1927 1927

 RLE 2105 2324 2774 3478 4666

 ZLIBFAST 1862 2157 2518 3041 3770

64KB NONE 1024 1024 1024 1024 1024

 RLE 1102 1252 1550 2023 2669

 ZLIBFAST 1129 1317 1636 1976 2722

100KB NONE 707 707 707 707 707

 RLE 774 849 1050 1379 2044

 ZLIBFAST 758 909 1095 1381 2054

IBM MQ for z/OS: Channel Compression Page 39

Table 7: Compression time – using COMPTIME

Message

Size

Compress 0% 20% 40% 60% 80%

2KB RLE 4 4 3 2 1

 ZLIBFAST 7 7 7 7 7

8KB RLE 16 14 12 9 6

 ZLIBFAST 8 8 8 8 8

16KB RLE 19 14 11 8 6

 ZLIBFAST 8 8 8 8 8

32KB RLE 29 18 15 11 8

 ZLIBFAST 9 9 9 8 8

64KB RLE 36 22 16 11 9

 ZLIBFAST 9 9 9 8 8

100KB RLE 39 23 18 12 9

 ZLIBFAST 10 9 9 8 8

Table 8: Decompression time – using COMPTIME

Message

Size

Compress 0% 20% 40% 60% 80%

2KB RLE 2 1 1 1 1

 ZLIBFAST 5 5 4 15 13

8KB RLE 6 6 6 5 4

 ZLIBFAST 7 6 6 5 5

16KB RLE 0 6 5 5 4

 ZLIBFAST 6 6 6 5 5

32KB RLE 0 8 7 6 5

 ZLIBFAST 7 7 6 6 5

64KB RLE 0 9 8 6 6

 ZLIBFAST 8 7 6 6 7

100KB RLE 0 10 9 7 6

 ZLIBFAST 8 8 7 6 6

IBM MQ for z/OS: Channel Compression Page 40

Appendix C – Channel Compression over TLS1.2 encrypted channels
(TLS_RSA_WITH_AES_256_CBC_SHA256)

This section provides a summary of the data collected when comparing message
compression options over TLS 1.2 encrypted channels where the cipher used was
TLS_RSA_WITH_AES_256_CBC_SHA256.

As with cipher ECDHE_RSA_256_CBC_SHA384, due to the prohibitive cost of ZLIBHIGH, we
have only included values for COMPMSG(NONE|RLE|ZLIBFAST).

