
1

IBM MQ V9.4 for Linux (x86-64 platform)

Performance Report

Version 1.0 - September 2024

Paul Harris

IBM MQ Performance

IBM UK Laboratories

Hursley Park

Winchester

Hampshire

UK

2

Notices

Please take Note!

Before using this report, please be sure to read the paragraphs on “disclaimers”,

“warranty and liability exclusion”, “errors and omissions”, and the other general

information paragraphs in the "Notices" section below.

First Edition, September 2024.

This edition applies to IBM MQ V9.4 (and to all subsequent releases and modifications

until otherwise indicated in new editions).

© Copyright International Business Machines Corporation 2024. All rights reserved.

Note to U.S. Government Users

Documentation related to restricted rights.

Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule

contract with IBM Corp.

3

DISCLAIMERS

The performance data contained in this report was measured in a controlled

environment. Results obtained in other environments may vary significantly.

You should not assume that the information contained in this report has been submitted

to any formal testing by IBM.

Any use of this information and implementation of any of the techniques are the

responsibility of the licensed user. Much depends on the ability of the licensed user to

evaluate the data and to project the results into their own operational environment.

WARRANTY AND LIABILITY EXCLUSION

The following paragraph does not apply to the United Kingdom or any other country

where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION

“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-

INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain

transactions; therefore this statement may not apply to you.

In Germany and Austria, notwithstanding the above exclusions, IBM's warranty and

liability are governed only by the respective terms applicable for Germany and Austria in

the corresponding IBM program license agreement(s).

ERRORS AND OMISSIONS

The information set forth in this report could include technical inaccuracies or

typographical errors. Changes are periodically made to the information herein; any such

change will be incorporated in new editions of the information. IBM may make

improvements and/or changes in the product(s) and/or the program(s) described in this

information at any time and without notice.

INTENDED AUDIENCE

This report is intended for architects, systems programmers, analysts and programmers

wanting to understand the performance characteristics of IBM MQ V9.4. The information

is not intended as the specification of any programming interface that is provided by IBM

4

MQ. It is assumed that the reader is familiar with the concepts and operation of IBM MQ

V9.4.

LOCAL AVAILABILITY

References in this report to IBM products or programs do not imply that IBM intends to

make these available in all countries in which IBM operates. Consult your local IBM

representative for information on the products and services currently available in your

area.

ALTERNATIVE PRODUCTS AND SERVICES

Any reference to an IBM product, program, or service is not intended to state or imply

that only that IBM product, program, or service may be used. Any functionally equivalent

product, program, or service that does not infringe any IBM intellectual property right

may be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

USE OF INFORMATION PROVIDED BY YOU

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

TRADEMARKS AND SERVICE MARKS

The following terms used in this publication are trademarks of their respective

companies in the United States, other countries or both:

- IBM Corporation: IBM

- Oracle Corporation: Java

Other company, product, and service names may be trademarks or service marks of

others.

EXPORT REGULATIONS

You agree to comply with all applicable export and import laws and regulations.

5

Preface

Target audience

The report is designed for people who:

• Will be designing and implementing solutions using IBM MQ v9.4 for Linux on

x86_64.

• Want to understand the performance limits of IBM MQ v9.4 for Linux on x86_64.

• Want to understand what actions may be taken to tune IBM MQ v9.4 for Linux on

x86_64.

The reader should have a general awareness of the Linux operating system and of IBM MQ

to make best use of this report.

Whilst operating system, and MQ tuning details are given in this report (specific to the

workloads presented), a more general consideration of tuning and best practices, with

regards to application design, MQ topology etc, is no longer included in the platform

performance papers. A separate paper on general performance best practises has been

made available here:

https://ibm-messaging.github.io/mqperf/MQ_Performance_Best_Practices_v1.0.1.pdf

Contents

This report includes:

Release highlights with performance charts.

• Performance measurements with figures and tables to present the performance

capabilities of IBM MQ, across a range of message sizes, and including distributed

queuing scenarios.

Feedback

We welcome feedback on this report.

• Does it provide the sort of information you want?

• Do you feel something important is missing?

• Is there too much technical detail, or not enough?

• Could the material be presented in a more useful manner?

Specific queries about performance problems on your IBM MQ system should be directed

to your local IBM Representative or Support Centre.

Please direct any feedback on this report to paul_harris@uk.ibm.com.

https://ibm-messaging.github.io/mqperf/MQ_Performance_Best_Practices_v1.0.1.pdf
mailto:paul_harris@uk.ibm.com??l?la?lan?lang?lang=?lang=e?lang=en

6

Contents
Preface ... 5
1 Introduction .. 9
2 Release Highlights ... 10

2.1 Environment variables for tuning I/O operations that take too long..................... 10

2.2 LZ4 Compression Options .. 12

2.2.1 Test setup. .. 14

3 Base MQ Performance Workloads ... 15
3.1 RR-CC Workload ... 16

3.2 RR-DQ-BB Workload .. 18

4 Non-Persistent Performance Test Results .. 19
4.1 RR-CC Workload ... 19

4.1.1 Test setup. .. 20

4.2 RR-DQ-BB Workload .. 21

4.2.1 Test setup. .. 22

4.3 RR-CC JMS Workload ... 23

4.3.1 Test setup. .. 23

5 Persistent Performance Test Results .. 25
5.1 RR-CC Workload ... 25

5.1.1 Test setup. .. 27

5.2 Impact of Different File Systems on Persistent Messaging Performance 27

1.1.1 Test setup. .. 28

6 RR-CC Workload with TLS .. 29
6.1 TLS Non-Persistent Results ... 30

6.1.1 Test setup. .. 31

6.2 TLS Persistent Results .. 32

6.2.1 Test setup. .. 33

6.3 Effect of MQ Recovery Log Performance on TLS Comparisons 33

6.3.1 Test setup. .. 35

7 High Availability (HA) Test results ... 36
7.1 RR-CC Workload for HA with Unrestricted Replication Links 37

7.1.1 Test Setup ... 38

7.2 Comparison of RDQM HA Results with Higher Replication Link Latencies. 39

7

7.2.1 Test Setup ... 41

7.3 Circular Logging vs Linear Logging. .. 42

7.3.1 Test Setup ... 42

Appendix A: Non-HA Test Configurations... 43
A.1 Hardware/Software – Set1 ... 43

A.1.1 Hardware .. 43

A.1.2 Software .. 43

A.1.3 Software .. 43

A.2 Tuning Parameters Set for Measurements in This Report 44

A.2.1 Operating System ... 44

A.2.2 IBM MQ ... 45

Appendix B: HA Test Configurations ... 46
B.1 SAN Storage Baseline Topology ... 46

B.1.1 Hardware .. 46

B.1.2 Software .. 47

B.2 MIQM Topology .. 48

B.2.1 Hardware .. 48

B.2.2 Software .. 49

B.3 RDQM Topology .. 50

B.3.1 Hardware .. 50

B.3.2 Software .. 51

Appendix C: Glossary of terms used in this report. .. 52
Appendix D: Resources ... 53

