
1

IBM MQ Performance: Best Practises, and tuning.

Version 1.0 - March 2019

Paul Harris

IBM MQ Performance

IBM UK Laboratories

Hursley Park

Winchester

Hampshire

2

1 Notices
Please take Note!

Before using this report, please be sure to read the paragraphs on “disclaimers”,

“warranty and liability exclusion”, “errors and omissions”, and the other general

information paragraphs in the "Notices" section below.

First Edition, March 2019.

© Copyright International Business Machines Corporation 2019. All rights reserved.

Note to U.S. Government Users

Documentation related to restricted rights.

Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule

contract with IBM Corp.

DISCLAIMERS

The performance data contained in this report was measured in a controlled

environment. Results obtained in other environments may vary significantly.

You should not assume that the information contained in this report has been

submitted to any formal testing by IBM.

Any use of this information and implementation of any of the techniques are the

responsibility of the licensed user. Much depends on the ability of the licensed user to

evaluate the data and to project the results into their own operational environment.

WARRANTY AND LIABILITY EXCLUSION

The following paragraph does not apply to the United Kingdom or any other country

where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION

“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-

INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain

transactions, therefore this statement may not apply to you.

In Germany and Austria, notwithstanding the above exclusions, IBM's warranty and
liability are governed only by the respective terms applicable for Germany and Austria

in the corresponding IBM program license agreement(s).

3

ERRORS AND OMISSIONS

The information set forth in this report could include technical inaccuracies or

typographical errors. Changes are periodically made to the information herein; any
such change will be incorporated in new editions of the information. IBM may make

improvements and/or changes in the product(s) and/or the program(s) described in

this information at any time and without notice.

INTENDED AUDIENCE

This paper is intended for architects, systems programmers, analysts and
programmers wanting to understand the performance characteristics, and best

practises of IBM MQ. The information is not intended as the specification of any
programming interface that is provided by IBM. It is assumed that the reader is

familiar with the concepts and operation of IBM MQ.

LOCAL AVAILABILITY

References in this report to IBM products or programs do not imply that IBM intends to
make these available in all countries in which IBM operates. Consult your local IBM

representative for information on the products and services currently available in your

area.

ALTERNATIVE PRODUCTS AND SERVICES

Any reference to an IBM product, program, or service is not intended to state or imply

that only that IBM product, program, or service may be used. Any functionally

equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to evaluate

and verify the operation of any non-IBM product, program, or service.

USE OF INFORMATION PROVIDED BY YOU

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

TRADEMARKS AND SERVICE MARKS

The following terms used in this publication are trademarks of their respective

companies in the United States, other countries or both:

- IBM Corporation : IBM

- Oracle Corporation : Java

Other company, product, and service names may be trademarks or service marks of

others.

EXPORT REGULATIONS

You agree to comply with all applicable export and import laws and regulations.

4

2 Contents

1 Notices .. 2

2 Contents .. 4

3 Introduction.. 6

4 Planning for Performance .. 7

4.1 Persistence, High Availability, & Disaster Recovery 7

4.2 Latency .. 8

4.2.1 Concurrency ... 8

4.2.2 Batching .. 8

4.3 Bandwidth .. 9

4.4 Slow Networks ... 9

4.4.1 Many disparate clients communicating infrequently10

4.4.2 High message rate to/from a client machine ...10

4.4.3 Communicating between regions ..10

4.4.4 Optimising QM to QM channel communication11

4.5 Ultra-High Message Rates ...11

4.6 Maximising the throughput of a single queue..11

4.6.2 Adding queues to increase throughput ...12

4.6.3 Transparent Scalability ..13

4.6.4 Scaling across machines & queue managers ...13

4.6.5 Clustering ...13

4.6.6 Scaling across queues ...14

4.7 Testing for Performance ...15

4.7.1 It’s a dress rehearsal, not an audition ..15

4.7.2 Know your tools ...16

4.7.3 When it doesn’t work, simplify ..16

4.7.4 Test your environment ..17

4.8 Memory Requirements. ..17

5 How Am I Constrained? ...18

5.1 Disk Contention ..18

5.2 CPU Saturation ...19

5.3 Queue Lock Contention ..20

5.4 Network Saturation ...21

5.5 Channel Saturation ..22

5

6 Tuning Recommendations ..24

6.1 Tuning The Queue Manager...24

6.1.1 Queue disk, log disk, and message persistence24

6.1.2 Channels: process or thread, standard or fastpath?28

6.2 Applications: Design and Configuration ...29

6.2.1 Standard (shared or isolated) or fastpath? ..29

6.2.2 Parallelism, batching, and triggering ..29

6.3 Virtual Memory, Real Memory, & Paging ..30

6.3.1 BufferLength ...30

6.3.2 MQIBindType ..31

6.3.3 Paging ...31

7 Appendix D Glossary of terms used in this report ...34

8 Appendix E – Additional Resources...35

6

3 Introduction

This paper is a consolidation of the material previously presented in MQ performance

reports on best practises and tuning.

It is intended to be used as a guide by systems programmers, and MQ application

designers setting up, and running applications using IBM MQ.

Version one (March 2019) is largely the general sections from the V8 MQ on Linux

performance report, which have not been included in the V9.1 performance report, as

this document will be maintained alongside future performance reports.

7

4 Planning for Performance

There are many things that need to be taken into account when planning an MQ

infrastructure. Often, performance considerations end up being given a lower priority

than those of security, integrity, and even application transparency. While this is often

correct (particularly in the cases of security and integrity), it’s important to bear in mind

that many techniques used to mitigate these concerns, if not implemented carefully, can

have a negative impact on the performance of the system. In some cases, we have even

seen situations where the performance of a system becomes severely degraded,

rendering it unusable for the task it was designed to perform. However, with careful

planning in advance, it should be possible to design a system that performs sufficiently,

while being secure, scalable, transparent, and highly available.

This section illustrates some common pitfalls and best practices that should be adhered

to when designing and testing an MQ infrastructure for performance.

4.1 Persistence, High Availability, & Disaster Recovery

Using persistent messaging will slow a system down. Because of this, implementations

using persistent messages and high availability are some of the most common scenarios

where performance issues arise. Avoiding these issues involves careful planning in

advance, but can be achieved.

The first step that should always be taken is to establish whether and where persistence

is actually needed. Some things to consider:

• MQ logging protects the integrity of data in transit, so that it can be recovered in
the event of a failure. It is not designed to act as a historical database for audit or

any other purposes.

• Since recovery often takes some time to complete in the event of a failure, it’s
probably not worth logging information that expires (loses its relevance) quickly.

• In a well-designed system, failures should be rare. If the in-flight information
could be reconstructed and re-sent with relative ease, then this may be a

preferable to logging all messages, the vast majority of which will arrive at their

destination without incident. In particular, if client applications already have
disaster-recovery logic built-in, then it may be possible to switch off persistence

with no loss of integrity, and no additional work required.