Table 9: Transaction cost in CPU microseconds

Message

Size

Compress 0% 20% 40% 60% 80%

2KB NONE 148.24 148.24 148.24 148.24 148.24

 RLE 163.47 160.69 148.09 144.94 138.06

 ZLIBFAST 176.60 174.95 165.04 186.94 178.31

8KB NONE 182.61 182.61 182.61 182.61 182.61

 RLE 231.67 220.81 203.43 191.52 179.77

 ZLIBFAST 216.24 209.92 195.50 192.77 184.43

16KB NONE 288.05 288.05 288.05 288.05 288.05

 RLE 341.53 353.59 313.85 303.08 284.39

 ZLIBFAST 359.61 343.02 316.31 310.83 295.21

32KB NONE 425.15 425.15 425.15 425.15 425.15

 RLE 481.38 559.59 517.00 466.00 419.38

 ZLIBFAST 542.44 512.81 485.78 444.42 424.42

64KB NONE 723.10 723.10 723.10 723.10 723.10

 RLE 768.16 960.86 867.08 759.21 691.76

 ZLIBFAST 915.52 870.95 759.68 710.19 673.67

100KB NONE 1003.55 1003.55 1003.55 1003.55 1003.55

 RLE 1039.95 1375.33 1240.64 1069.83 905.10

 ZLIBFAST 1290.33 1212.04 1117.46 1025.92 863.29

IBM MQ for z/OS: Channel Compression Page 41

Table 10: Transaction rate

Message

Size

Compress 0% 20% 40% 60% 80%

2KB NONE 11001 11001 11001 11001 11001

 RLE 10706 11107 11309 11537 11893

 ZLIBFAST 10556 10848 10974 10718 11527

8KB NONE 7109 7109 7109 7109 7109

 RLE 7250 7655 8257 9046 10781

 ZLIBFAST 7268 7468 8441 9090 10678

16KB NONE 4836 4836 4836 4836 4836

 RLE 4811 4858 5712 5805 7017

 ZLIBFAST 4707 5025 5691 5412 6988

32KB NONE 3503 3503 3503 3503 3503

 RLE 4158 4189 4688 5330 6279

 ZLIBFAST 3228 3317 3833 4369 4400

64KB NONE 2018 2018 2018 2018 2018

 RLE 2369 2397 2816 3392 3724

 ZLIBFAST 1758 2102 2557 2836 3134

100KB NONE 1438 1438 1438 1438 1438

 RLE 1747 1717 1983 2409 3018

 ZLIBFAST 1365 1443 1740 1966 2705

IBM MQ for z/OS: Channel Compression Page 42

Table 11: Compression time – using COMPTIME

Message

Size

Compress 0% 20% 40% 60% 80%

2KB RLE 4 4 3 2 1

 ZLIBFAST 7 7 7 7 7

8KB RLE 16 14 12 9 6

 ZLIBFAST 8 8 8 8 8

16KB RLE 19 14 11 8 6

 ZLIBFAST 8 8 8 8 7

32KB RLE 27 18 15 11 8

 ZLIBFAST 9 9 8 8 8

64KB RLE 36 22 16 12 9

 ZLIBFAST 9 9 9 8 8

100KB RLE 39 23 18 13 9

 ZLIBFAST 10 9 9 8 8

Table 12: Decompression time – using COMPTIME

Message

Size

Compress 0% 20% 40% 60% 80%

2KB RLE 2 1 1 1 1

 ZLIBFAST 5 5 4 15 13

8KB RLE 6 6 6 5 4

 ZLIBFAST 7 6 6 5 5

16KB RLE 0 6 5 5 4

 ZLIBFAST 7 6 6 5 5

32KB RLE 0 8 7 6 5

 ZLIBFAST 7 7 6 6 5

64KB RLE 0 9 8 6 6

 ZLIBFAST 8 7 6 7 6

100KB RLE 0 10 8 7 7

 ZLIBFAST 8 8 7 6 6

IBM MQ for z/OS: Channel Compression Page 43

Appendix D – Channel Compression over TLS 1.3 encrypted channels
(TLS_AES_128_GCM_SHA256)

This section provides a summary of the data collected when comparing message
compression options over TLS 1.3 encrypted channels where the cipher used was
TLS_AES_128_GCM_SHA256.

Whilst ZLIBHIGH was remains expensive and offers little benefit in terms of additional
compression, this section includes the following COMPMSG values of NONE, RLE, ZLIBFAST

and ZLIBHIGH.