TABLES

Table 1 - Message Compression Rates .. 14
Table 2 - Workload types .. 15
Table 3 - Peak rates for workload RR-CC (non-persistent).. 20
Table 4 – Full Results for workload RR-DQ-BB (non-persistent) ... 22
Table 5 - Peak rates for JMS (non-persistent) ... 23
Table 6 - Peak rates for workload RR-CC (non-persistent).. 26
Table 7 - Peak rates for workload RR-CC (Persistent) .. 26
Table 8 - TABLE 9 - Peak rates for workload RR-CC (Persistent SSD vs SAN vs NFS) 28
Table 9 - Peak rates for MQI client bindings (2KB non-persistent) – TLS 1.2 31
Table 10 - Peak rates for MQI client bindings (2KB non-persistent) – TLS 1.3 31
Table 11 - Peak rates for MQI client bindings (2KB persistent) – TLS 1.2 32
Table 12 - Peak rates for MQI client bindings (2KB persistent) – TLS 1.3 33
Table 13 - Peak Rates for Workload RR-CC (2KB - MIQM/RDQM/SAN) 38
Table 14 - Peak Rates for Workload RR-CC (2KB - RDQM with 1ms network latency) 40
Table 15 - Peak Rates for Workload RR-CC (2KB - RDQM with 2ms network latency) 41

8

FIGURES

Figure 1- Effect of Message Compression over Narrow Bandwidth Network Connection
(10Gb Ethernet) .. 12

Figure 2- Peak Message Rates by Message Size and Compression Algorithm................... 13
Figure 3 - RR-CC Topology... 16
Figure 4 - Requester-responder with remote queue manager (remote responders). 18
Figure 5 - Performance results for RR-CC (2KB non-persistent) ... 19
Figure 6 - Performance results for RR-DQ-BB (2KB non-persistent) 21
Figure 7 - Performance results for RR-CC (2KB JMS non-persistent) 23
Figure 8 - Performance results for RR-CC (2KB Non-persistent vs Persistent) 25
Figure 9 - Performance Results for RR-CC Persistent Messaging logging to SSD, SAN &

NFS ... 27
Figure 10 - Performance Results for RR-CC with TLS .. 30
Figure 11 - Performance Results for RR-CC (2KB Persistent) with TLS 32
Figure 12 - Performance Results for RR-CC (2KB Persistent) with TLS 1.3 (Logging to SAN)

 .. 34
Figure 13 - 2KB Persistent HA Results ... 37
Figure 14 - 2KB Persistent HA Results for RDQM with 0 to 2ms Network Latency 39
Figure 15 - Circular vs Linear Logging to SAN .. 42
Figure 16 - SAN Test Topology ... 46
Figure 17 - MIQM Test Topology... 48
Figure 18 - RDQM Test Topology ... 50

9

1 Introduction

IBM MQ V9.4 is a long-term service (LTS) release of MQ, which includes features

made available in the V9.3.1, V9.3.2, V9.3.3, V9.3.4 & V9.3.5 continuous
delivery (CD) releases.

Performance data presented in this report does not include release to release
comparisons, but all tests run showed equal or better performance than the V9.3

release of IBM MQ.

The hardware used in the report is identical to that used in the MQ V9.3 LTS
performance report, but the version of RedHat Linux is newer and all security
patching between the release of MQ V9.3 and MQ 9.4 has been applied. As such

it is possible that some results may be seen to be slightly lower than those
published in the V9.3 report since security patching will tend to add pathlength

in some cases.

As with all performance sensitive tests, you should run your own tests where

possible, to simulate your production environment and circumstances you are
catering for.

10

2 Release Highlights

Release highlights are listed in the MQ 9.4 documentation here:

https://www.ibm.com/docs/en/ibm-mq/9.4?topic=mq-whats-new-changed-in-940

2.1 Environment variables for tuning I/O operations that take too long.

From IBM MQ 9.4.0, three new environment variables are added to increase or decrease

the threshold at which a warning message is written to the queue manager log if a slow

read/write time is detected. Fine tuning with these environment variables can help with

diagnosing operating system or storage system issues and reduce the number of errors that

are written to the log. For more information, see AMQ_IODELAY, AMQ_IODELAY_INMS and

AMQ_IODELAY_FFST.

For example, if the following 2 environment variables are set, then warnings will be written

to the queue manager error log, when a recovery log write takes over 7000µs (7ms).

export AMQ_IODELAY_INMS=YES

export AMQ_IODELAY=7000

Using these values for a test where the recovery log is hosted on nfs, we can introduce a

latency of 10ms on the link to the nfs server (‘en1’ in this case):

tc qdisc add dev en1 root netem delay 10000us

MQ will report the long write time to the recovery log:

14/08/24 17:25:58 - Process(212992.4) User(mquser1) Program(amqzmuc0)

 Host(mqperfx9.hursley.ibm.com) Installation(Installation1)

 VRMF(9.4.0.0) QMgr(PERF0)

 Time(2024-08-14T16:25:58.791Z)

 ArithInsert1(4096)

 CommentInsert1(W)

 CommentInsert2(7000)

 CommentInsert3(10126)

AMQ6729W: Log I/O operation (W) exceeded threshold (7000 microseconds).

EXPLANATION:

A Read (R) or Write (W) of 4096 bytes took longer than expected to complete.

This might indicate a problem with your O/S or storage system. If this occurs

frequently, queue manager performance is likely to be severely impacted.

ACTION:

Investigate cause of long I/O times in your storage provision. If these delays

are expected in your environment, the warning threshold can be increased by

modifying the AMQ_IODELAY environment variable.

----- amqhose0.c : 106 --

https://www.ibm.com/docs/en/ibm-mq/9.4?topic=mq-whats-new-changed-in-940
https://www.ibm.com/docs/en/SSFKSJ_9.4.0/configure/q082720_.html#q082720___amq_iodelay_vars
https://www.ibm.com/docs/en/SSFKSJ_9.4.0/configure/q082720_.html#q082720___amq_iodelay_vars

11

Note the 2nd and 3rd ‘CommentInsert’ fields in the message (highlighted in red), which show

the current value of AMQ_IODELAY in micro-seconds and the length of time the write

operation took that triggered this message.

Setting AMQ_IODELAY to a sensible value (determined by expected peak latency during a

‘normal’ day) enables you determine when the recovery log filesystem may have issues.

12

2.2 LZ4 Compression Options

With MQ V9.4, new LZ4 compression algorithms are available which are significantly faster

than the ZLIB options. See the IBM Integration Community article here for the general

details.

FIGURE 1- EFFECT OF MESSAGE COMPRESSION OVER NARROW BANDWIDTH NETWORK

CONNECTION (10GB ETHERNET)

Results presented throughout this report were run against hosts in the same datacentre

and connected via 100Gb network links. In such an environment, setting message

compression is unlikely to increase the throughput, but for smaller bandwidth links, the

effects can be significant.

