
© Copyright International Business Machines Corporation 2019. All rights reserved.

Queue Manager Restart Times for IBM MQ V9.1 &
V9.1.1

March 2019

Paul Harris

IBM MQ Performance
IBM UK Laboratories
Hursley Park
Winchester
Hampshire
United Kingdom

© Copyright International Business Machines Corporation 2019. All rights reserved.

Introduction

This study will look at how long a queue manager takes to restart, in particular, when there
has been a failure of some type, causing the queue manager to abruptly end, with
potentially in-flight transactions. Some function associated with restart has been improved
in IBM MQ V9.1.1, these are illustrated below.

A queue manager will maintain data, and transactional integrity, by synchronously logging
operations to the recovery log. The logger component of the queue manager forces a
synchronous log write every time a transaction is committed, either explicitly (through the
use of syncpoints) or implicitly (e.g. an MQPUT outside of syncpoint).

Restart is typically quick, but as we shall see, there are some best practises which should be
followed to avoid unnecessary delays (detailed in this blog article: How long will it take to
(re)start my queue manager?). Tests presented here illustrate some of the points outlined in
the blog article, with empirical data.

To recap, some significant impactors of queue manager restart time are:

• Amount of data on the log

• Active’ Queue depths

• Checkpoint Frequency

• Queuing Style

• Long running or ‘large’ transactions

• Disk performance

We’ll take a look at processing the recovery log, when the amount of data on the log, the
queue depths, the number of long running transactions and disk performance is modified by
the test. Checkpoint frequency and queueing style are not covered here.

Please note that many of the tests are not typical MQ restart times, some of the tests below
are contrived to show how bad practises and environmental factors can affect restart time.

https://developer.ibm.com/messaging/2017/10/25/qm_restart_time/
https://developer.ibm.com/messaging/2017/10/25/qm_restart_time/

© Copyright International Business Machines Corporation 2019. All rights reserved.

Restart Times for (Busy) Steady State Queue Manager.

These initial tests show restart times for a queue manager against which a request/response
workload is running at a rate of 2,500 Requests/responses per second.

The workload is MQ-CPH based, using 2KB persistent messages (see the MQ-CPH blog
article for a general description of the tool :
https://www.ibm.com/developerworks/community/blogs/messaging/entry/MQ_C_Perform
ance_Harness_Released_on_GitHub?lang=en_us)

Figure 1 : MQ-CPH Requester/Responder Workload

Figure 1 shows the topology of the requester/responder test. The test simulates multiple
‘requester’ applications which all put messages onto a set of ten request queues. Each
requester is a thread running in an MQI (MQ-CPH) application. The threads utilise the
requester queues in a round robin fashion, ensuring even distribution of traffic.

Another set of ‘responder’ applications retrieve the message from the request queue and
put a reply of the same length onto a set of ten reply queues. Each responder running in an
MQI (MQ-CPH) application.

The test was run with 300 requesters, and 300 responders connected to MQ. The total rate
of requests/responses through MQ was restricted to 2,500/sec and when the workload
settled, the queue manager was killed 1 Start-up times measured are extracted from the
queue manager’s error log, and taken as the time elapsed between the following two
messages:

AMQ5051I: The queue manager task 'LOGGER-IO' has started.

AMQ8024I: IBM MQ channel initiator started.

1 A kill -9 command was issued against QM processes : sudo ps -ef | grep -i "amq\|runmq" | awk '{print $2}' |
xargs -i kill -9 {}

MQ-CPH

MQ Server

Responder 1
MQGet

Responder 2

Requester 1

Requestor 2

Requester 3

Requester 4

MQPut

MQ-CPH

MQ

…Responder 3

Responder 4

MQGet MQPut

Requester Machine

Request queues

Reply queues

…

Requester n Responder n

……

…

Responder Machine

https://www.ibm.com/developerworks/community/blogs/messaging/entry/MQ_C_Performance_Harness_Released_on_GitHub?lang=en_us
https://www.ibm.com/developerworks/community/blogs/messaging/entry/MQ_C_Performance_Harness_Released_on_GitHub?lang=en_us

© Copyright International Business Machines Corporation 2019. All rights reserved.