If persistence is definitely required, then in addition to the basic recommendations given

in section 5.1, there are a number of things to consider when designing an MQ

architecture.

Persistence can impact performance in two ways:

1. High latency - how long it takes for a filesystem write operation to return

2. Low bandwidth - the maximum data-rate that can be achieved on the file-system

8

4.2 Latency

The latency of a filesystem will depend on the level of integrity it has, with the most

robust set-ups generally suffering the most.

• For local persistent messaging, latency occurs due to the time taken to write logs

to the disk, or its battery-backed cache. SAN systems may be able to ensure
integrity before the data is synced to disk, but will instead have latency caused by

the time taken to communicate with the SAN host.

• For highly-available persistent infrastructures (multi-instance), the requirement
for networked file-systems introduces an additional latency in communicating

with the filesystem host.
• Finally, in full disaster-recovery situations, file-systems may be synchronously

replicated to a second data-centre, often geographically distant from the first.

This additional network communication and disk write must be waited for before
the write operation completes.

In all cases, there are 2 techniques that can be used to overcome latency:

1. Concurrency – running multiple application threads in parallel.
2. Batching – reducing the number of write operations each application thread

performs.

4.2.1 Concurrency

All persistent messaging operations should be done inside syncpoint, this delays forcing

messages to disk until MQCMIT is called by the application. If multiple applications are

accessing a queue manager concurrently, this may allow the disk writes of several

applications to be grouped together into a single operation, thus reducing the number of

writes required.

From a client perspective, having multiple applications also means that one application

can be making use of other resources (such as CPU) while another is waiting on a disk

write.

4.2.2 Batching

As well as doing all persistent messaging inside syncpoint, it may be possible for

applications to perform several messaging operations before each call to MQCMIT, thus

reducing the number of write operations each thread requires.

• Responder type applications may be able to get their request and put their

response inside the same syncpoint. This is how the MQI responders used to

gather the results in this report are designed to work.
• Batch processing applications may be able to process multiple records before

each MQCMIT. The time taken to reprocess a batch in the event of a failure
should be weighed up against the likelihood of failure.

In more complex infrastructures, involving queue manager to queue manager

communication (distributed queueing and clustering), one can also increase the batch

9

size on sender/receiver channels to the same effect, using the BATCHSZ configuration

parameter.

It’s worth noting that if a disk system (particularly a networked filesystem) is unreliable,

then batching may have the opposite effect. Increasing the size of write packets may

make the write more likely to fail, requiring the operation to be repeated, and thus

increasing the total number of writes.

4.3 Bandwidth

A bottleneck in I/O bandwidth can only be mitigated by increasing hardware capacity.

It’s important to first establish which aspect of the I/O subsystem might be constrained.

It could be the disks themselves, in which case adding more disks in a RAID5 array may

help. Where possible, upgrading the constrained component to a higher-capacity

alternative should help.

When it’s not feasible to upgrade a component further, it’s likely that the logs will need

to be split, which will require using multiple queue managers (see section 4.6.4). How

this split is implemented will depend on which aspect of the I/O system is constrained.

Some possibilities:

• The local file-system on the file-system host – put the logs for each QM in a
directory on a separate disk or RAID device.

• For networked filesystems, other physical constraints (CPU, RAM, network) on the

file-system host – put the logs for each QM in a different remote file-system,
hosted on different machines.

• For networked filesystems, network bandwidth on the queue manager host – put
each QM on a separate machine.

• Synchronous data replication – any of the above, synchronising each QMs log

directory with a different destination.

4.4 Slow Networks

When using MQ over slow or unreliable networks, such as satellite links and the Internet,

some additional design considerations may be beneficial in achieving optimal

performance. If network bandwidth is contended, and there are spare CPU cycles

available on the source and destination machines, then it may be possible to obtain

higher throughput by utilising header compression (COMPHDR)a and data compression

(COMPMSG)b.

Aside from this, it may be possible to adjust the architecture of an MQ infrastructure to

make most efficient use of the network. We’ll consider a number of scenarios, and some

possible techniques to increase throughput.

a www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.ref.con.doc/q081880_.htm
b www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.ref.con.doc/q081840_.htm

https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.ref.con.doc/q081880_.htm
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.ref.con.doc/q081840_.htm

10

4.4.1 Many disparate clients communicating infrequently

In this scenario, a large number of clients, all from different places on the network,

connect to a queue manager, and send or receive messages at a relatively low rate. As

such, there’s no constraint on the network path between the queue manager and any

one of these clients, but together these clients put a strain on the network interface of

the QM host.

If messages are small, it could be that, although the total data flowing to and from the

host is within the supposed bandwidth of the network interface, the sheer number of

networking operations cannot be processed fast enough. If this is the case, one possible

solution is to introduce a number of “satellite” queue managers in different locations.

Clients connect to the satellite that is “closest” to it (in terms of network topology),

which then forwards communication to the main QM. Following the advice in section

4.4.4 then allows us to optimise the connections between the satellites and the main

host, reducing the number of networking operations performed.

If raw data bandwidth is constrained, there’s often very little that can be done here from

a design perspective; ensuring that host’s network interface has enough capacity for the

desired message rate is probably the simplest solution (see section 5.4). You should also

ensure that the IP layer is tuned optimally. If this is not feasible, then the workload will

need to be split across multiple machines. See section 4.6.4 for tips on how this can be

achieved.

4.4.2 High message rate to/from a client machine

It may be that certain machines in the infrastructure will have large volumes of

communication with one or more QMs elsewhere on the network. This could either be

one application messaging at a high rate, or a number of applications all on the same

machine. Examples could include application or web servers, databases, or mainframes.

In this situation, it may be advantageous to host an additional QM on such machines,

and connect it to target QMs by making it part of a cluster, or adding distributed queuing

channels. Applications then connect to this QM using local bindings, and communication

can be optimised by tuning the sender/receiver channels to the target QMs (see section

4.4.4 - Optimising QM to QM channel communication). This solution has the added

advantage that the MQ messaging operations performed by the applications will

complete as soon as the message is queued on the local QM; they are then free to

continue working without having to wait for a slow network communication to complete.

4.4.3 Communicating between regions

Often it may be the case that an MQ infrastructure spans multiple regions or geographic

locations. The network within each of these regions may be fast and reliable, while

communication between regions is less so, possibly travelling over the Internet. It may

help for MQ inter-region messaging to be amalgamated by one or more “gateway” QMs

in each region. Applications connect to their local gateway, which then handles sending

messages to other regions using distributed queueing or clustering. These channels of

11

communication are then open to optimisation by the techniques mentioned in section

4.4.4.

