
Exploring the internal messaging performance of
MQ as part of CP4I deployed on OCP 4.2

Objective

To illustrate the performance capability of MQ when deployed on OpenShift Cloud Platform (OCP) 4.2
as part of Cloud Pak for Integration (CP4I).

Environment

A bare metal setup comprising 3 master nodes, 1 bastion node and 9 worker nodes, although for this
test only 2 worker nodes are used (1 for the QM and 1 for the MQ Client).

OpenShift Cloud Platform Version: 4.2.29

CP4I Version: 2019.4.1

The persistent storage uses a Fibre channel volume to a remote SAN.

The MQ version for that level of CP4I is usually MQ 9.1.3
(https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.ctr.doc/ctr_supporte
d_versions.htm). The image for these tests contains a modified image containing MQ 9.1.4 and a set
of performance improvements (see next section).

The default cluster SDN (Software Defined Network) utilizes 1GbE networking. All master and worker
nodes are also connected by an additional 10GbE network. The Multus additional network support has
been used to allow the client and QM to communicate over the 10GbE network, please see separate

guidance (https://github.com/ibm-messaging/mqperf/blob/gh-pages/openshift/configuration.md) on
how this was setup.

The number of threads supported in a container in this environment is currently limited to 1024. To be
able to run with more threads, a configuration change to the crio.conf file is required. cri-o is an

implementation of the Container Runtime Interface (CRI) that supports Open Container Initiative
(OCI) compatible runtimes. Again, please see the separate guidance on OpenShift configuration on
how this was setup.

The first two sections in this report use a CPU limit of 32 cores for the QM. The CPU limit for the client
is set to a value to avoid the client encountering CPU starvation.

Please see Appendix A for the specification of the hardware used for the cluster nodes.

Changes to MQ image

Three changes were made to the base MQ image to improve performance. These will likely be included
(or at least configurable) in future CP4I releases.

• Enable FASTPATH bindings
• Increase number of MaxChannels/MaxActiveChannels to 999999999
• Increased log configuration to 64 primary files (of 16384 4K Pages) resulting in 4GB log

allocation

https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.ctr.doc/ctr_supported_versions.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.ctr.doc/ctr_supported_versions.htm
https://github.com/ibm-messaging/mqperf/blob/gh-pages/openshift/configuration.md

Page 2

Scenario

The scenario that will be used in the testing for this whitepaper is the standard requester/responder
scenario as featured in our distributed performance reports.

The MQ client runs in its own container with a fixed number of responders (500) connecting to the QM
under test. The test then iterates through an increasing number of client requesters which sends
messages across 10 request queues. The responders consume the messages from the request queues
and place them on the reply queues where the requester clients obtain their specific reply (via

correlation ID) to their original message.

A full round trip is 2 message puts and 2 message gets. The client runs within the OCP cluster and
connects to the QM using the address allocated to the QM Pod on the additional 10GbE network and
port 1414.

For this investigation, 2KB, 20KB and 200KB persistent messages are used. TLS is not used as all
messaging data flows over the private 10GbE network and the MQ client and QM are both running in
the same OpenShift cluster.

Non Persistent Results

The graph below shows how the MQ QM performs for a 2K message size.

Figure 1 – 2K Non Persistent

Note that the reported CPU is based on the full capacity of the worker node, which in this case is 64
Hyperthreaded cores. So a pod restricted to 32 cores would report as having used up to 50% of the
available capacity. There are additional pods running on that Node to support the management and

configuration of the OCP cluster which is why the maximum reported value is approximately 55%

0

10

20

30

40

50

60

70

80

90

100

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 100 200 300 400 500

R
o

u
n

d
 t

ri
p

/s

Requester clients

2K NP

Msg rate

Client CPU

QM CPU

Page 3

The above graph shows that the QM can achieve a peak throughput of over 45,000 round trips/s, and
even with just 16 requester client threads, the QM can achieve over 30,000 round trips/s.

The graph below shows how the MQ QM performs for a 20K message size.

Figure 2 - 20K Non Persistent

The above graph shows that as we increase the message size to 20K, the QM CPU is no longer the

limiting factor and we are now limited by our 10GbE network at over 27,000 round trips/sec,
achievable with 32 or more requester clients.

0

10

20

30

40

50

60

70

80

90

100

0

5000

10000

15000

20000

25000

30000

0 50 100 150 200

R
o

u
n

d
 t

ri
p

/s

Requester clients

20K NP

Msg rate

Client CPU

QM CPU

Page 4

The graph below shows how the MQ QM performs for a 200K message size.

Figure 3 - 200K Non Persistent

The above graph again shows that we are limited by the network when the throughput has reached

over 2,700 round trips/s from 16 threads and the QM CPU is barely over 10% utlilised.

0

10

20

30

40

50

60

70

80

90

100

0

500

1000

1500

2000

2500

3000

0 50 100 150 200

R
o

u
n

d
 t

ri
p

/s

Requester clients

200K NP

Msg rate

Client CPU

QM CPU

Page 5

Persistent Results

The graph below shows how the MQ QM performs for a 2K message size.

Figure 4 - 2K Persistent

The above graph shows that the QM can achieve a peak throughput of nearly 35,000 round trips/s
until we saturate all of the CPU available to the QM which has a CPU limit of 32 cores.