AMQ5051I is the first message issued by the queue manager during start-up, and AMQ8024I
marks the point at which applications can connect back in to the queue manager.

Prior to restart of the queue manager, the file system I/O cache is cleared on the MQ host
machine, to emulate the state after a machine failure, or MQ being started on a different
host (e.g. using MIQM).

sync;echo 1 > /proc/sys/vm/drop_caches

Note that this can make a significant difference to the restart time. As with all performance
sensitive tests, you should run your own tests where possible, to simulate your production
environment and circumstances you are catering for.

© Copyright International Business Machines Corporation 2019. All rights reserved.

Results

Figure 2: Restart Times for Busy QM

Figure 2 shows the restart times for the queue manager across a number of different file
systems hosting the queue files and recovery log. The SAN file system has the lowest
latency. The NFS filesystem is connected to via a 10Gb link, and NFS2 & NFS3 have
additional delays added into the network – see Appendix 1 for more detail.

Restart times with the SAN hosted files are fast. When the higher latency NFS file systems
are used, the restart times increase, with the bulk of the time being spent in the log record
replay phase.

SAN NFS1 NFS2 NFS3

V9.1 00:01 00:15 02:37 05:13

V9.1.1 00:01 00:01 00:02 00:03

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

R
e-

St
ar

t
Ti

m
e

(m
m

:s
s)

Filesystem

Restart Times after failure @ 2,500 Request/replies per Second by Recovery
Log Filesystem Type

© Copyright International Business Machines Corporation 2019. All rights reserved.

The number of log records replayed will depend on where the QM is logically, in relation to
the last checkpoint. If a checkpoint has been taken very recently, there will be a small
number of log records to be replayed, if the queue manager fails during checkpoint
processing then there will be a much larger number of log records to be replayed. For the
measurements above, several runs were measured. A linear relationship was exhibited
between the number of log records replayed, and the restart time. The times above are
normalised for 60,000 log records being re-played (NFS2 measurements, for instance, varied
from 58 seconds to 4 minutes and 25 seconds in V9.1.0, depending on when the queue
manager was killed).

Optimisations to reduce the file system interactions during log record replay have been
introduced to V9.1.1, and restart times are dramatically reduced as a result. You should
remember that these reductions particularly apply when (a) the file system’s latency is high
(NFS3 has a 1ms additional delay per file system interaction added), and (b) the file I/O
requests are not met by the local O/S file system cache.

APAR IT27226 has been opened to make this optimisation available for V9.1.0 of MQ.

© Copyright International Business Machines Corporation 2019. All rights reserved.

Impact of Deep Queues and Long Running Transactions on QM
Restart Times

The previous section showed some restart times for a queue manager that was busy,
serving a ‘well behaved’ application.

In this section I will run tests where there are deep queues to be recovered, or long running
transactions causing the recovery log to fill, which will have an additional impact on restart
time.

Remember that these are not typical restart times for IBM MQ, they are shown here to
illustrate what to avoid.

For all of the tests below I used a simple ‘putter’ application adding messages at a rate of
5000 per second to 10 queues and killed the queue manager whilst there were one or more
outstanding transactions (MQPUTs) for each queue.

Note that if populated queues exist that were not involved in transactions when the queue
manager was killed, then the messages on those queues will not be loaded until they are
referenced by an application, after start-up. For the tests below, all of the deep queues are
loaded as part of the queue manager start-up, as there are transactions in-flight on all of the
queues being used in the test.

The recovery log file parameters used (unless otherwise specified), were:

LogFilePages=16384
LogPrimaryFiles=32
LogSecondaryFiles=2
LogType=CIRCULAR
LogWriteIntegrity=TripleWrite

This results in 32 x 64MB primary log files, providing a total of 2GB of primary log space.

All of the tests, unless otherwise specified, utilised a SAN based file system attached to via
an 8Gb fibre link, and utilised a SAN volume controller (SVC).

Amount of Data in the Log and Long Running Transactions

Let’s take a look at what happens when we give MQ some work to do on restart, by filling
up the recovery log with data.

The recovery log files are processed as part of the queue manager start-up. This takes place
in two main phases:

1. Replay the log (read all data from the active recovery log and update the queue files
with messages that were logged after the last recorded checkpoint). This is

© Copyright International Business Machines Corporation 2019. All rights reserved.

sometimes referred to as the REDO phase of a transaction manager’s restart
protocol.