Figure 1 above show the effects of using the ZLIBFAST or LZ4FAST compression algorithms

on the SVRCONN channels used by the requester and responder applications for 20K

messages over a 10Gb network. The FAST options were found to be more beneficial in this

environment for both algorithms (rather than using ZLIBHIGH or LZ4HIGH). Note that the

new LZ4 algorithm available in MQ V9.4 was a lot faster, consuming much less CPU and

enabling a higher message rate to be achieved through the bottleneck of the 10Gb network

link.

https://community.ibm.com/community/user/integration/blogs/jonathan-rumsey/2024/06/17/mqlz4

13

The benefit of using compression will depend on several factors including:

• Size of message

• Quality of network link (bandwidth and latency).

• Compressibility of the message data.

• Available CPU resource (for both the queue manager host and the hosts where the

applications are running).

For the 10Gb linked environment for the 20K results above, varying degrees of benefit were

recorded when using compression.

FIGURE 2- PEAK MESSAGE RATES BY MESSAGE SIZE AND COMPRESSION ALGORITHM.

Figure 2, shows the peak rate achieved for 2K, 20K and 200K messages, without

compression vs compression (ZLIBFAST or LZ4FAST). Whilst the LZ4FAST always

outperformed no compression, ZLIBFAST was only faster for 20K messages.

For the 200K message test, a maximum of 300 requesters were started and whilst the no-

compression and LZ4FAST variants of the test had peaked, the ZLIBHIGH test was still

climbing as more applications were started (so it’s likely that with an even higher number of

applications and given spare CPU capacity, it would have achieved a higher message rate

than the uncompressed test.

As stated above, compressibility of the message will be a factor. For these tests, the

message data was comprised of JSON text. Binary data will not benefit as much (or at all)

due its uncompressible nature. Other messages may be more compressible and will benefit

more.

14

The table below shows the compression rates achieved (as reported by the COMPRATE

value in the channel status). Although the HIGH variants of the algorithms compressed

these JSON messages a little more, they did not give as much benefit as the FAST variants,

due to the additional time taken for the more aggressive compression.

TABLE 1 - MESSAGE COMPRESSION RATES

The new LZ4 compression algorithm performs significantly better than the existing ZLIB

algorithm for these tests. If your environment is constrained by the network between the

clients and the queue manager, it is worth setting these to test the potential benefit. ZLIB

algorithms can result in higher compression rates though, so in some circumstances they

may still be the best option.

Note that compression algorithms can also be set on channels between queue managers

too.

2.2.1 Test setup.
Workload type: RR-CC (see section 3.1).

Hardware: Server 1, Client 1, Client 2 (see section A.1).

Msg Size Compression Rate

ZLIBFAST LZ4FAST ZLIBHIGH LZ4HIGH

2KB 34% 16% 37% 19%

20KB 56% 43% 58% 47%

200KB 59% 45% 61% 51%

15

3 Base MQ Performance Workloads

Table 2 (below) lists the workloads used in the generation of performance data for base MQ

(that is standard messaging function) in this report. All workloads are requester/responder

(RR) scenarios which are synchronous in style because the application putting a message

on a queue will wait for a response on the reply queue before putting the next message.

They typically run ‘unrated’ (no think time between getting a reply and putting the next

message on the request queue).

Workload Description

RR-DQ-BB Distributed queueing between two queue managers on separate hosts, with binding

mode requesters and responders.

RR-CC Client mode requesters, and responders on separate, unique hosts

TABLE 2 - WORKLOAD TYPES

Binding mode connections use standard MQ bindings. Client mode connections use

fastpath channels and listeners (trusted) and have SHARECNV set to 1, which is the

recommended value for performance.

RR-CB & RR-DQ-BB are described in the following section. The remaining two workloads

differ only in the location of the MQ applications, which is made clear in the results

presented in this report.

Applications, Threads and Processes
From a queue manager’s perspective in the workloads described below, each connection

represents a unique application. The workloads are driven by the MQ-CPH or Perfharness

client emulator tools. Both these tools are multi-threaded so 10 applications may be

represented by 10 threads within a single MQ-CPH process, for instance. If 200 responder

applications are started, this will always be represented by 200 threads, but they could be

spread across 10 processes (each with 20 threads). The main point is that each application

below is a single thread of execution within MQ-CPH or JMSPerfHarness, spread across as

many processes as makes sense.

16

3.1 RR-CC Workload
(Client mode requesters with client mode responders.)

FIGURE 3 - RR-CC TOPOLOGY

Figure 3 shows the topology of the RR-CC test. The test simulates multiple ‘requester’

applications which all put messages onto a set of ten request queues. Additional machines

may be used to drive the requester applications where necessary.

Another set of ‘responder’ applications retrieve the message from the request queue and

put a reply of the same length onto a set of ten reply queues. The number of responders is

set such that there is always a waiting ‘getter’ for the request queue.

The applications utilise the requester and responder queues in a round robin fashion,

ensuring even distribution of traffic, so that in the diagram above CPH11 will wrap round to

use the Rep1/Req1 queues, and CPH 20 will use the Req10/Rep10 queues.

The flow of the test is as follows:

• The requester application puts a message to a request queue on the remote queue

manager and holds on to the message identifier returned in the message descriptor.

The requester application then waits indefinitely for a reply to arrive on the

appropriate reply queue.

• The responder application gets messages from the request queue and places a

reply to the appropriate reply queue. The queue manager copies over the message

identifier from the request message to the correlation identifier of the reply

message.

17

• The requester application gets a reply from the reply queue using the message

identifier held when the request message was put to the request queue, as the

correlation identifier in the message descriptor.

This test is executed using client channels as trusted applications by specifying

“MQIBindType=FASTPATH” in the qm.ini file. This is recommended generally, but not

advised if you run channel exit programs and do not have a high degree of confidence in

their robustness.

Network Flows:

As the topology utilises separate hosts for the requesters and responders, each round trip

will comprise of 2 inbound messages to the server and 2 outbound messages from the

server, all being transmitted across the network. So, if the message size is 2048 bytes there

will be 2 x (2048 + metadata) inbound to the MQ server and 2 x (2048 + metadata)

outbound from the server, where metadata is the non-message payload data, comprising of

the MQ and transport headers.

18

3.2 RR-DQ-BB Workload
(Distributed queueing between two queue managers on separate hosts, with binding mode

requesters and responders).

FIGURE 4 - REQUESTER-RESPONDER WITH REMOTE QUEUE MANAGER (REMOTE RESPONDERS).

This is a distributed queuing version of the requester-responder topology detailed in

section 3.2. All MQPUTs are to remote queues (marked with ‘R’ in the diagram above), so

messages are now transported across server channels to the queue manager where the

queue is hosted. Note that remote queues are distributed across multiple pairs of

sender/receiver channels in the tests below, but a single pair or channels may be adequate

in your installation.

Network Flows:

As for the RR-CC topology, each round trip will comprise of 2 inbound messages to the

server and 2 outbound messages from the server, but as the clients are local to the queue

manager these do not utilise network bandwidth. For each round trip there will be a single

outbound and inbound message between the queue managers across the network. So, if

the message size is 2048 bytes there will be 1 x (2048 + metadata) inbound to the MQ

server and 1 x (2048 + metadata) outbound from the server, where metadata is the non-

message payload data, comprising of the MQ and transport headers. This scenario

therefore uses half the network bandwidth of RR-CC for a given message rate.