4.4.4 Optimising QM to QM channel communication

For communication between queue managers, there are a number of things that can be

done administratively to improve performance:

• Adjusting the BATCHSZ, BATCHINT, and NPMSPEED parameters of the channel

definitions
– see www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.ref.con.doc/q081660_.htm

• Setting PipeLineLength=2 in the CHANNELS stanza of the QM’s qm.ini file

– see www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.ref.con.doc/q080700_.htm
• Using multiple channels – see section 5.5

Please note, however, that the finaloption may result in messages arriving on their

destination queues in a different order than they were originally put. If message ordering

must be maintained, then while multiple channels may still be used, each subset of

messages that must keep their order (e.g. all those from the same client application)

must be configured to use the same channel for communication.

4.5 Ultra-High Message Rates

If other hardware factors (such as network and I/O) are not the constraint, but message

rates are very high, then eventually the maximum rate at which messaging operations

can be performed on a single queue will be reached. The exact rate achievable in a set-

up will depend on several factors, including the pattern in which messages are put/got,

the type of message selection, if any, and the size of messages. This limitation occurs

because certain parts of most messaging operations require exclusive access to certain

data about the queue. We call this “queue lock” (see section 5.3).

Queue lock can be mitigated in certain ways by upgrading hardware capacity and

altering the configuration of the queue manager:

• Faster processor cores (or more exclusive access to them by MQ) may often help,

but more cores often won’t, unless there is other work being done by the machine

that can be offloaded onto these additional engines.
• If queue buffers are already occupying all the available physical memory on the

machine (see section 6.1.1.1), then adding more RAM may help. However, it
would be advisable to reconsider the design of the infrastructure, as MQ performs

best with short queues: it is not intended to be used as a message store, except

for brief periods in exceptional circumstances.

4.6 Maximising the throughput of a single queue

There are several measures that can be taken to ensure that a queue operates as

efficiently as possible.

4.6.1.1 Ensure there are “waiting getters”

If an application requesting to get a message off of a queue makes this request before a

suitable message arrives, then when one does arrive, it is passed straight to the waiting

https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.ref.con.doc/q081660_.htm
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.ref.con.doc/q080700_.htm

12

application without being written to the queue. As well as reducing the total path length

required in handling the message, this has the added advantage that the getting

application doesn’t have to take the queue lock; all required data are updated by the

application that puts the message on the queue, so less expensive lock negotiation is

required. This only applies to messages outside of syncpoint control.

Unless it is necessary to process all messages from a queue in a single thread (for order

integrity reasons), it is therefore advantageous to have a number of application threads

receiving messages from a queue. It is far better to have “too many” (applications

waiting in MQGET and not ever doing anything) than too few (messages waiting on a

queue for getters to become available).

4.6.1.2 Be selective about message selection

Sometimes, receiving applications may only be interested in a subset of the messages

that might appear on a queue. MQ caters for this with message selection. However,

message selection can dramatically increase the amount of time a receiving application

spends browsing a queue, holding the queue lock, and thus preventing other applications

from accessing it.

If message selection can instead be replaced by putting different categories of message

to different queues, such that receiving applications can get messages from a queue in

an indifferent manner, then this should be preferred. It is often easier to make this

design decision in the first place, rather than trying to retro-fit it to an infrastructure

that’s become overloaded, especially since the performance impact of having additional

queues is minimal.

If message selection must be used, try to rely mainly on MQ’s built in Correlation ID

field. Selection by Correlation ID has been optimised within the queue manager, so that

getters spend far less time than usual finding a suitable message. It also allows for the

advantages afforded to “waiting getters”, as described in section 4.6.1.1.

4.6.2 Adding queues to increase throughput

The current trend for hardware, or cloud-based systems, to get wider (more cores)

rather than taller (faster cores) means can you cannot rely on hardware upgrades to

satisfy future increases in demand on your MQ infrastructure. Once the throughput limit

of a queue has been reached, there is little that can be done to increase capacity further.

It is therefore important to design systems and applications where high demand is

anticipated to be able to use multiple queues if necessary. Splitting messages by their

purpose, as described in 4.6.1.2, is probably the first option that should be considered.

If the purpose (or “topic”) of messages that an application will produce or consume is

not known in advance, or if the distinction between message purposes is complex, then

using publish-subscribe messaging, rather than simple queueing, may be advantageous.

Then, messages of different topics can be optimised administratively in MQ, and

consuming applications can still share the workload of a particular topic by attaching

them to the subscriber queue of a single administrative subscription object.

13

Furthermore, it may be possible to reorganise the topic space to handle increased

demand without requiring a change to the applications.

Beyond these options, scaling a system across multiple queues transparently (without

the need to manually assign queues to applications) is difficult, but can be achieved in

certain ways (see section 4.6.6).

4.6.3 Transparent Scalability

Designing an MQ infrastructure that scales to accommodate future (or present) demand

is something that needs careful planning from the beginning. The hardware factors that

normally constrain MQ infrastructures (disks and network) are often infeasible to

upgrade further (make faster), and adding more of them to split workload presents

administrative challenges. Traditional methods of load-balancing networked

communication by using intermediaries is often not feasible when the assured delivery

guarantees that MQ makes are required: the contention just shifts from the original

servers to the load-balancer.

When increasing demand requires additional instances of the objects involved in an

infrastructure (machines, queue managers, queues), as discussed in the previous

sections of this chapter, it is often desirable to do this in the most transparent way

possible. Briefly, we’ll discuss some of the available techniques to do this, requiring the

smallest possible change to the peripheral parts of a network, and instead focusing

alterations on the core, so that changes can be administered in as few places as

possible.

4.6.4 Scaling across machines & queue managers

From the perspective of an MQ client, there is little distinction between a queue manager

and the machine it’s hosted on. Hence, this section will cover options for scaling across

either as of they were the same thing.

4.6.5 Clustering

One technique that’s often attempted to achieve transparent scalability is to put the

relevant queues and queue managers into an MQ cluster. The hope is that then the

demands on networking or I/O will be spread across all the machines and log file-

systems involved in the cluster, and allow additional capacity to be added simply by

adding more queue managers to the cluster.

This can certainly help with relieving queue lock (see 4.6.6.1 below), or CPU contention

caused by heavy processing of messages by locally-bound receiving applications. It can

also relieve the load placed on systems by MQ itself, but only if application connections

are spread across the queue managers in the cluster. Having all input applications

connect to a single “gateway” queue manager, as is often desired to simplify the

configuration of applications across an organisation, simply shifts contention to this

gateway. The gateway queue manager will have the same requirements on its network

and I/O interfaces as would a single server handling all messages itself.

14

It’s also worth noting that using clusters increases the latency of messages, and often

results in a higher overall use of hardware resources than pushing the same number of

messages through a single QM (if possible). Network bandwidth is consumed for each

QM that a message passes through, and persistent messages will need to be written to

the logs of each QM they touch as well.