2. Backout any uncommitted transactions (removing the associated messages from the
queue), this is sometimes referred to as the UNDO phase of a transaction manager’s
restart protocol.

Queues are loaded into memory as required during phase 2 (that is the queue’s meta-data,
rather than the actual messages themselves).

Figure 3 below shows the impact on start-up time, as the log becomes filled with
committed, or uncommitted messages. The tests all start by putting a single 2KB message
on each of our 10 (empty) test queues (without committing them), then adding additional
2KB messages, which fills the recovery log, as the initial messages are stopping MQ from
freeing up log space, even when the additional messages may be committed.

The test was run with the following numbers of additional messages:

Messages Primary Log Used
10,000 ~5%
100,000 ~23%
400,000 ~80%

Beyond 80% of primary and secondary log usage, MQ will forcibly free up log space, by
abending the initial transactions, and backing them out (application will receive error code
2003 - MQRC_BACKED_OUT).

Figure 3: QM Restart-times for Heavily Populated Recovery Log (V9.1.0)

Results for IBM MQ V9.1.1 were very similar to V9.1.0 for these tests.

00:00

00:10

00:20

00:30

00:40

00:50

Committed Messages Uncommitted Messages

R
e

st
ar

t
Ti

m
e

 (
m

m
:s

s)

QM Restart Time as Messages on SAN Hosted Recovery Log Increases

10,000 100,000 400,000

© Copyright International Business Machines Corporation 2019. All rights reserved.

The amount of data read from the log files during phase 1 is the same whether it is
comprised of committed, or uncommitted data. Phase 1 of the restart was about the same
for both cases and constituted most of the restart time when the log files were full of
committed messages.

Although log replay was not a big part of the restart time with SAN storage (used in the tests
above), this phase can take much longer when the file system has a higher latency
(demonstrated later in this report).

Phase 2 involved loading queues (1 message on each queue for the committed case, and up
to 40,000 per queue in the uncommitted case), and recovery. This phase was insignificant
for the committed messages test but constituted the bulk of the time taken for the
uncommitted test case.

The test case is somewhat contrived, to force the log to be filled to known states, by having
the 10 initial long-lived messages, in both cases. Large, full log files are not good news in
production. Long lived transactions will eventually fail when the log fills completely and if
the rest of the log contains a lot of uncommitted data, that will cause delays in the event of
recovery/restart.

So large logs, filled with uncommitted messages will delay a restart of the queue manager.
There can be many transactions, or just a few, what really matters is the total number of
uncommitted messages, as each of those has to be reconciled with the queue. The table
below shows this. If the message size is increased, the same amount (in KB) of uncommitted
application data takes less time to recover as there are less messages to reconcile.
Spreading the number of uncommitted messages across 10, or 3,200 transactions makes
little difference, but our case is exceptional, with all transactions being backed out in the
restart. Having very large transactions should generally be avoided, as just a single
transaction requiring a backout could represent a lot of messages to be processed.

Msg Size #Messages #Transactions %Primary Log
Utilisation

Restart Time

2KB 400,000 10 78% 49 seconds

2KB 400,000 3,200 78% 46 seconds

20KB 40,000 10 51%* 8 seconds

*The lower log utilisation is due to the fact that meta data (message headers & internal
meta data) is proportionally lower for larger messages. The total application (message body)
data is 800MB in all cases.

© Copyright International Business Machines Corporation 2019. All rights reserved.

Deep Queues

For the remaining tests we will look at the 10,000 committed messages case (with 1
uncommitted transaction on each queue, ensuring queue loading will take place as part of
the recovery, thus enabling consistency of measurement).

If the queues involved in recovering transactions already contain a lot of messages, then the
loading of these queues, as part of the recovery process, is going to take longer. In Figure 4
below, the test with 10,000 committed messages on the log, was re-run against queues pre-
populated with messages (250,000, 500,000 and 1,000,000 on each queue).

Figure 4 : Restart Times with Deep Queues, after 10K Committed Messages

With deep queues there is more data to load from disk during the recovery phase, and more
messages to scan through, when backing out transactions. Deep queues should be avoided
if possible, as they also involve more disk activity during normal operation, and any use of
selectors (especially on message header fields) will take longer, due to the larger number of
messages to scan though.