Table 13: Transaction cost in CPU microseconds

Message

Size

Compress 0% 20% 40% 60% 80%

2KB NONE 150.22 150.22 150.22 150.22 150.22

 RLE 162.69 161.95 155.90 154.51 152.17

 ZLIBFAST 173.12 171.80 164.09 186.44 179.35

 ZLIBHIGH 254.87 275.34 289.52 316.11 327.54

8KB NONE 162.30 162.30 162.30 162.30 162.30

 RLE 206.23 200.33 194.52 186.68 181.01

 ZLIBFAST 195.61 192.52 185.93 184.58 181.29

 ZLIBHIGH 415.13 474.27 511.91 534.36 473.59

16KB NONE 253.26 253.26 253.26 253.26 253.26

 RLE 295.52 325.99 312.69 298.81 289.37

 ZLIBFAST 326.46 319.40 299.18 301.42 293.62

 ZLIBHIGH 764.89 913.22 963.30 882.48 746.62

32KB NONE 349.84 349.84 349.84 349.84 349.84

 RLE 413.71 506.00 475.08 447.56 418.64

 ZLIBFAST 479.13 467.38 458.77 430.41 428.56

 ZLIBHIGH 1355.22 1402.91 1372.93 1268.05 1051.58

64KB NONE 554.08 554.08 554.08 554.08 554.08

 RLE 645.58 862.78 800.02 737.52 685.89

 ZLIBFAST 796.74 774.67 700.43 668.07 681.83

 ZLIBHIGH 2569.49 2454.56 2254.65 2044.26 1738.36

100KB NONE 754.43 754.43 754.43 754.43 754.43

 RLE 860.73 1225.91 1133.28 1030.69 930.60

 ZLIBFAST 1101.55 1065.49 1009.04 928.45 853.40

 ZLIBHIGH 3771.99 3477.68 3138.71 2825.40 2382.41

IBM MQ for z/OS: Channel Compression Page 44

Table 14: Transaction rate

Message

Size

Compress 0% 20% 40% 60% 80%

2KB NONE 23498 23498 23498 23498 23498

 RLE 23053 22653 24777 24969 25257

 ZLIBFAST 12397 12987 11617 11704 12305

 ZLIBHIGH 11060 10129 9403 8613 8024

8KB NONE 21806 21806 21806 21806 21806

 RLE 18187 19026 20029 21015 20552

 ZLIBFAST 11007 11242 11929 12471 12219

 ZLIBHIGH 6288 5276 4669 4458 5178

16KB NONE 12924 12924 12924 12924 12924

 RLE 11660 11003 11721 12232 11884

 ZLIBFAST 8330 8463 8963 9203 9645

 ZLIBHIGH 3298 2614 2424 2658 3274

32KB NONE 9220 9220 9220 9220 9220

 RLE 8379 6850 7505 8126 8231

 ZLIBFAST 6082 6594 6937 7434 7449

 ZLIBHIGH 1779 1687 1724 1859 2339

64KB NONE 5392 5392 5392 5392 5392

 RLE 5449 3896 4303 4813 5006

 ZLIBFAST 4094 4172 4984 4766 4781

 ZLIBHIGH 917 959 1047 1151 1402

100KB NONE 4084 4084 4084 4084 4084

 RLE 4022 2704 2970 3379 3891

 ZLIBFAST 3015 3045 3253 3377 4126

 ZLIBHIGH 606 661 740 832 1014

IBM MQ for z/OS: Channel Compression Page 45

Table 15: Compression time – using COMPTIME

Message

Size

Compress 0% 20% 40% 60% 80%

2KB RLE 4 4 3 2 1

 ZLIBFAST 7 7 7 7 7

 ZLIBHIGH 49 59 70 72 86

8KB RLE 16 14 12 9 6

 ZLIBFAST 8 8 8 8 7

 ZLIBHIGH 7 6 6 5 5

16KB RLE 19 14 11 8 6

 ZLIBFAST 8 8 8 8 8

 ZLIBHIGH 118 158 196 155 123

32KB RLE 28 18 15 11 8

 ZLIBFAST 9 9 9 8 8

 ZLIBHIGH 156 165 165 153 114

64KB RLE 36 22 16 11 10

 ZLIBFAST 9 9 9 8 8

 ZLIBHIGH 189 184 170 157 118

100KB RLE 39 23 20 13 11

 ZLIBFAST 10 10 9 8 8

 ZLIBHIGH 222 227 187 157 114

IBM MQ for z/OS: Channel Compression Page 46

Table 16: De-compression time – using COMPTIME

Message

Size

Compress 0% 20% 40% 60% 80%

2KB RLE 2 1 1 1 1

 ZLIBFAST 5 5 4 15 13

 ZLIBHIGH 5 5 4 14 8

8KB RLE 6 6 6 4 4

 ZLIBFAST 7 6 6 5 5

 ZLIBHIGH 7 6 6 5 5

16KB RLE 0 6 5 5 4

 ZLIBFAST 6 6 6 5 5

 ZLIBHIGH 7 6 6 6 5

32KB RLE 0 8 7 6 5

 ZLIBFAST 7 7 6 6 5

 ZLIBHIGH 7 7 6 6 5

64KB RLE 0 9 8 6 6

 ZLIBFAST 8 7 6 6 5

 ZLIBHIGH 8 8 6 6 5

100KB RLE 0 10 8 7 6

 ZLIBFAST 8 8 7 6 6

 ZLIBHIGH 8 8 7 6 6

IBM MQ for z/OS: Channel Compression Page 47

Appendix E – Channel Compression over TLS 1.3 encrypted channels
(TLS_CHACHA20_POLY1305_SHA256)

This section provides a summary of the data collected when comparing message
compression options over TLS 1.3 encrypted channels where the cipher used was
TLS_CHACHA20_POLY1305_SHA256.