4.6.5.1 CCDTs and application logic

An alternative (or complement) to using a cluster is to have applications connect using a

Client Channel Definition Tablec. This allows applications to select a QM to connect to

from a defined group at connection time. Thus, application connections will be spread

across all queue managers in that group, which could be a cluster, or could just be a set

of queue managers, each having the required queues defined individually.

CCDTs are not suitable when XA distributed transactions will be involved, and may not

always result in the best balancing of workloads. For this, a small amount of application

logic, which can be redistributed across an organisation as part of a library, is probably

preferable. The 3-part IBM developerWorks article found at the following URLs discusses

these options in detail, and provides some example code:

1. www.ibm.com/developerworks/websphere/library/techarticles/1303_broadhurst/1303_broadhurst.html
2. www.ibm.com/developerworks/websphere/library/techarticles/1308_broadhurst/1308_broadhurst.html

3. www.ibm.com/developerworks/websphere/library/techarticles/1403_broadhurst/1403_broadhurst.html

4.6.6 Scaling across queues

If splitting a workload across multiple queues is sufficient to relieve contention (normally

because queue lock is the contending factor), then in addition to the techniques

mentioned in section 4.6.4 (which will work for queues by defining an instance of the

queue on multiple queue managers), a few additional options are available.

4.6.6.1 Clustering

Clustering can more easily be used to relieve queue contention than other constraints

(see section 4.6.5). Although the use of multiple queue managers is still required

(possibly all on the same machine), a single gateway queue manager can be used to

simplify application connection, provided this gateway is at MQ v7.5 or later: using

multiple cluster transmission queuesd on the gateway (i.e. one per destination QM)

allows workload to be split across multiple queues as soon as it enters the cluster.

4.6.6.2 API exits

An alternative to using a cluster to spread workload across queues is to write a small

custom MQ API Exit program. This is a piece of code attached to the queue manager that

can intercept MQI calls. For example, to could listen for calls to MQOPEN a particular

queue. When such a call is intercepted, the queue being requested is silently swapped

for an alternative from a pre-defined pool. As such, applications can all make identical

c www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.dev.doc/q027490_.htm
d www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.pla.doc/q118600_.htm

www.ibm.com/developerworks/community/blogs/messaging/entry/Multiple_cluster_tran

smission_queues_what_why_and_how?lang=en

http://www.ibm.com/developerworks/websphere/library/techarticles/1303_broadhurst/1303_broadhurst.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1308_broadhurst/1308_broadhurst.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1403_broadhurst/1403_broadhurst.html
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.dev.doc/q027490_.htm
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.pla.doc/q118600_.htm
https://www.ibm.com/developerworks/community/blogs/messaging/entry/Multiple_cluster_transmission_queues_what_why_and_how?lang=en
https://www.ibm.com/developerworks/community/blogs/messaging/entry/Multiple_cluster_transmission_queues_what_why_and_how?lang=en

15

requests to open the queue, while being transparently balanced across a number of

them.

Although this requires more work to implement than setting up a cluster, it has the

advantage that everything is done with a single queue manager, making maintenance

simpler. It also requires less hardware resource to run, will have slightly lower latency,

and since the logic of how the load balancing occurs is up to the code in the API exit, it

can be made as simple or as complex as necessary.

The details of writing API exists are beyond the scope of this document, but as a place to

start, one can study the API exit sample program, amqsaxe, and read the associated

documentation at

www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.dev.doc/q027920_.htm.

4.7 Testing for Performance

It is important to thoroughly test any new MQ infrastructure prototype for performance

before going into production. This section mentions a few best practices and common

pitfalls to avoid to make your testing more effective.

4.7.1 It’s a dress rehearsal, not an audition

Performance testing should be done in an environment as close to that of production as

possible. This means the same – or very similar – hardware, operating systems, storage

systems, network topology, bandwidth, congestion, message size, message rate,

protocol, MQ configuration, application messaging profile, etc.

It is easy to underestimate the impact small changes to configuration can have, or think

that one can “compensate” for the lack of a feature in the test environment by requiring

better-than-actual performance without it. This is usually not the case, and if an

infrastructure can perform as well as required in a test environment with a constraining

feature missing, then any further improvements may have no impact on the complete

environment. Obviously, if a cut-down environment doesn’t perform as required, then

adding a constraining factor is unlikely to improve performance, so there may be some

merit in investigating and attempting to widen the bottlenecks that already exist.

However, in some cases, apparently simpler configurations actually degrade

performance, leading to unnecessary investigations of an issue that would never have

occurred in production. Two of the most common examples of this are:

1. Persistent messaging outside of syncpoint (when it would be inside in production)

(see section 4.2.1).
2. Putting a batch of messages all at once, then getting them, or relying on message

expiry to remove them from the queue (in production, putting and getting would
happen concurrently). This prevents optimisations for “waiting getters” from

being used (see section 4.6.1.1) and could also lead to slower operation due to

having to access disks instead of memory (see section 6.1.1.1).

https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.dev.doc/q027920_.htm

16

4.7.2 Know your tools

When testing a messaging infrastructure, production applications are often swapped out

for performance-oriented simulators or “harnesses”. This is fine, but it’s important to

know how the application you’ve decided to use works. Where possible, use one of the

following:

• An IBM-produced tool, such as the freely available JMSPerfHarness e or MQ-CPH f

• An application developed in-house, designed to behave similarly to the
applications it’s simulating.

• An open-source project

With all of these, the key factor is the ability to know exactly how the application is

behaving internally. This is important, as we have discovered that many such

applications use MQ in a sub-optimal way. For instance, some tools cannot make proper

use of syncpoint transactions, which seriously impacts the performance of persistent

messaging scenarios.

4.7.3 When it doesn’t work, simplify

Despite what was said in section 4.7.1, when an infrastructure doesn’t perform as

required, your first question should not be:

 “What can I change to try to make things better?”

Instead, you should ask:

 “How can I determine what’s constraining my system?”

Often, the easiest way to do this is to start removing features of your system to see

which is acting as a bottleneck to performance. Even if those features are necessary for

functional reasons, knowing where the problem lies will help to tackle the first question

more efficiently.

For instance:

• If using persistent messaging, try non-persistent. If things don’t improve, then

the issue is not with the logging or disks, so there’s no need to investigate those.

e
www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=1c02
0fe8-4efb-4d70-afb7-0f561120c2aa

f

www.ibm.com/developerworks/community/blogs/messaging/entry/MQ_C_Performance_

Harness_Released_on_GitHub?lang=en

http://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=1c020fe8-4efb-4d70-afb7-0f561120c2aa
http://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=1c020fe8-4efb-4d70-afb7-0f561120c2aa
https://www.ibm.com/developerworks/community/blogs/messaging/entry/MQ_C_Performance_Harness_Released_on_GitHub?lang=en
https://www.ibm.com/developerworks/community/blogs/messaging/entry/MQ_C_Performance_Harness_Released_on_GitHub?lang=en

17

• If using networked file-systems, switch to local disks. If an improvement is seen,
then the problem likely lies in the latency or bandwidth of the networked file-

system.
• If using a cluster, drop back to a single QM. If performance divided by the

number of QMs improves dramatically, then something about the cluster

configuration is holding the system back.