From the IBM MQ V9.1.1 release, queue loading of multiple queues, as part of the recovery
process is executed in parallel, speeding up restart times. This can be seen in Figure 4 above.

00:00

00:30

01:00

01:30

0 250,000 500,000 1,000,000

R
e

st
ar

t
Ti

m
e

(m
m

:s
s)

Initial Queue Depth (# 2KB messages)

Re-start Times for 10K Committed Messages by Increasing Initial Queue Depth

V9.1.0 V9.1.1

© Copyright International Business Machines Corporation 2019. All rights reserved.

High Latency File Systems

Restart and recovery are I/O intensive, so if latency is introduced, it can have a significant
impact on restart times. Figure 5 below shows two tests, previously presented, but re-run
with the queue manager log and queue files hosted on NFS. For two of these tests, we
introduce a network delay to increase the latency of the file systems, to demonstrate the
impact on restart times. See Appendix 1 for more detail.

The tests are:

10KC/Empty 10,000 committed messages on the log, with previously unpopulated

queues
10KC/Deep 10,000 committed messages on the log, with pre-populated queues

(500,000 messages on each queue).

Figure 5 : Restart Times for High Latency File Systems

Results for both V9.1 and V9.1.1 are shown, as these tests benefit from optimisations to
queue file access during restart, introduced in V9.1.1 (APAR IT27226 on V9.1).

Higher latency file systems shift the primary overhead of start-up from reconciling
transaction data, to file I/O during the log replay phase, so the optimisation of this phase in
V9.1.1 particularly helps with higher latency filesystem, reducing the amount of calls across
the slower link.

10KC/Empty 10KC/Deep

V9.1 SAN 00:01.010 00:33.308

V9.1 NFS (1) 00:05.041 00:42.202

V9.1 NFS (2) 00:54.230 01:49.975

V9.1 NFS (3) 01:43.263 02:36.056

V9.1.1 SAN 00:00.446 00:10.006

V9.1.1 NFS (1) 00:01.159 00:14.720

V9.1.1 NFS (2) 00:09.667 00:41.069

V9.1.1 NFS (3) 00:18.105 00:58.959

00:00

00:30

01:00

01:30

02:00

02:30

03:00

R
e

st
ar

t
Ti

m
e

(m
m

:s
s)

Restart Times with High Latency Filesystems

© Copyright International Business Machines Corporation 2019. All rights reserved.

Parallel queue loading helps as well, but as the latency of the filesystem increases the
critical factor is the reduction of I/O calls rather than whether the queues are loaded in
parallel, or not.

Restart times for high latency file systems can be even longer if there are a lot of
uncommitted messages on the queue. We have seen this has a big impact when tested on
SAN hosted recovery logs. If this extreme case were to occur on a high-latency file system,
the recovery phase could take tens of minutes to complete.

© Copyright International Business Machines Corporation 2019. All rights reserved.

Conclusions

As we have seen, the time it takes to restart a queue manager is largely dependent on the
time it takes to replay the recovery log records and recover in-flight transactions. This in
turn is impacted by the amount (and type) of data on the log, whether a checkpoint has
recently been taken, and the quality of the file system hosting the recovery log. Some
aspects are largely outside of our control (we can increase the frequency of the checkpoints
for instance, but the point at which a failure occurs in relation to when the last checkpoint
was taken is out of our control).

Remember,

– Large numbers of uncommitted messages should be avoided where possible.
– Deep queues will slow down restart times, especially where transactions are being

backed out on those queues.
– Parallel queue loading, during recovery (introduced in V9.1.1) can dramatically

reduce restart times, especially for faster filesystems.
– Recovery of in-flight transactions is much improved in V9.1.1 , and this can

particularly help the restart times for queue managers whose recovery logs are
hosted on higher latency file systems.

– Recovery logs should be sized for well-behaved applications. Catering for long
running transactions can contribute to a much heavier overhead during restart,
recovering the state of the queue manager.

Following best practises, along with improvements made in MQ V9.1.1 should ensure
speedy queue manager restart times but testing your own environment will enable you to
know what to expect.