19

4 Non-Persistent Performance Test Results

Full performance test results are detailed below. The test results are presented by broad

categories with an illustrative plot in each section followed by the peak throughput

achieved for the remaining tests in that category (the remaining tests are typically for

different message sizes).

4.1 RR-CC Workload

The following chart illustrates the performance of 2KB non-persistent messaging with

various numbers of requester clients.

FIGURE 5 - PERFORMANCE RESULTS FOR RR-CC (2KB NON-PERSISTENT)

20

The test peaked at approximately 371,000 round trips/sec, approaching full CPU utilisation

of the MQ server.

Peak round trip rates for all message sizes tested can be seen in the table below. The

200KB and 2MB scenarios are approaching saturation of the 100Gb network links between

the client and server machines (hence lower CPU% for the highest message rate).

*Round trips/sec

TABLE 3 - PEAK RATES FOR WORKLOAD RR-CC (NON-PERSISTENT)

4.1.1 Test setup.
Workload type: RR-CC (see section 3.1).

Hardware: Server 1, Client 1, Client 2 (see section A.1).

Test V9.4

Max Rate* CPU% Clients

RR-CC (2K Non-persistent) 370,602 97.69 270

RR-CC (20K Non-persistent) 261,852 92.66 200

RR-CC (200K Non-persistent) 27,699 32.43 50

RR-CC (2MB Non-persistent) 2,613 32.61 40

21

4.2 RR-DQ-BB Workload
(Distributed queueing between two queue managers on separate hosts, with binding mode

requesters and responders).

The distributed queuing scenarios use workload type RR-DQ-BB (see section 3.2) where

locally bound requesters put messages onto a remote queue.

The throughput will be sensitive to network tuning and server channel setup amongst other

things. All the tests in this section utilise multiple send/receive channels. This particularly

helps with smaller, non-persistent messages when the network is under-utilised.

FIGURE 6 - PERFORMANCE RESULTS FOR RR-DQ-BB (2KB NON-PERSISTENT)

The distributed queuing test exhibits good scaling with CPU being the limiting factor as the

number of clients increases.

Peak round trip rates for all message sizes tested can be seen in the table below. The

200KB and 2MB measurements are again network limited by the 100Gb links between the

hosts. Note that these rates are higher than the RR-CC test in the previous section as the

22

overall network traffic is lower per message (see the notes on network traffic in sections

3.1 and 3.2)

*Round trips/sec

TABLE 4 – FULL RESULTS FOR WORKLOAD RR-DQ-BB (NON-PERSISTENT)

4.2.1 Test setup.
Workload type: RR-DQ-BB (see section 3.2).

Hardware: Server 1, Client 1 (see section A.1).

Test V9.4

Max Rate* CPU% Clients

RR-DQ-BB (2KB Non-persistent) 672,243 87.84 700

RR-DQ-BB (20KB Non-persistent) 354,563 65.32 240

RR-DQ-BB (200KB Non-persistent) 56,883 32.18 50

RR-DQ-BB (2MB Non-persistent) 4,609 36.57 45

23

4.3 RR-CC JMS Workload

This test application is JMSPerfharness, which is run unrated (i.e. each requester sends a

new message as soon as it receives the reply to the previous one). The JMS test is run with

both requesters and responders in client mode on remote hosts as JMSPerfharness is a

relatively resource hungry application, utilising multiple JVMs to scale up the JMS

connections.

FIGURE 7 - PERFORMANCE RESULTS FOR RR-CC (2KB JMS NON-PERSISTENT)

Once again, the workload exhibits good scaling up to 100% of the CPU (the limiting factor),

peaking at approximately 350,000 round trips/sec.

Peak round trip rates for all message sizes tested can be seen in the table below.

*Round trips/sec

TABLE 5 - PEAK RATES FOR JMS (NON-PERSISTENT)

4.3.1 Test setup.
Workload type: RR-CC (see section 3.1).

Test V9.4

Max Rate* CPU% Clients

RR-CC (2KB JMS Non-persistent) 349,939 96.13 270

RR-CC (20KB JMS Non-persistent) 239,284 93.73 240

RR-CC (200KB JMS Non-persistent) 27,567 61.59 200

RR-CC (2MB JMS Non-persistent) 2,653 62.35 180

24

Message protocol: JMS.

Hardware: Server 1, Client 1, Client 2 (see section A.1).

25

5 Persistent Performance Test Results

The performance of persistent messaging is largely dictated by the capabilities of the

underlying filesystem hosting the queue files, and more critically, the MQ recovery log files.

Writes to the recovery log need to be synchronous to ensure transactional integrity, but

IBM MQ is designed to maximise throughput, by aggregating writes where possible.

Aggregation of log writes is dependent on a concurrent workload (i.e. multiple applications

connected and committing data to the queue manager concurrently, such that the MQ

logger component can aggregate data into larger, more efficient file writes and mitigate the

higher latency of some file systems).

The performance of persistent messaging is therefore dependant on the machine hosting

MQ, the degree of concurrency, and the I/O infrastructure. Some comparisons are shown

below between non-persistent and persistent messaging for local storage, and then results

for V9.4 in a separate environment (x64 Linux with SAN, SSD & NFS filesystems) are shown

to demonstrate the impact of recovery log location.

5.1 RR-CC Workload

FIGURE 8 - PERFORMANCE RESULTS FOR RR-CC (2KB NON-PERSISTENT VS PERSISTENT)

26

Figure 8 shows results from running the RR-CC workload with 2KB non-persistent and

persistent messages, on the same server used for the non-persistent scenarios in the

previous sections.

The non-persistent workload reaches an optimal value at 270 requesters where, the CPU

approaches 100% utilisation. Adding more requesters degrades performance, increasing

context switching on an already saturated server.

Note that for smaller message sizes (as for 2KB, above), higher rates of throughput in

persistent scenarios are attained when there is a greater deal of concurrency (i.e. requester

applications) as this enables the logger to perform much larger writes (as described above).

In these tests, the machines are connected via 100Gb links in the same data centre. With

network links that are higher latency or lower bandwidth, the difference between non-

persistent and persistent throughput will be less, as the network becomes a significant part

of the bottleneck.

Peak round trip rates for all message sizes tested, for persistent & non-persistent scenarios

can be seen in Table 6 & Table 7 below.

*ROUND TRIPS/ SEC

TABLE 6 - PEAK RATES FOR WORKLOAD RR-CC (NON-PERSISTENT)

*ROUND TRIPS/ SEC

TABLE 7 - PEAK RATES FOR WORKLOAD RR-CC (PERSISTENT)

The non-persistent numbers are for comparison with persistent messaging, to illustrate

what the impact of logging can be.

The recovery log I/O is the limiting factor for the persistent workloads here, as expected. As

the message size goes up, the time spent on the recovery log write becomes a larger factor,

so although the bytes per sec is more, the overall CPU utilisation is lower. The level of

concurrency needed to reach the limitations of the filesystem also drops as the message

size increases.