Keeping detailed, comparable records of how your system performs in various

configurations can often help lead to a swifter resolution in the event that IBM assistance

is needed.

4.7.4 Test your environment

When trying to establish the cause of a problem, it often helps to know how the

performance of MQ compares to the theoretical limits of the system on which it’s

running. Stress and latency testing tools exist for CPU, I/O, and networking on most

operating systems. These should be used to test all aspects of an infrastructure before

you waste time trying to “tune” your way out of a hardware limitation.

4.8 Memory Requirements.

The memory requirements of MQ are heavily dependent on the nature of the workload

and the objects defined to the queue manager. Modern server class machines should not

encounter memory constraints but injudicious setting of very large queue buffers across

multiple heavily used queues might cause a problem, for instance.

Monitor your system to ensure that you are not paging. Paging out of memory is not

necessarily a problem, but does indicate that the system is nearing memory exhaustion.

Once the ‘working set’ of the system (i.e. the pages of allocated memory that are

frequently accessed) exceeds the physical memory available then performance will be

significantly impacted.

Factors affecting memory use of MQ:

• Number of objects in use on the queue manager
• Number of client channels attached to the queue manager

• Queue depth, up to the buffer size for each queue

18

5 How Am I Constrained?

A common question that is often asked of the MQ Performance team is:

 “What is limiting my messaging rate?”

Understanding what might be restricting your messaging rate can help to improve your

messaging performance (by eliminating or reducing the constriction) or provide

information to assist in planning future migration/expansion of your messaging

infrastructure.

5.1 Disk Contention

For persistent messaging the likely reason that you are limited is due to the performance

of the disk subsystem. This could be due to the raw speed (or lack of it) of the disk

system, disk configuration, configuration of MQ logging or other system usage of the

disk subsystem.

Use this checklist to assist in checking your disk contention:

• Increase the number of producers/consumers to increase concurrent messaging

workload
• Use disk tools (iostat/TaskManager) to determine disk utilisation and increase

speed/capacity/cache size as required to provide increased disk capacity
• Check other processes are not utilising the same disk systems

• Check log configuration

(http://www.ibm.com/developerworks/websphere/library/techarticles/0712_dunn
/0712_dunn.html)

It can often be useful to run a simple scenario (put/get across single queue) to

understand the typical maximum persistent throughput through your disk system before

deploying a more complex production scenario.

This test from a locally bound request/responder scenario (MQ V8), illustrates the

maximum throughput across a pair of request/reply queues on the server hardware

under test.

19

FIGURE 1 - PERFORMANCE RESULTS FOR MQI LOCAL BINDINGS (2KB PERSISTENT)

Here are some suggestions to consider when looking to improve persistent performance:

• Use fast disk sub-systems

• Locate log file on its own filesystem/disk
• Use battery-backed write back cache where possible

• Use circular logs unless linear logs are required for auditing/recovery

• Send/receive messages within syncpoint
• Use separate queues for persistent and non-persistent workloads

• Use separate channels for persistent and non-persistent workloads
• Use separate queues for out-of-band message sizes

5.2 CPU Saturation

For any type of messaging, if you have saturated the CPU, there is often little you can do

to increase performance without changing hardware (or allocating more Cores in an

LPAR/VM environment). Most operating systems provide a simple way of monitoring CPU

usage (vmstat/top/TaskManager). If MQ processes are shown as the highest CPU

consumers, it is likely that you have encountered the messaging limit on this piece of

hardware.

It is possible that a badly performing application can utilise large amounts of CPU whilst

interoperating with MQ (i.e. constantly polling the QM, or simply performing extensive

business logic), and you would likely see non-MQ applications high on the list of CPU

consumers. These processes should be investigated to determine if their behaviour is

expected.

0

10

20

30

40

50

60

70

80

90

100

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

1 5 9 13 17 21 25 29 33 37 41

C
P

U
%

R
o

u
n

d
 T

ri
p

s
/s

e
c

Requester Connections

MQI Local Bindings (2KB Persistent) : RR-1

V8.0GM round trips/sec

V8.0GM CPU%

S

20

There are also a number of strategies to help reduce CPU when developing your MQ

applications:

• Don’t poll the QM and use sensible timeouts when receiving messages from MQ
• MQ performs optimally when the queue depth is 0 and there are consumers

waiting to consume messages that are delivered to that queue
• Use FASTPATH channels/applications where there is no (or low) risk of QM

corruption

5.3 Queue Lock Contention

There can be scenarios where you cannot use all of the CPU available and increasing the

numbers of producers/consumers has no affect. If the scenario is only using a single or

small number of queues, you may find that you are encountering queue lock. This can

occur in scenarios where extremely high messaging throughput is distributed across a

small set of queues You can see how this scenario is encountered in the non-persistent

version of the request/responder scenario (peaking at just over 120,000 messages/sec

across a pair of request/reply queues):

FIGURE 2 - PERFORMANCE RESULTS FOR MQI LOCAL BINDINGS (2KB NON-PERSISTENT)

Queue lock contention is more likely to manifest itself on machines with more cores due

to the single-threaded nature of the bottleneck.

To confirm that you are encountering queue lock and not an effect of your client

applications or QM configuration, the ‘MQ Local Queue Manager Debug Utility’

(amqldmpa) tool can identify this behaviour:

0

10

20

30

40

50

60

70

80

90

100

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

1 7 13 19 25 31 37 43 49

C
P

U
%

R
o

u
n

d
 T

ri
p

s
/s

e
c

Requester Connections

MQI Local Bindings (2KB Non-persistent) : RR-1

V8.0GM round trips/sec

V8.0GM CPU%

S

21

amqldmpa -m <QM Name> -q <Q Name> -s <interval secs> -n <interval count> -f

<output file> -c A -d 3

i.e. amqldmpa –M QMTEST –q INPUTQ –s 10 –n 6 –f C:\ldmpa.out –c A –d 3

From the ldmpa output, check the following values during the period of collection:

 hmtx.RequestCount 102954894

 hmtx.WaitCount 22227930

The WaitCount, as its name suggests, is the number of times that access to the queue

was initially denied and a thread had to wait before processing its work. As soon as this

value reaches 10% (or higher) of the RequestCount, application performance will start to

suffer. Distributing this work over a set of queues would alleviate this contention.