0

10

20

30

40

50

60

70

80

90

100

0

5000

10000

15000

20000

25000

30000

35000

40000

0 100 200 300 400 500

R
o

u
n

d
 t

ri
p

/s

Requester clients

2K P

Msg Rate

Client CPU

QM CPU

Page 6

The graph below shows how the MQ QM performs for a 20K message size.

Figure 5 - 20K Persistent

The above graph shows that as we increase the message size to 20K, the QM CPU is no longer the
limiting factor and we are now limited by the persistence layer at over 8,000 round trips/sec

0

10

20

30

40

50

60

70

80

90

100

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 50 100 150 200

R
o

u
n

d
 t

ri
p

/s

Requester clients

20K P

Msg rate

Client CPU

QM CPU

Page 7

The graph below shows how the MQ QM performs for a 200K message size.

Figure 6 - 200K Persistent

The above graph again shows that we are again limited by the persistence layer when the throughput

has reached over 800 round trips/s and the QM CPU is less than 10% utlilised.

0

10

20

30

40

50

60

70

80

90

100

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200

R
o

u
n

d
 t

ri
p

/s

Requester clients

200K P

Msg rate

Client CPU

QM CPU

Page 8

Scaling Results

The results presented so far have been with a CPU limit of 32 cores, which is greater than we expect
the majority of scenarios to use. To illustrate how MQ performs in the OpenShift environment with
varying levels of CPU resources, the 2K, 20K and 200K message tests have been run against the MQ
QM in multiple CPU configurations and the peak throughput noted.

The graph below shows how the MQ QM scales across varying CPU cores with a 2K message size.

Figure 7 - 2K Scaling

The chart above shows how we can support over 1,000 round trips/s at a single CPU core right up to
over 45,000 round trips/s at 32 CPU cores for Non Persistent messaging. For Persistent messaging the
respective values are approximately 700 and 35,000 round trips/s.

The graph below shows how the MQ QM scales across varying CPU cores with a 20K message size.

0

10000

20000

30000

40000

50000

60000

0 4 8 12 16 20 24 28 32

R
o

u
n

d
 t

ri
p

/s

CPU Cores (Limit)

2K Message Scaling

2K NP Scaling 2K P Scaling

Page 9

Figure 8 - 20K Scaling

The chart above shows how we can support 1,000 round trips/s at a single CPU core right up to over
25,000 round trips/s at 16 CPU cores for Non Persistent messaging. For Persistent messaging the
respective values are approximately 600 and 8,000 round trips/s.

The graph below shows how the MQ QM scales across varying CPU cores with a 200K message size.

0

5000

10000

15000

20000

25000

30000

0 4 8 12 16 20 24 28 32

R
o

u
n

d
 t

ri
p

/s

Cores (Limit)

20K Message Scaling

20K NP Scaling 20K P Scaling

Page 10

The chart above shows how we can support 600 round trips/s at a single CPU core right up to 2,800

round trips/s at 8 CPU cores for Non Persistent messaging. For Persistent messaging the respective
values are approximately 300 and 800 round trips/s.

Conclusions

In this whitepaper we have looked at the performance of the MQ QM in the OpenShift environment
and shown the affect of varying message size, requester clients and CPU cores have on the
performance of the QM.

This data should help you size your solutions to support your intended workload. We will be producing
further reports examining the impact of locating clients outside of the cluster and utilizing TLS to

secure the messaging payload.

0

500

1000

1500

2000

2500

3000

0 4 8 12 16 20 24 28 32

R
o

u
n

d
 t

ri
p

/s

Cores (Limit)

200K Message Scaling

200K NP Scaling 200K P Scaling

Page 11

Appendix A

Hardware specification for Worker Nodes:

System ThinkSystem SR630

CPU 2x16 Core 2.8Ghz Xeon Gold 6242 Hyperthreaded

RAM 96GB RAM RDIMM TruDDR4 2933MHz

RAID 930-16i 4GB Flash PCI 12Gb RAID Adapter

Disks 800GB SSD (2x400GB) SS530 Performance SAS 12Gbp/s

SAN Connectivity Dual Port HBA 16Gb

10GbE Network Dual Port 10GbE Broadcom Network Adapter

100GbE Network Dual Port 100GbE Mellanox ConnectX-4 Network Adapter

https://lenovopress.com/lp1049-thinksystem-sr630-server-xeon-sp-gen2

Hardware specification for Master, Infrastructure and Bootstrap nodes:

System ThinkSystem SR530

CPU 1x8 Core 2.1Ghz Xeon Silver 4208 Hyperthreaded

RAM 32GB RAM (2x16GB) RDIMM TruDDR4 2666MHz

RAID 530-8i PCI 12Gb RAID Adapter

Disks 480GB SSD (2x240GB) S4610 Mainstream SATA 6Gbp/s

10GbE Network Dual Port 10GbE Broadcom Network Adapter

https://lenovopress.com/lp1045-thinksystem-sr530-server-xeon-sp-gen2

https://lenovopress.com/lp1049-thinksystem-sr630-server-xeon-sp-gen2
https://lenovopress.com/lp1045-thinksystem-sr530-server-xeon-sp-gen2