Table 17: Transaction cost in CPU microseconds

Message

Size

Compress 0% 20% 40% 60% 80%

2KB NONE 334.53 334.53 334.53 334.53 334.53

 RLE 344.07 324.69 295.95 270.59 244.07

 ZLIBFAST 358.31 338.79 317.56 313.98 285.45

 ZLIBHIGH 438.98 438.62 432.04 441.99 428.24

8KB NONE 738.25 738.25 738.25 738.25 738.25

 RLE 775.22 674.21 566.90 455.44 348.53

 ZLIBFAST 741.58 650.51 553.29 454.05 356.47

 ZLIBHIGH 957.97 928.27 877.85 802.61 646.80

16KB NONE 1380.22 1380.22 1380.22 1380.22 1380.22

 RLE 1421.66 1251.31 1033.17 813.29 602.01

 ZLIBFAST 1392.35 1206.96 1006.49 807.35 613.18

 ZLIBHIGH 1833.52 1800.94 1662.13 1393.81 1066.63

32KB NONE 2547.71 2547.71 2547.71 2547.71 2547.71

 RLE 2605.90 2308.82 1855.91 1421.76 981.78

 ZLIBFAST 2571.31 2192.09 1788.46 1380.56 984.82

 ZLIBHIGH 3445.08 3126.46 2701.60 2219.32 1610.79

64KB NONE 4909.42 4909.42 4909.42 4909.42 4909.42

 RLE 4965.35 4411.42 3517.00 2593.33 1748.37

 ZLIBFAST 4902.05 4144.61 3312.46 2503.40 1716.72

 ZLIBHIGH 6674.91 5818.71 4853.57 3879.92 2770.51

100KB NONE 7359.07 7359.07 7359.07 7359.07 7359.07

 RLE 7420.09 6608.97 5249.72 3883.16 2527.67

 ZLIBFAST 7341.04 6170.27 4930.07 3681.28 2451.90

 ZLIBHIGH 10086.96 8643.16 7101.98 5584.07 3922.67

IBM MQ for z/OS: Channel Compression Page 48

Table 18: Transaction rate

Message

Size

Compress 0% 20% 40% 60% 80%

2KB NONE 11283 11283 11283 11283 11283

 RLE 11068 11684 12863 13921 15452

 ZLIBFAST 10606 11219 11950 11604 12782

 ZLIBHIGH 7348 7097 7000 6961 6710

8KB NONE 2852 2852 2852 2852 2852

 RLE 4923 5703 6784 5002 10977

 ZLIBFAST 5149 5923 6972 8479 10758

 ZLIBHIGH 3332 3256 3265 3415 4175

16KB NONE 2724 2724 2724 2724 2724

 RLE 2662 3053 3671 4636 6025

 ZLIBFAST 2730 3164 3772 4649 5979

 ZLIBHIGH 1717 1635 1685 1968 2541

32KB NONE 1482 1482 1482 1482 1482

 RLE 1469 1650 2057 2660 3668

 ZLIBFAST 1472 1721 2116 2718 3705

 ZLIBHIGH 905 962 1082 1273 1720

64KB NONE 774 774 774 774 774

 RLE 779 866 1083 829 2101

 ZLIBFAST 782 916 1155 1493 2121

 ZLIBHIGH 465 522 613 744 1008

100KB NONE 517 517 517 517 517

 RLE 522 577 724 973 1483

 ZLIBFAST 523 618 769 1021 1534

 ZLIBHIGH 306 353 422 521 715

IBM MQ for z/OS: Channel Compression Page 49

Table 19: Compression time – using COMPTIME

Message

Size

Compress 0% 20% 40% 60% 80%

2KB RLE 4 4 3 2 1

 ZLIBFAST 7 7 7 7 7

 ZLIBHIGH 48 58 67 72 86

8KB RLE 16 14 12 9 6

 ZLIBFAST 8 8 8 8 7

 ZLIBHIGH 7 6 6 5 5

16KB RLE 19 14 11 8 6

 ZLIBFAST 8 8 8 8 7

 ZLIBHIGH 120 158 175 155 121

32KB RLE 27 18 15 11 8

 ZLIBFAST 9 9 9 8 8

 ZLIBHIGH 156 168 166 154 115

64KB RLE 36 23 16 11 9

 ZLIBFAST 9 9 9 8 8

 ZLIBHIGH 189 183 166 147 118

100KB RLE 39 23 17 12 9

 ZLIBFAST 10 9 9 8 8

 ZLIBHIGH 213 190 171 157 113