Test V9.4

Max Rate* CPU% Clients

RR-CC (2K Non-persistent) 370,602 97.69 270

RR-CC (20K Non-persistent) 261,852 92.66 200

RR-CC (200K Non-persistent) 27,699 32.43 50

RR-CC (2MB Non-persistent) 2,613 32.61 40

Test V9.4

Max Rate* CPU% Clients

RR-CC (2KB Persistent) 119,846 88.2 210

RR-CC (20KB Persistent) 91,968 82.81 225

RR-CC (200KB Persistent) 14,993 31.63 100

RR-CC (2MB Persistent) 1,641 25.95 45

27

5.1.1 Test setup.
Workload type: RR-CC (see section 3.1).

Hardware: Server 1 (see section A.1).

5.2 Impact of Different File Systems on Persistent Messaging

Performance

A separate paper has been published, with illustrative results, for SSD, SAN and NFS hosted

filesystems, along with some guidance, on best practises, and monitoring.

https://ibm-messaging.github.io/mqperf/mqio_v1.pdf

If possible, you should assess the performance of a new application, with non-persistent

messaging first. If the target rate of messaging is met, then calculate the required

bandwidth of the filesystem hosting the recovery logs.

FIGURE 9 - PERFORMANCE RESULTS FOR RR-CC PERSISTENT MESSAGING LOGGING TO SSD,

SAN & NFS

To illustrate the impact that the filesystem hosting the recovery logs can have, Figure 9

shows results from running the RR-CC workload with persistent messaging where the

recovery logs are on a local SSD or hosted remotely (SAN or NFS).

As expected, logging to a local SSD is a lot faster. The SAN tests are limited by the

bandwidth of the SAN switch (16Gb ports). For NFS, the network link is 100Gb, but

https://ibm-messaging.github.io/mqperf/mqio_v1.pdf

28

independent tests showed a limit of around 27Gb/s for single threaded transfers (which the

MQ logger must by design perform, to maintain data integrity). The MQ logger will perform

larger writes as the number of applications increase but there is a 1MB write size limit for

NFS, in the Linux kernel.

Table 8 below, shows the peak rates achieved for each filesystem tested, across a range of

message sizes.

*Round trips/ sec

TABLE 8 - TABLE 9 - PEAK RATES FOR WORKLOAD RR-CC (PERSISTENT SSD VS SAN VS NFS)

1.1.1 Test setup.

Workload type: RR-CC (see section 3.1).

Hardware: Server 1, with client 1 machine acting as NFS server. (see section A.1).

Test V9.4

Max Rate* CPU% Clients

RR-CC (2KB Persistent) 119,846 88.2 210

RR-CC (2KB Persistent - SAN) 59,124 48.17 300

RR-CC (2KB Persistent - NFS) 79,254 63.48 300

RR-CC (20KB Persistent) 91,968 82.81 225

RR-CC (20KB Persistent - SAN) 19,161 22.31 300

RR-CC (20KB Persistent - NFS) 22,694 24.9 300

RR-CC (200KB Persistent) 14,993 31.63 100

RR-CC (200KB Persistent - SAN) 2,839 9.29 120

RR-CC (200KB Persistent - NFS) 3,502 10.46 120

RR-CC (2MB Persistent) 1,641 25.95 45

RR-CC (2MB Persistent - SAN) 273 5.69 20

RR-CC (2MB Persistent - NFS) 343 6.74 40

29

6 RR-CC Workload with TLS
(Client mode requesters and responders on separate hosts).

To illustrate the overhead of enabling TLS to encrypt traffic between the client applications

and the queue manager, results are shown below comparing the performance of the 4

strongest TLS1.2 MQ CipherSpecs, and all TLS1.3 MQ.

The following TLS 1.2 CipherSpecs were tested (all utilise 256bit encryption and are FIPS

compliant).

• ECDHE_ECDSA_AES_256_CBC_SHA384

• ECDHE_ECDSA_AES_256_GCM_SHA384 (Suite B compliant)

• ECDHE_RSA_AES_256_CBC_SHA384

• ECDHE_RSA_AES_256_GCM_SHA384

Results for the suite B compliant CipherSpec (ECDHE_ECDSA_AES_256_GCM_SHA384),

along with an older, CBC based CipherSpec (ECDHE_RSA_AES_256_CBC_SHA384) and a

TLS 1.3 CipherSpec (TLS_AES_128_CCM_8_SHA256) are plotted below. As will be seen,

the remaining tested CipherSpecs exhibited a performance profile similar to one of these

plots.

30

6.1 TLS Non-Persistent Results

FIGURE 10 - PERFORMANCE RESULTS FOR RR-CC WITH TLS

The ECDHE_ECDSA_AES_256_GCM_SHA384 CipherSpec uses a GCM (Galois/Counter

Mode) symmetric cipher. Performance testing showed that all TLS 1.2 GCM based

CipherSpecs exhibited similar performance. All the TLS 1.2 CipherSpecs utilising the older

CBC (Chain Block Cipher) symmetric cipher exhibited similar to

ECDHE_ECDSA_AES_256_CBC_SHA384 in the plot above. All TLS 1.3 CipherSpecs

exhibited a performance profile similar to TLS_AES_128_CCM_8_SHA256 in the plot

above.

All tests exhibited scaling up to around 100% of the CPU of the machine. Throughput for

GCM based CipherSpecs ran at approximately 61% of the throughput of a non-encrypted

workload. CBC based CipherSpecs exhibited a greater overhead, running at approximately

38% of a non-encrypted workload. TLS 1.3 encryption is more expensive, achieving rates

slightly below the TLS 1.2 CBC based CipherSpecs.

Table 9 shows the peak rates achieved for all 6 TLS 1.2 CipherSpecs tested, demonstrating

the equivalence of performance, based on whether the symmetric key algorithm is CBC, or

GCM based.

31

*Round trips/sec

TABLE 9 - PEAK RATES FOR MQI CLIENT BINDINGS (2KB NON-PERSISTENT) – TLS 1.2

Table 10 shows the peak rates achieved for all TLS 1.3 CipherSpecs.

*Round trips/sec

TABLE 10 - PEAK RATES FOR MQI CLIENT BINDINGS (2KB NON-PERSISTENT) – TLS 1.3

6.1.1 Test setup.
Workload type: RR-CC (see section 3.1).

Hardware: Server 1, Client 1, Client 2 (see section A.1).

TLS 1.2 CipherSpec V9.4 GM

Max Rate* CPU% Clients

No TLS 371,209 98 270

ECDHE_ECDSA_AES_256_CBC_SHA384 142,715 99 210

ECDHE_ECDSA_AES_256_GCM_SHA384 226,220 99 210

ECDHE_RSA_AES_256_CBC_SHA384 143,004 99 210

ECDHE_RSA_AES_256_GCM_SHA384 227,269 99 210

TLS 1.3 CipherSpec V9.4 GM

Max Rate* CPU% Clients

No TLS 371,209 98 270

TLS_AES_128_CCM_8_SHA256 136,839 100 210

TLS_AES_256_GCM_SHA384 141,445 100 240

TLS_CHACHA20_POLY1305_SHA256 136,317 100 210

TLS_AES_128_GCM_SHA256 142,708 100 240

TLS_AES_128_CCM_SHA256 127,167 100 300

32

6.2 TLS Persistent Results

FIGURE 11 - PERFORMANCE RESULTS FOR RR-CC (2KB PERSISTENT) WITH TLS

Generally, the persistent TLS measurements showed a similar pattern to non-persistent

tests (though the message rates were significantly lower throughout, as expected).