5.4 Network Saturation

Network saturation can be diagnosed by the use of monitoring tools such as

dstat/TaskManager. If these tools show that you are encroaching on the bandwidth limits

of the network, you may need to increase your networking capacity to 1Gb/10Gb/40Gb

as appropriate or add additional network cards.

If you do not have access to these tools or direct access to the hardware, you can

calculate approximate messaging limits for a requester/responder scenario with local

responders given your networking environment. We can estimate how many 20KB

messages we can flow through a scenario per second in a 10Gb environment with a

remote producer and local consumerg:

g This calculation assumes an operational limit of 80% of the nominal bandwidth of the

network adapter. The achievable throughput is limited by additional transport layer

overheads and will vary by platform and network adapter.

10 Gigabit network = 10 x 1024 * 1024 * 1024

 = 10,737,418,240 bits

 / 8 = 1,342,177,280 bytes

 * 80% = ~ 1,073,741,824 bytes (approx maximum switch

throughput)

/ 20680 = ~ 51,922 msg (each message approx 20480 +

200 byte hdr)

22

FIGURE 3 - PERFORMANCE RESULTS FOR MQI CLIENT BINDINGS (20KB NON-PERSISTENT)

Note that most switches support full duplex mode so the stated switch capacity is for

each direction at the network level; if the consumers were located remotely, then the

maximum theoretical throughput as calculated above would need to be halved since

network traffic has been doubled.

5.5 Channel Saturation

Channel saturation can occur when high throughput messaging takes place between two

Queue Managers connected by a single (or small) number of channels. To determine if

you are approaching channel saturation, use the technique in section 5.3 to evaluate the

wait for the queue lock of the transmission queue.

Some things to try before adding additional channels:

• Increase batch size to reduce the ratio of acknowledgement flows to transmitted

messages.

• Use channel attribute NPMSPEED=FAST for non-persistent messaging to transfer
messages without the use of transactions.

If you are sending a mix of message sizes, you might consider sending very large

messages on their own channel to avoid incurring any delays in the transmission of the

smaller size messages.

If you find that you are encountering channel saturation, adding more channels can

provide increased performance. Figure 4 below shows a 2KB distributed queuing non-

0

10

20

30

40

50

60

70

80

90

100

0

10,000

20,000

30,000

40,000

50,000

60,000

1 7 13 19 25 31 37 43 49 55 61 67

C
P

U
%

R
o

u
n

d
 T

ri
p

s
/s

e
c

Requester Connections

MQI Client Bindings (20KB Non-persistent) : RR-2

V8.0GM round trips/sec

V8.0GM CPU%

SP SP

23

persistent test (MQ V8), when using a single and 10 channel configuration. It can be

seen that in this case the use of multiple server channels enabled MQ to process

significantly more messages and more fully utilise the server CPU.

FIGURE 4 - SINGLE CHANNEL VS MULTI CHANNEL DISTRIBUTED QUEUING

Multiple server channels are not a panacea in distributed queuing however. In our test

environment they did not provide a significant benefit for persistent messaging as the i/o

subsystem was already the bottleneck in that case. Larger message sizes did not gain as

significantly either (another reason to consider the separation of messages across

different channels based on message size)

1 Channel, 43,767/sec

10 Channels, 166,111/sec

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

P
e

a
k

 T
h

ro
u

g
h

p
u

t
(r

o
u

n
d

 t
ri

p
s

/s
e

c
)

Single Vs Multiple Channel Distributed Queueing

SD SD

24

6 Tuning Recommendations

6.1 Tuning The Queue Manager

This section highlights the tuning activities that are known to give performance benefits

for MQ

V8.0. Note that the following tuning recommendations may not necessarily need to be

applied, especially if the message throughput and/or response time of the queue

manager system already meets the required level.

Some tuning recommendations that follow may degrade the performance of a previously

balanced system if applied inappropriately. Carefully monitor the results of tuning the

queue manager to be satisfied that there have been no adverse effects.

Customers should test that any changes have not used excessive real resources in their

environment and make only essential changes. For example, allocating several

megabytes for multiple queues reduces the amount of shared and virtual memory

available for other subsystems, as well as over committing real storage.

If several changes are to be made, it would be prudent to test the impact of each change

individually. This allows one to establish exactly which changes are providing a benefit

(some may even degrade performance), which may also in turn provide useful

information about how the system is constrained, and so how it may be improved

further.

Note: The ‘TuningParameters’ stanza in the queue manager’s qm.ini, or the MQ

installation’s mq.ini, is not a documented external interface and may be

changed or be removed in future releases.

6.1.1 Queue disk, log disk, and message persistence

Non-persistent messages are held in main memory, spilt to the file system as the queues

become deep and lazily written to the Queue file. Persistent messages are synchronously

written to the log and are also periodically flushed to the Queue file.

To avoid potential queue and log I/O contention due to the queue manager

simultaneously updating a queue file and log extent on the same disk, it can help if

queue files and logs are located on separate and dedicated physical devices. Storage

requirements may be fulfilled by the use of a Storage Area Network (SAN), but multiple

high volume queue managers can require different logical volumes, and potentially

individual interface pathways to avoid congestion.

25

With the queue and log disks configured in this manner, careful consideration must still

be given to

message persistence: persistent messages should only be used if the message needs to

survive a queue manager restart (forced by the administrator or as the result of a power

failure, communications failure, or hardware failure). In guaranteeing the recoverability

of persistent messages, the path length through the queue manager is significantly

longer than for a non-persistent message. This overhead does not include the additional

time for the message to be written to the log which will depend on the write speed of the

i/o device (including any caching at the hardware level).

6.1.1.1 Non-persistent and persistent queue buffer

The default non-persistent queue buffer size is 128K per queue and the default

persistent is 256K per queue for MQ on a 64-bit operating system. These can be

increased up to 100MB using the DefaultQBufferSize and DefaultPQBufferSize

parameters in the TuningParameters stanza of the qm.ini file. (For more details see

SupportPac MP01: MQSeries – Tuning Queue Limits). Increasing the queue buffer

provides the capability to absorb spikes in message throughput at the expense of real

memory. Once these queue buffers are full, the additional message data is written to the

file system that will eventually find its way to the disk (operating system buffers will be

utilised for queue files).

Defining large queue buffers is not a solution to avoiding disk I/O when the input

message rate to MQ exceeds the output rate, for whatever reason, for sustained periods.

The buffer will fill and spilling will occur.

Defining queues using large non-persistent or persistent queue buffers can degrade

performance if the system is short of real memory either because a large number of

queues have already been defined with large buffers, or for other reasons - e.g. large

number of channels defined.

Note: The queue buffers are allocated in shared storage so consideration must be given

to whether the agent process or application process has the memory

addressability for all the required shared memory segments.