IBM MQ for z/OS: Channel Compression Page 50

Table 20: De-compression time – using COMPTIME

Message

Size

Compress 0% 20% 40% 60% 80%

2KB RLE 2 1 1 1 1

 ZLIBFAST 5 4 4 15 13

 ZLIBHIGH 5 5 4 14 8

8KB RLE 6 6 6 5 4

 ZLIBFAST 7 6 6 5 5

 ZLIBHIGH 7 6 6 5 5

16KB RLE 0 6 5 5 4

 ZLIBFAST 7 6 7 5 5

 ZLIBHIGH 6 6 6 5 5

32KB RLE 0 8 7 6 5

 ZLIBFAST 7 7 6 6 5

 ZLIBHIGH 7 7 6 6 5

64KB RLE 0 9 8 6 6

 ZLIBFAST 8 7 6 6 6

 ZLIBHIGH 8 7 6 6 5

100KB RLE 0 10 8 7 6

 ZLIBFAST 8 8 7 6 6

 ZLIBHIGH 8 8 7 6 6

IBM MQ for z/OS: Channel Compression Page 51

Appendix F – Useful Links

The use of environment variable “_HZC_COMPRESSION_METHOD” is discussed in:

https://www.ibm.com/docs/en/zos/2.5.0?topic=compression-running-zlib

SMF Records:
Type 113 records – hardware capacity, reporting and statistics.
Type 30 zEDC usage records - “zEDC usage statistics section”.

MQ supportPac MP1B “Interpreting accounting and statistics data”.

MQ Performance reports:
Landing page - https://ibm-messaging.github.io/mqperf/
General MQ for z/OS performance - MP16 “Capacity Planning and Tuning guide”
MQ for z/OS 9.2 - https://ibm-
messaging.github.io/mqperf/MQ_for_zOS_V920_Performance.pdf
MQ for z/OS 9.3 - https://ibm-
messaging.github.io/mqperf/MQ%20for%20zOS%209.3%20Performance.pdf

Reduce storage occupancy using IBM zEDC compression links:
Blog - https://community.ibm.com/community/user/integration/viewdocument/reducing-
storage-occupancy-with-ibm
Redbook - https://www.redbooks.ibm.com/redbooks/pdfs/sg248259.pdf

Hosting the fasp.io gateway on zCX to assist performance MQ channel performance over
high latency networks is discussed in "MQ with zCX”.

https://www.ibm.com/docs/en/zos/2.5.0?topic=compression-running-zlib
https://www.ibm.com/docs/en/zos/2.5.0?topic=acza-record-type-113-x71-hardware-capacity-reporting-statistics
https://www.ibm.com/docs/en/zos/2.5.0?topic=mapping-zedc-usage-statistics-section
https://www.ibm.com/support/pages/mp1b-ibm-mq-interpreting-accounting-and-statistics-data-and-other-utilities
https://ibm-messaging.github.io/mqperf/
https://ibm-messaging.github.io/mqperf/mp16.pdf
https://ibm-messaging.github.io/mqperf/MQ_for_zOS_V920_Performance.pdf
https://ibm-messaging.github.io/mqperf/MQ_for_zOS_V920_Performance.pdf
https://ibm-messaging.github.io/mqperf/MQ%20for%20zOS%209.3%20Performance.pdf
https://ibm-messaging.github.io/mqperf/MQ%20for%20zOS%209.3%20Performance.pdf
https://community.ibm.com/community/user/integration/viewdocument/reducing-storage-occupancy-with-ibm
https://community.ibm.com/community/user/integration/viewdocument/reducing-storage-occupancy-with-ibm
https://www.redbooks.ibm.com/redbooks/pdfs/sg248259.pdf
https://ibm-messaging.github.io/mqperf/MQ%20with%20zCX.pdf