Table 11 and Table 12 show the peak throughputs for TLS 1.2 & TLS1.3 CipherSpecs.

*Round trips/sec

TABLE 11 - PEAK RATES FOR MQI CLIENT BINDINGS (2KB PERSISTENT) – TLS 1.2

TLS 1.2 CipherSpec V9.4 GM

Max Rate* CPU% Clients

No TLS 117,070 88 210

ECDHE_ECDSA_AES_256_CBC_SHA384 63,034 89 300

ECDHE_ECDSA_AES_256_GCM_SHA384 84,005 87 180

ECDHE_RSA_AES_256_CBC_SHA384 62,994 89 300

ECDHE_RSA_AES_256_GCM_SHA384 84,124 87 180

33

*Round trips/sec

TABLE 12 - PEAK RATES FOR MQI CLIENT BINDINGS (2KB PERSISTENT) – TLS 1.3

6.2.1 Test setup.
Workload type: RR-CC (see section 3.1).

Hardware: Server 1, Client 1, Client 2 (see appendix A.1).

6.3 Effect of MQ Recovery Log Performance on TLS Comparisons

With persistent messaging, file I/O to the MQ recovery log is a significant throttling factor.

This is evident in the TLS persistent messaging results as the ratio between non-TLS and

TLS is lower. E.g. for 300 requester clients, non-persistent messaging, this is how a TLS 1.2

and a TLS 1.3 CipherSpec performs, in comparison to a non-TLS workload:

Scenario Rate

No-TLS 371,209

ECDHE_ECDSA_AES_256_GCM_SHA384 (TLS 1.2) 226,220

TLS_AES_128_CCM_8_SHA256 (TLS 1.3) 136,839

Non-persistent ratio (No-TLS/TLS 1.2) = 1.64

Non-persistent ratio (No-TLS/TLS 1.3) = 2.71

For persistent messaging, the gap is closer:

Scenario Rate

No-TLS 117,070

ECDHE_ECDSA_AES_256_GCM_SHA384 (TLS 1.2) 84,005

TLS_AES_128_CCM_8_SHA256 (TLS 1.3) 58,911

Persistent ratio (No-TLS/TLS 1.2) = 1.39

Persistent ratio (No-TLS/TLS 1.3) = 1.99

The persistent tests were run with the MQ recovery logs hosted on local, enterprise class

NVMe devices, which are very fast. Hosting the recovery log off-box will result in lower

TLS 1.3 CipherSpec V9.4 GM

Max Rate* CPU% Clients

No TLS 117,070 88 210

TLS_AES_128_CCM_8_SHA256 58,911 90 300

TLS_AES_256_GCM_SHA384 54,803 91 300

TLS_CHACHA20_POLY1305_SHA256 59,106 90 300

TLS_AES_128_GCM_SHA256 60,407 89 300

TLS_AES_128_CCM_SHA256 55,047 91 300

34

throughputs for persistent messaging and the comparison between non-TLS and TLS

results will be more favourable (in throughput terms) though the CPU cost will be similar.

FIGURE 12 - PERFORMANCE RESULTS FOR RR-CC (2KB PERSISTENT) WITH TLS 1.3

(LOGGING TO SAN)

Figure 12 shows results for the RR-CC workload where the MQ recovery log is hosted on a

SAN device (see appendix A.1 for details). In this case the throughputs are lower, as the

recovery log file writes to the SAN filesystem are slower. As a result, the comparison (in

throughput terms) between non-TLS and TLS is more favourable (see below) but note that

the CPU overhead remains similar.

Scenario Rate

No-TLS 59,043

TLS_AES_128_CCM_8_SHA256 (TLS 1.3) 51,897

Persistent ratio (No-TLS/TLS 1.3) = 1.14

35

When evaluating TLS, you need to understand the performance capabilities of your

infrastructure. Whilst there is a significant CPU cost incurred with encryption, if you have

enough capacity the throughput impact may not be as much as the worst case for

persistent message, as shown in Figure 11.

As for all performance evaluations, testing an environment as close as possible to that used

in production is highly desirable. This will result in a much better understanding of the

performance capabilities of the various components making up the environment your

workload is running in.

6.3.1 Test setup.
Workload type: RR-CC (see section 3.1).

Hardware: Server 1, Client 1, Client 2 (see appendix A.1).

36

7 High Availability (HA) Test results

Highly availability for MQ typically minimises the time that a queue manager (and its

messages) is not available to applications, and to remove single points of failure in the

infrastructure where MQ runs. This typically requires:

- Fast detection of a failure of the running queue manager, and automatic recovery,

often to a second physical system

- Persisting queue manager data to multiple physical disks

There are a number of options available to achieve high availability in MQ, including setting

up general high availability managers, or deploying on MQ Appliances (see High availability

configurations in the MQ doc).

This section will focus on the two technologies offered in software MQ; Multi Instance

Queue Managers (MIQM) and replicated data queue managers (RDQM).

Both options provide automatic recovery, typically within seconds. However, the two have

very different approaches to data resiliency.

With RDQM, data from the active queue manager instance is synchronously replicated to

two other instances, so one of these instances can take over in the event of some failure.

With MIQM the data is located on a remote NFS server, where another standby instance of

the QM can access that same data in the event of a failover. MIQM does not by design

replicate data, so if that data becomes generally inaccessible (e.g. a failure in the NFS

server), neither queue manager will be able to continue. Typically, for higher resilience, the

NFS server would be a clustered file system, backed by replicated storage.

The NFS server used in this report for MIQM does not provide replicated storage. This will

impact the resiliency of the system and would not be equivalent in capability to a replicated

RDQM solution. However, as the report shows, even non-replicated NFS storage does not

perform as well as RDQM. If the MIQM data was to be synchronously replicated outside of

MQ, to guarantee against data loss, the performance would be impacted further.

Although not included in this report, for MQ in Kubernetes, Native HA (NHA) is another

option (and the alternative to using RDQM which is only applicable to non-container Linux

deployments).

HA deployments most notably affect the performance of persistent messaging due to the

recovery log writes occurring across the network (and replicated, in the case of RDQM), so

only persistent messaging scenarios are shown in the following sections.

https://www.ibm.com/docs/en/ibm-mq/9.4?topic=restart-high-availability-configurations
https://www.ibm.com/docs/en/ibm-mq/9.4?topic=restart-high-availability-configurations
https://www.ibm.com/docs/en/ibm-mq/9.4?topic=configurations-multi-instance-queue-managers
https://www.ibm.com/docs/en/ibm-mq/9.4?topic=configurations-rdqm-high-availability
https://www.ibm.com/docs/en/ibm-mq/9.4?topic=containers-native-ha

37

7.1 RR-CC Workload for HA with Unrestricted Replication Links

Figure 13 shows results for running a 2KB persistent messaging test in an HA setup using

MIQM or RDQM, with a SAN test for comparison. Logging to SAN as a comparison is a fairer

baseline as this represents a minimal at least a setup where the MQ storage for the queue

manager is off box and could be backed by physical storage replication for redundancy.