Queues can be defined with different values of DefaultQBufferSize and

DefaultPQBufferSize. The value is taken from the TuningParameters stanza in use when

the queue manager was last started.

6.1.1.2 Logging

6.1.1.2.1 Log type

26

The log component is often the bottleneck when processing persistent messages.

Sufficient information is stored in the log to restart the queue manager after failure.

Both circular and linear logging are sufficient to recover from application, software, or

power failure whilst linear logging can also recover from media failure resulting in the

loss of a queue file (assuming some historical copy of the queue file exists along with the

linear logs to perform a forward recovery from that point).

Circular logging was historically preferable from a performance perspective as no time is

required to allocate and format new log extents or to delete or archive them with circular

loggingh. Performance of linear logging has been improved however, from V9.0.2 (rolled

up into V9.1) through the introduction of automatic management of log extents and

image copiesi. With these enhancements, performance is not a significant factor in

deciding between circular or linear logging.

6.1.1.2.2 Log buffer

Log records are written to the log buffer at each MQPUT and MQGET of messages outside

of syncpoint, and each MQCMIT. This information is synced onto the log disk. Periodically

the checkpoint process will decide how many of these log-file extents are in the active

log and need to be kept online for recovery purposes. Those extents no longer in the

active log are available for archiving when using linear logging or available for reuse

when using circular logging. There should be sufficient primary logs to hold the active log

plus the new log extents used until the next checkpoint, otherwise some secondary logs

are temporarily included in the log set and they have to be instantly formatted which is

an unnecessary delay when using circular logging.

The log buffer is a circular piece of main memory where the log records are

concatenated so that multiple log records can be written to the log file in a single I/O

operation. The default values used for LogBufferPages are probably suitable for most

installations. The default size of the log buffer is 512 pages with a maximum size of 4096

pages.

To optimise the throughput of large persistent messages (> 1MB) LogBufferPages could

be increased to improve the likelihood of messages only needing one I/O to get to the

disk. Environments that process under 100 small (< 10KB) persistent messages per

second can reduce the memory footprint by using smaller values like 32 pages without

impacting throughput.

Changes to the queue manager LogBufferPages stanza take effect at the next queue

manager restart. The number of pages can be changed for all subsequent queue

managers by changing the LogBufferPages parameter in the product default Log stanza.

h www.ibm.com/developerworks/websphere/techjournal/0904_mismes/0904_mismes.html

i developer.ibm.com/messaging/2018/08/28/logger-enhancements-mq-v9-0-2/

https://www.ibm.com/developerworks/websphere/techjournal/0904_mismes/0904_mismes.html
https://developer.ibm.com/messaging/2018/08/28/logger-enhancements-mq-v9-0-2/

27

6.1.1.2.3 Log files

LogFilePages (or crtmqm –lf <LogFilePages>) defines the size of one physical disk extent

(default 4096 pages). The larger the disk extent, the longer the elapsed times between

changing disk extents. It is better to have a smaller number of large extents but a long

running transaction can prevent checkpointing from efficiently freeing the disk extent for

reuse.

Larger extents reduce the frequency of log switching (permitting a greater amount of log

data to be written into one extent) and allow more time to prepare new linear logs or

recycle old circular logs (especially important for long running units of work). As an initial

target, one log extent should hold at least 10 seconds of log data streaming.

The number of LogPrimaryFiles (or. crtmqm -lp <LogPrimaryFiles>) can be configured to

a large number (the maximum number of Primary plus Secondary extents is 255 for

Windows and 511 for UNIX). For circular logging you should configure enough primary

logs to cope with expected peak load as secondary logs are formatted each time they are

used, so incur a performance penalty,

The active log set is the number of extents that are identified by the checkpoint process

as being necessary to be kept online. As additional messages are processed, more space

is taken by the active log.

As transactions complete, they enable the next checkpoint process to free up extents

that now become available for archiving with linear logging or re-use with circular

logging.

Some installation will use linear logging and not archive the redundant logs because

archiving impacts the run time performance of logging. Instead, they will periodically

(daily or twice daily) use ‘rcdmqimg’ on the main queues thus moving the ‘point of

recovery’ forward , compacting the queues, and freeing up log disk extents. This

approach prevents the continuous build-up of log extents (assuming the old ones are

deleted).

6.1.1.2.4 LogWriteIntegrity: SingleWrite or TripleWrite

The default value is TripleWrite. MQ writes log records using the TripleWrite method

because it provides full write integrity where hardware that assures write integrity is not

available.

Some hardware guarantees that, if a write operation writes a page and fails for any

reason, a subsequent read of the same page into a buffer results in each byte in the

buffer being either:

28

• The same as before the write, or

• The byte that should have been written in the write operation

On this type of hardware (for example, SSA write cache enabled), it is safe for the logger

to write log records in a single write as the hardware assures full write integrity. This

method provides the highest level of performance.

Queue manager workloads that have multiple streams asynchronously creating high

volume log records will not benefit from SingleWrite because the logger will not need to

rewrite partial pages of the log file.

Workloads that serialize on a small number of threads where the response time from an

MQGET, MQPUT, or MQCMIT inhibits the system throughput are likely to benefit from

SingleWrite and could enhance throughput by 25% but in practice, we see very few

customer deployments that have gained significantly from changing this parameter.

Measurements in this report used LogWriteIntegrity=TripleWrite

6.1.2 Channels: process or thread, standard or fastpath?

Threaded channels are used for all the measurements in this report (‘runmqlsr’, and for

server channels an MCATYPE of ‘THREAD’) the threaded listener ‘runmqlsr’ can now be

used in all scenarios with client and server channels. Additional resource savings are

available using the ‘runmqlsr’ listener rather than ‘inetd’, including a reduced

requirement on: virtual memory, number of processes, file handles, and System V IPC.

Fastpath channels can increase throughput for both non-persistent and persistent

messaging. For persistent messages, the improvement is only for the path through the

queue manager, and does not affect performance writing to the log disk.

It is not recommended to use fastpath channels when channel exits are being used as

any problem with the exit code has the potential to bring the queue manager down.

Note: Since the greater proportion of time for persistent messages is in the queue

manager writing to the log disk, the performance improvement for fastpath

channels is less apparent with persistent messages than with non-persistent

messages.

29

6.2 Applications: Design and Configuration

6.2.1 Standard (shared or isolated) or fastpath?

There are issues associated with writing and using fastpath applications—described in

the ‘MQSeries Application Programming Guide’. Although it is generally recommended

that customers use fastpath channels, it is not recommended to use fastpath

applications. If the performance gain offered by running fastpath is not achievable by

other means, it is essential that applications are rigorously tested running fastpath, and

never forcibly terminated (i.e. the application should always disconnect from the queue

manager).

