
Implicit syncpointing for persistent messages 

put outside of syncpoint 
 

 
In MQ v9.0.5 implicit syncpoint enables puts of persistent messages outside of syncpoint to 

perform better when there is contention for the queue. This happens when there are multiple 

applications putting to the same queue. 

 

If there are messages you can afford to lose, make them non-persistent and put and get them 

without syncpoint. For messages that you do not want to lose, make them persistent and put 

and get them inside syncpoint. MQ is optimised so that putting persistent messages inside 

syncpoint generally performs better than putting them without syncpoint. This is because the 

queue is locked for a shorter time when putting inside syncpoint, so there will be less 

contention for the queue when multiple applications are putting to the same queue. 

 

In v9.0.5, the queue manager relieves the contention problem of puts outside of syncpoint by 

optionally adding an implicit syncpoint to persistent puts of messages outside of syncpoint. 

So when your application puts a persistent message without syncpoint, the queue manager 

will actually put it under syncpoint and then commit the implicit transaction before the 

MQPUT returns. 

 

This is controlled using a new tuning parameter ImplSyncOpenOutput which you put in 

qm.ini. Here’s what I appended to the qm.ini of my queue manager…. 

 
TuningParameters: 
ImplSyncOpenOutput = 4 

 

This means that the queue manager will add an implicit syncpoint to a put when 4 

applications have the queue open for output. By default, ImplSyncOpenOutput is 2 if you 

don’t set it in qm.ini. 2 is a good default because that means that implicit syncpoint will 

always be used unless no other application has the queue open for output. If there is only one 

application putting to the queue, implicit syncpoint may go slightly slower because it requires 

2 log writes instead of 1. And if there is only one putter, there is no contention so there is no 

advantage in adding an implicit syncpoint. So that’s why ImplSyncOpenOutput defaults to 2 

and not 1. 

 

If you always want implicit syncpoint, set ImplSyncOpenOutput to 1. However there are 

some occasions when the queue manager doesn’t add an implicit syncpoint. One such 

occasion is when the application already has an active transaction, when interleaving putting 

persistent messages with and without syncpoint. But if you want to switch off implicit 

syncpoint completely, set ImplSyncOpenOutput = OFF. 

 

If you’re happy with the default value if ImplSyncOpenOutput, there’s no need to set it in 

qm.ini, in which case you’ll get an implicit syncpoint whenever multiple applications are 

putting to the same queue. So you’ll enjoy the improved performance by doing nothing 

except upgrading to v9.0.5. 

 



Performance data to show the benefit of implicit syncpoint 

 

Figure 1 shows results for tests where 10 queues pairs are utilised, with an increasing number 

of requester applications running, processing 2KiB messages. When there is only one 

application, there will never be another MQPUT being processed alongside that of 

application 1, so there is little difference between executing the MQPUT inside, or outside of 

syncpoint, in the application. Once we add more MQ applications, the benefits of using 

syncpoints become evident, particularly with a higher latency filesystem, as MQPUTs outside 

of syncpoint will lock the queue while the log record is synchronously forced to disk. Using 

syncpoints reduces contention with the added benefit that other applications can write into the 

log buffer, resulting in more aggregation of log data, in a single write. With V9.0.5, implicit 

syncpointing reduces lock contention, matching the performance of the explicit syncpoint 

scenario. 

 

 
Figure 1 

 

Figure 2 shows the effect of reducing queue locking by spreading the load across a number of 

queue pairs (REQUEST Q/REPLY Q). All tests use 60 requester applications. When the 

workload is driven through a single pair of queues, the non-syncpoint case has a low 

throughput (not much better than the test using 1 requester in chart 1), as each MQPUT 

queues up behind the previous one to that queue, with a forced log write being executed 

within the scope of the queue lock. Using syncpoints alleviates this issue, allowing for more 

concurrency. As we increase the number of queue pairs, the locking becomes less of an issue, 

until, at 60 pairs of queues, where there are only 2 requester applications per queue pair, the 

non-syncpoint case is not much less than using syncpoints. Once again, the V.9.0.5 test case, 

with PUTs outside of syncpoints matches the explicit syncpoint scenario. 



 
Figure 2 

 

The test case run was a round-trip scenario, where a putter application puts a message onto 

Q1, a getter application gets the message from Q1 and puts a reply message onto Q2, and 

then the original putter application retrieves the reply. This test was run with the initial PUT 

of the message by the putter application being inside syncpoint (run on V9.0.5, but the 

performance of this test is similar to its equivalent on V9.0.4), and outside of syncpoint (run 

for V9.0.4 & V9.0.5 with the new implicit syncpoint functionality). All tests have the MQ 

transaction log hosted on a SAN mount point. 

 

Round trip case 1 (requester application PUTs inside syncpoint) 

Requester Application(s) 

PUT (inside syncpoint) -> Q1 

GET (inside syncpoint) <- Q2 

Responder Application(s) 

GET/PUT (inside syncpoint) <- Q1 -> Q2 

Round trip case 2 (requester application PUTs outside of syncpoint) 

Requester Application(s) 

PUT (outside of syncpoint) -> Q1 

GET (inside syncpoint) <- Q2 

Responder Application(s) 

GET/PUT (inside syncpoint) <- Q1 -> Q2 

 