FIGURE 13 - 2KB PERSISTENT HA RESULTS

Care should be taken to review the infrastructure used in these tests. Results reflect the

capabilities of the environment. HA persistent tests are highly sensitive to the capabilities

of the network, and disk storage subsystems. These comparisons are to illustrate the

differences that may be seen between different logging/HA approaches.

In the results above, RDQM out-performed the SAN tests, and more significantly also out-

performed MIQM. Whilst a faster SAN environment might have resulted in better results

(although maybe still without data replication), MIQM and RDQM are writing data over the

network links (remember that MIQM is not replicating the data however, it is simply writing

to a remote filesystem over NFS, such that the secondary QM can take-over using the same

files, if necessary). Even though the RDQM scenario is providing a more robust HA solution

it performed better in the tests than the MIQM solution.

Peak round trip rates for all message sizes tested can be seen in Table 13, with RDQM

giving the best performance in all cases.

38

*Round trips/ sec

TABLE 13 - PEAK RATES FOR WORKLOAD RR-CC (2KB - MIQM/RDQM/SAN)

7.1.1 Test Setup
Workload type: RR-CC (see section 3.1).

Hardware:

SAN Test: Two client machines and a single server with MQ recovery logs hosted on

SAN (see appendix section B.1)

MIQM Test: Two client machines, 2 QM hosts and an NFS Server (see appendix section

0)

RDQM Test: Two client machines and 3 QM hosts (see appendix section B.3)

Test V9.4 (MIQM) V9.4 (RDQM) V9.4 (SAN)

Max Rate* CPU% Clients Max Rate* CPU% Clients Max Rate* CPU% Clients

RR_CC (2KB Persistent) 61,669 50.51 420 95,403 81.47 540 64,249 55.14 600

RR_CC (20KB Persistent) 14,768 16.36 300 32,128 31.92 300 17,111 16.7 300

RR_CC (200KB Persistent) 1,945 7.75 120 3,836 13.53 120 2,658 8.86 120

39

7.2 Comparison of RDQM HA Results with Higher Replication Link

Latencies.

This section will demonstrate the impact on performance of higher latency replication links.

IBM supports RDQM HA replication links with latencies up to 5ms (see the doc here),

though latencies of that magnitude may be unacceptable to your SLAs. If replication is

required across higher latency links, then asynchronous replication via a DR solution is

preferrable.

Data written across the replication links is done so in a synchronous fashion to ensure

consistency of data in the event of a loss in communication with the primary queue

manager requiring switchover to the secondary queue manager.

An HA solution will involve some physical separation of the hosts used to store replicated

data. In RDQM, this may mean a significantly higher latency for the replication links. In an

MIQM solution the higher latency may affect a solution replicating NFS hosted files.

FIGURE 14 - 2KB PERSISTENT HA RESULTS FOR RDQM WITH 0 TO 2MS NETWORK LATENCY

Figure 14 shows the results of RDQM tests for 2KB messaging for where a delay was set on

the replication links only (the separate links to machines hosting the client applications are

unhindered).

https://www.ibm.com/docs/en/ibm-mq/9.3?topic=availability-requirements-rdqm-ha-solution

40

The delays set were:

• No Latency : Replication links are unrestricted.

• 1ms Latency : A 500µs delay was set on the inbound and outbound path of the

link, resulting in a 1ms round-trip delay

• 2ms Latency : A 1ms delay was set on the inbound and outbound path of the link,

resulting in a 2ms round-trip delay

Higher latency links dramatically reduces the round-trips/sec, but these tests still scale in

an orderly fashion as more requester applications are started. Writes to the MQ recovery

log are typically the limiting factor in persistent messaging and certainly so in the cases

with the higher latency links.

The MQ logger will aggregate log writes more as the network latency increases however,

minimising the impact of the delay by utilising more of the bandwidth of the link with larger

write. You can see the this by monitoring log write sizes using the amqsrua sample

program, e.g. on a queue manager called QM1:

amqsrua -m QM1 -c DISK -t Log

In our unrestricted case, the latency of the link is very low, as the network switch resides in

the same rack as the hosts it is connecting.

All deployments will be different, so it’s impossible to predict the affect that a higher

latency will have. If the network latency of the links between the applications and the

queue managers is high for instance, then a higher latency on the HA links may not have

such a big effect. As with all performance considerations it’s imperative that you carry out

your own tests to assess the infrastructure you intend to deploy on.

Peak round trip rates for all message sizes tested with 1ms and 2ms replication link

latencies can be seen in Table 14 & Table 15.

*Round trips/ sec

TABLE 14 - PEAK RATES FOR WORKLOAD RR-CC (2KB - RDQM WITH 1MS NETWORK

LATENCY)

Test V9.4 (RDQM)

Max Rate* CPU% Clients

RR_CC (2KB Persistent) - 1ms Network latency 37,330 35.64 600

RR_CC (20KB Persistent) - 1ms Network latency 9,088 13.26 300

RR_CC (200KB Persistent) - 1ms Network latency 1,152 7.26 120

https://www.ibm.com/docs/en/ibm-mq/9.3?topic=stmat-monitoring-system-resource-usage-by-using-amqsrua-command

41

*Round trips/ sec

TABLE 15 - PEAK RATES FOR WORKLOAD RR-CC (2KB - RDQM WITH 2MS NETWORK

LATENCY)

7.2.1 Test Setup
Workload type: RR-CC (see section 3.1).

Hardware:

Two client machines and 3 QM hosts (see appendix section B.3)

Test V9.4 (RDQM)

Max Rate* CPU% Clients

RR_CC (2KB Persistent) - 2ms Network latency 28,390 27.31 600

RR_CC (20KB Persistent) - 2ms Network latency 7,551 11.75 300

RR_CC (200KB Persistent) - 2ms Network latency 1,016 6.53 135

42

7.3 Circular Logging vs Linear Logging.

All the tests in section 7 used linear logging instead of circular logging for consistency of HA

test scenarios in the lab (where NHA is also tested, and which requires the use of linear

logging). There is little difference in the performance of linear and circular logging (see

Figure 15).

FIGURE 15 - CIRCULAR VS LINEAR LOGGING TO SAN

7.3.1 Test Setup
Workload type: RR-CC (see section 3.1).

Hardware:

Two client machines and a single server with MQ recovery logs hosted on SAN (see

appendix section B.1)

43

Appendix A: Non-HA Test Configurations

A.1 Hardware/Software – Set1

All the testing in this document (apart from when testing results are shown from a different

platform and are clearly identified as such) was performed on the following hardware and

software configuration:

A.1.1 Hardware

Server1, client1 & client2 are three identical machines:

• ThinkSystem SR630 V2– [7Z71CTO1WW]

• 2 x 16 core CPUs.

Core: Intel(R) Xeon(R) Gold 6346 CPU @ 3.10GHz

• 256GB RAM

• Queue manager recovery log and queue data stored locally on 2 x 3.2TB NVMe SSDs

(KCM61VUL3T20) in RAID 0 array, unless otherwise specified.