6.2.2 Parallelism, batching, and triggering

An application should be designed wherever possible to have the capability to run

multiple instances or multiple threads of execution. Although the capacity of a multi-

processor (SMP) system can be fully utilised with a small number of applications using

non-persistent messages, more applications are typically required if the workload is

mainly using persistent messages. Processing messages inside syncpoint can help reduce

the amount of time the queue managers takes to write a group of persistent messages

to the log disk. The performance profile of a workload will also be subject to variability

through cycles of low and heavy message volumes, therefore a degree of

experimentation will be required to determine an optimum configuration.

Queue avoidance is a feature of the queue manager that allows messages to be passed

directly from an MQ putter to an MQ getter without the message being placed on a

queue. This feature only applies for processing messages outside of syncpoint. In

addition to improving the performance of a workload with multiple parallel applications,

the design should attempt to ensure that an application or application thread is always

available to process messages on a queue (i.e. an MQ getter), then messages outside of

syncpoint do not need to ever be physically placed on a queue.

Note that as more applications are processing messages on a single queue there is an

increasing likelihood that queue avoidance will not be maintainable. The reasons for this

have a cumulative and exponential effect, for example, when messages are being placed

on a queue quicker than they can be removed. The first effect is that messages begin to

fill the queue buffer—and MQ getters need to retrieve messages from the buffer rather

than being received directly from an MQ putter. A secondary effect is that as messages

are spilled from the buffer to the queue disk, the MQ getters must wait for the queue

manager to retrieve the message from the queue disk rather than being retrieved from

the queue buffer. While these problems can be addressed by configuring more MQ

getters (i.e. processing threads in the server application), or using a larger queue buffer,

it may not be possible to avoid a performance degradation.

Processing persistent messages inside syncpoint (i.e. in batches) can be more efficient

than outside of syncpoint. As the number of messages in the batch increases, the

average processing cost of each message decreases. For persistent messages the queue

30

manager can write the entire batch of messages to the log disk in one go whilst outside

of syncpoint control, the queue manager must wait for each message to be written to

the log before returning control to the application.

Only one log record per queue can be written to the disk per log I/O when processing

messages outside of syncpoint. This is not a bottleneck when there are a lot of different

queues being processed. When there are a small number of queues being processed by a

large number of parallel application threads, it is a bottleneck. By changing all the

messages to be processed inside syncpoint, the bottleneck is removed because multiple

log records per queue can share the same log I/O for messages processed within

syncpoint.

A typical triggered application performs in the same way as a ‘short session’ program.

The ‘runmqlsr’ program has a much smaller overhead compared to inetd of connecting to

and disconnecting from the queue manager because it does not have to create a new

process so is more suitable to triggered applications.

When programming a triggered application it may be worth exposing a disconnect

interval as an input parameter to the application program. This can provide the flexibility

to make tuning adjustments in a production environment to establish the best balance

between reducing connection costs or freeing up queue manager and operating system

resources.

6.3 Virtual Memory, Real Memory, & Paging

6.3.1 BufferLength

The amqrmppa process contains a thread per connected client. The BufferLength

parameter of the MQGET on the client application is also used to allocate a long-term

piece of storage of this size in the amqrmppa process, in which the message is held

before being retrieved by the client. If the size of the arriving messages cannot be

predicted then the application should provide a buffer than can deal with 90% of the

messages and re-drive the MQGET after return code “2080 (X'0820')

MQRC_TRUNCATED_MSG_FAILED” by providing a larger buffer for retrieving this

particular message. There is a mechanism to gradually reduce the size of the storage in

amqrmppa if the recent BufferLength size is significantly smaller than previous

BufferLength.

For messages encrypted with AMS it is advisable to set a buffer larger than the plaintext

version of the largest expected message as the encrypted form will be longer.

31

6.3.2 MQIBindType

MQIBindType=FASTPATH will cause the channel to run ‘trusted’ mode. Trusted

applications do not use a thread in the agent (amqzlaa) process. This means there is no

IPC between the channel and agent because the agent does not exist in this connection.

If the channel is run in STANDARD mode then any messages passed between the

channel and agent will use IPC memory (size = BufferSize with a maximum size of 1MB)

that is dynamically obtained and only held for the lifetime of the MQGET. Standard

channels each require an additional 80KB of memory. As the message rate increases,

there will be more IPC memory used in parallel.

6.3.3 Paging

The memory available on a machine needs to handle the peaks in throughput. It is

important to prevent the queue depths increasing if possible, especially if large queue

buffers have been set as these will occupy memory and can cause paging in the worst

circumstances.

Queue buffers will grow up to the maximum specified but do not shrink back until the

queue manager is restarted.

	1 Notices
	2 Contents
	3 Introduction
	4 Planning for Performance
	4.1 Persistence, High Availability, & Disaster Recovery
	4.2 Latency
	4.2.1 Concurrency
	4.2.2 Batching

	4.3 Bandwidth
	4.4 Slow Networks
	4.4.1 Many disparate clients communicating infrequently
	4.4.2 High message rate to/from a client machine
	4.4.3 Communicating between regions
	4.4.4 Optimising QM to QM channel communication

	4.5 Ultra-High Message Rates
	4.6 Maximising the throughput of a single queue
	4.6.1.1 Ensure there are “waiting getters”
	4.6.1.2 Be selective about message selection
	4.6.2 Adding queues to increase throughput
	4.6.3 Transparent Scalability
	4.6.4 Scaling across machines & queue managers
	4.6.5 Clustering
	4.6.5.1 CCDTs and application logic

	4.6.6 Scaling across queues
	4.6.6.1 Clustering
	4.6.6.2 API exits

	4.7 Testing for Performance
	4.7.1 It’s a dress rehearsal, not an audition
	4.7.2 Know your tools
	4.7.3 When it doesn’t work, simplify
	4.7.4 Test your environment

	4.8 Memory Requirements.

	5 How Am I Constrained?
	5.1 Disk Contention
	5.2 CPU Saturation
	5.3 Queue Lock Contention
	5.4 Network Saturation
	5.5 Channel Saturation

	6 Tuning Recommendations
	6.1 Tuning The Queue Manager
	6.1.1 Queue disk, log disk, and message persistence
	6.1.1.1 Non-persistent and persistent queue buffer
	6.1.1.2 Logging
	6.1.1.2.1 Log type
	6.1.1.2.2 Log buffer
	6.1.1.2.3 Log files
	6.1.1.2.4 LogWriteIntegrity: SingleWrite or TripleWrite

	6.1.2 Channels: process or thread, standard or fastpath?

	6.2 Applications: Design and Configuration
	6.2.1 Standard (shared or isolated) or fastpath?
	6.2.2 Parallelism, batching, and triggering

	6.3 Virtual Memory, Real Memory, & Paging
	6.3.1 BufferLength
	6.3.2 MQIBindType
	6.3.3 Paging