IBM MQ for z/OS: Channel Compression Page 52

Appendix E – Test Environment
Measurements were performed using:

The IBM MQ performance sysplex ran measurements on:

• IBM z16 (3931-7x1) – 4 CPC drawers

The sysplex was configured thus:

• LPAR 1:

o 1-32 dedicated CP plus 2 zIIP with 144 GB of real storage.

• LPAR 2:

o 1-10 dedicated CP plus 2 zIIP with 48 GB of real storage.

• LPAR 3:

o 1-3 dedicated CP with 48 GB of real storage.

• z/OS v2r5.

• Db2 for z/OS version 12 configured for MQ using Universal Table spaces.

• IMS 15.3

• IBM CICS CTS 6.2

• MQ queue managers:

o configured at MQ 9.3.

o configured with dual logs and dual archives.

Coupling Facility:

• Internal Coupling Facility with 4 dedicated processors

• Coupling Facility running latest CFCC level.

• Dynamic CF dispatching off

• 3 x ICP links between z/OS LPARs and CF.

DASD:

• FICON Express 16S connected DS8950F

• 4 dedicated channel paths

• HYPERPAV enabled

• zHPF disabled unless otherwise specified.

Network:

• 10GbE network configured with minimal hops to distributed partner machines

• 1GbE network available

Applications written in a mixture of:

• C

• COBOL compiled with Enterprise COBOL for z/OS 6.3 with options ARCH(13) and

OPT(1).

	Preface
	1. What is data compression?
	When might data compression be useful?

	2. IBM zSystems and compression
	zEDC on PCIe (zEC12 to z14)
	Integrated zEDC (on-chip) compression
	How do I know if zEDC is available?
	How do I know if zEDC compression is using hardware?

	3. Compression and MQ for z/OS
	Compression of active logs
	Compression of archive logs
	MQ Channel Compression, including SVRCONN
	COMPHDR
	COMPMSG
	COMPMSG(ZLIBFAST)

	Does MQ offer monitoring options for channel compression?
	How does MQ channel compression work?
	Should I use compression with my MQ channels?
	Are you attempting to reduce cost on z/OS?
	Are you attempting to reduce amount of data flowing over the network?
	Are you attempting to improve throughput rate?
	What data does your message contain? Are your messages compressible?

	Which compression option should I use?
	The trade off – dispatcher or SSL tasks

	Do I have enough dispatcher tasks?
	Highly compressible messages and ZLIBFAST
	ZLIBHIGH or ZLIBFAST?
	COMPMSG(ZLIBFAST) using software
	How does ZLIBFAST in hardware compare with ZLIBFAST and ZLIBHIGH in software?

	4. Using MQ message compression
	How does channel compression affect non-TLS enabled channels?
	How does channel compression affect TLS 1.2 protected channels
	How does channel compression affect TLS 1.3 protected channels

	5. What else to consider
	Short-lived MQ channels
	Advanced Message Security (AMS)
	Aspera fasp.io gateway

	Summary
	Appendix A – Channel Compression over unencrypted channels
	Appendix B – Channel Compression over TLS1.2 encrypted channels (ECDHE_RSA_256_CBC_SHA384)
	Appendix C – Channel Compression over TLS1.2 encrypted channels (TLS_RSA_WITH_AES_256_CBC_SHA256)
	Appendix D – Channel Compression over TLS 1.3 encrypted channels (TLS_AES_128_GCM_SHA256)
	Appendix E – Channel Compression over TLS 1.3 encrypted channels (TLS_CHACHA20_POLY1305_SHA256)
	Appendix F – Useful Links
	Appendix E – Test Environment