– Test your recovery scenarios, making sure the environment matches that in
production as closely as possible.

– Understand the performance of the file system hosting the recovery log, and the
network hosting an NFS recovery log.

– Record expected re-start times for different load scenarios, along with any other
metrics that might be useful to compare to, should a queue manager failure occur in
production

– Remember that some parts of the restart can be highly variable (e.g. whether the
queue manager is re-starting on the same machine or not, and if so, whether OS file
caches are intact, or not). Test for the most likely scenarios.

© Copyright International Business Machines Corporation 2019. All rights reserved.

Appendix 1. File systems

For all of the tests run in this report, the queue files, and recovery logs were hosted on one
of the four file systems listed below.

SAN: SAN hosted file system, using an IBM San Volume Controller (SVC), via 8Gb fibre
links.

NFS1: NFS (V4) hosted on RAID cached disks via a dedicated* 10Gb network link.

NFS2: NFS (V4) hosted on RAID cached disks via a dedicated* 10Gb network link with an
additional 500us delay on network added in each direction.

NFS3: NFS (V4) hosted on RAID cached disks via a dedicated* 10Gb network link with an
additional 1ms delay on network added in each direction.

*All test machines were connected to a local, switch via 10Gb links, where there was no
competing traffic on the switch.

Network delays were configured using the Linux traffic control (tc) utility. E.g. for NFS2 the
following commands were executed on the NFS server and the MQ host.

intf=<10Gb interface>

delay=500

tc qdisc add dev $intf root netem delay ${delay}us

	Queue Manager Restart Times for IBM MQ V9.1 & V9.1.1
	Introduction
	 Amount of data on the log
	 Active’ Queue depths
	 Checkpoint Frequency
	 Queuing Style
	 Long running or ‘large’ transactions
	 Disk performance
	We’ll take a look at processing the recovery log, when the amount of data on the log, the queue depths, the number of long running transactions and disk performance is modified by the test. Checkpoint frequency and queueing style are not covered here.

	Restart Times for (Busy) Steady State Queue Manager.
	AMQ5051I: The queue manager task 'LOGGER-IO' has started. AMQ8024I: IBM MQ channel initiator started.
	Results

	Impact of Deep Queues and Long Running Transactions on QM Restart Times
	The previous section showed some restart times for a queue manager that was busy, serving a ‘well behaved’ application.
	In this section I will run tests where there are deep queues to be recovered, or long running transactions causing the recovery log to fill, which will have an additional impact on restart time.
	Remember that these are not typical restart times for IBM MQ, they are shown here to illustrate what to avoid.
	For all of the tests below I used a simple ‘putter’ application adding messages at a rate of 5000 per second to 10 queues and killed the queue manager whilst there were one or more outstanding transactions (MQPUTs) for each queue.
	Note that if populated queues exist that were not involved in transactions when the queue manager was killed, then the messages on those queues will not be loaded until they are referenced by an application, after start-up. For the tests below, all of...
	The recovery log file parameters used (unless otherwise specified), were:
	LogFilePages=16384 LogPrimaryFiles=32 LogSecondaryFiles=2 LogType=CIRCULAR LogWriteIntegrity=TripleWrite
	This results in 32 x 64MB primary log files, providing a total of 2GB of primary log space.
	All of the tests, unless otherwise specified, utilised a SAN based file system attached to via an 8Gb fibre link, and utilised a SAN volume controller (SVC).
	Amount of Data in the Log and Long Running Transactions
	Let’s take a look at what happens when we give MQ some work to do on restart, by filling up the recovery log with data.
	The recovery log files are processed as part of the queue manager start-up. This takes place in two main phases:
	Figure 3 below shows the impact on start-up time, as the log becomes filled with committed, or uncommitted messages. The tests all start by putting a single 2KB message on each of our 10 (empty) test queues (without committing them), then adding addit...
	The test was run with the following numbers of additional messages:
	# Messages Primary Log Used 10,000 ~5% 100,000 ~23% 400,000 ~80%
	Beyond 80% of primary and secondary log usage, MQ will forcibly free up log space, by abending the initial transactions, and backing them out (application will receive error code 2003 - MQRC_BACKED_OUT).

	Deep Queues

	High Latency File Systems
	Conclusions
	Appendix 1. File systems