• 100Gb ethernet adapters connect all three machines via an isolated performance

LAN (except for message compression tests where 10Gb links were used).

• Hyper-Threading is enabled but Turbo Boost is disabled. This is to assist with

achieving the best performance that is also consistent.

SAN Infrastructure:

• IBM 2498-F48 fibre channel SAN switch (16Gb/s ports)

• IBM SAN Volume Controller (2145-SV1) with 256GB RAM

• IBM Flash System 900 Storage.

A.1.2 Software

• Red Hat Enterprise Linux Server release 8.9 (Ootpa)

• JMSPerfHarness test driver (see Appendix D:)

• MQ-CPH MQI test driver (see Appendix D:)

• IBM MQ V9.4

A.1.3 Software

Red Hat Enterprise Linux Server release 8.9 (Ootpa)

MQ-CPH MQI test driver (see Appendix D:)

IBM MQ V9.4

44

A.2 Tuning Parameters Set for Measurements in This Report

The tuning detailed below was set specifically for the tests being run for this performance

report but in general follow the best practises.

A.2.1 Operating System

A good starting point is to run the IBM supplied program mqconfig. The following Linux

parameters were set for measurements in this report.

/etc/sysctl.conf

fs.file-max = 19557658

net.ipv4.ip_local_port_range = 1024 65535

net.core.rmem_max = 2147483647

net.core.wmem_max = 2147483647

net.ipv4.tcp_rmem = 4096 87380 2147483647

net.ipv4.tcp_wmem = 4096 65536 2147483647

vm.max_map_count = 1966080

kernel.pid_max = 655360

kernel.msgmnb = 131072

kernel.msgmax = 131072

kernel.msgmni = 32768

kernel.shmmni = 8192

kernel.shmall = 18446744073692774399

kernel.shmmax = 18446744073692774399

kernel.sched_latency_ns = 2000000

kernel.sched_min_granularity_ns = 1000000

kernel.sched_wakeup_granularity_ns = 400000

/etc/security/limits.d/mqm.conf

@mqm soft nofile 1048576

@mqm hard nofile 1048576

@mqm soft nproc 1048576

@mqm hard nproc 1048576

NFS mount for the MQ recovery log in NFS tests used the following

parameters:

rsize=1048576,wsize=1048576

45

A.2.2 IBM MQ

The following parameters are added or modified in the qm.ini files for the tests run in

section 4 of this report:

Channels:

 MQIBindType=FASTPATH

 MaxActiveChannels=5000

 MaxChannels=5000

Log:

 LogBufferPages=4096

 LogFilePages=16384

 LogPrimaryFiles=16

 LogSecondaryFiles=2

 LogType=CIRCULAR

 LogWriteIntegrity=TripleWrite

TuningParameters:

 DefaultPQBufferSize=10485760

 DefaultQBufferSize=10485760

For large message sizes (200K & 2MB), the queue buffers were increased further to:

DefaultPQBufferSize=104857600

DefaultQBufferSize=104857600

Note that large queue buffers may not be needed in your configuration. Writes to the queue

files are asynchronous, taking advantage of OS buffering. Large buffers were set in the runs

here, as a precaution only.

All client channels were configured with SHARECNV(1), which is the recommendation for

performance.

46

Appendix B: HA Test Configurations

B.1 SAN Storage Baseline Topology

The SAN tests used to compare with MIQM and RDQ tests used the following topology.

FIGURE 16 - SAN TEST TOPOLOGY

B.1.1 Hardware
QM Host:

• ThinkSystem SR630 V2– [7Z71CTO1WW]

• 2 x 16 core CPUs.

Core: Intel(R) Xeon(R) Gold 6346 CPU @ 3.10GHz

• 256GB RAM

• Queue manager recovery log and queue data on SAN.

• 100Gb ethernet adapter on an isolated performance LAN.

• Hyper-Threading is enabled but Turbo Boost is disabled. This is to assist with

achieving the best performance that is also consistent.

Client1 & Client2:

• ThinkSystem SR630 - [7X02CTO1WW]

• 2 x 12 core CPUs.

Core: Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHz

• 192GB RAM

47

SAN Infrastructure:

• IBM 2498-F48 fibre channel SAN switch (16Gb/s ports)

• IBM SAN Volume Controller (2145-SV1) with 256GB RAM

• IBM Flash System 900 Storage.

B.1.2 Software

• Red Hat Enterprise Linux Server release 8.5 (Ootpa)

• MQ-CPH MQI test driver (see Appendix D:)

• IBM MQ V9.4

48

B.2 MIQM Topology

For the MIQM tests the file system exported by the NFS server to host the MQ logs and

queues, was deployed on 2 x 3.2TB NVMe SSDs (KCM61VUL3T20) in a RAID 0 array. Links

between the applications and the MIQM QM hosts were 100Gb on the primary subnet,

whilst the NFS links were 100Gb on a separate subnet.

FIGURE 17 - MIQM TEST TOPOLOGY

B.2.1 Hardware
Active/Standby QM hosts and NFS Server:

• ThinkSystem SR630 V2– [7Z71CTO1WW]

• 2 x 16 core CPUs.

Core: Intel(R) Xeon(R) Gold 6346 CPU @ 3.10GHz

• 256GB RAM

• Queue manager recovery log and queue data on SAN.

• 100Gb ethernet adapter on an isolated performance LAN.

• Hyper-Threading is enabled but Turbo Boost is disabled. This is to assist with

achieving the best performance that is also consistent.

Client1 & Client2:

• ThinkSystem SR630 - [7X02CTO1WW]

• 2 x 12 core CPUs.

Core: Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHz

• 192GB RAM

49

B.2.2 Software

• Red Hat Enterprise Linux Server release 8.5 (Ootpa)

• MQ-CPH MQI test driver (see Appendix D:)

• IBM MQ V9.4

50

B.3 RDQM Topology

For RDQM testing, all three RDQM nodes were of type 1 (see machine types, below), and

the two application hosts were of type 2. The DRBD volume groups were deployed on 2 x

3.2TB NVMe SSDs (KCM61VUL3T20) in a RAID 0 array. Links between the applications and

the RDQM nodes were 100Gb on the primary subnet, whilst the RDQM data replications

links were 100Gb on a separate secondary subnet. Each RDQM node had a single

Pacemaker address (HA_Primary), utilising the 100Gb link.

FIGURE 18 - RDQM TEST TOPOLOGY

B.3.1 Hardware
Primary/Secondary/Tertiary QM hosts:

• ThinkSystem SR630 V2– [7Z71CTO1WW]

• 2 x 16 core CPUs.

Core: Intel(R) Xeon(R) Gold 6346 CPU @ 3.10GHz

• 256GB RAM

• Queue manager recovery log and queue data on SAN.

• 100Gb ethernet adapter on an isolated performance LAN.

• Hyper-Threading is enabled but Turbo Boost is disabled. This is to assist with

achieving the best performance that is also consistent.

Client1 & Client2:

• ThinkSystem SR630 - [7X02CTO1WW]

• 2 x 12 core CPUs.

Core: Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHz

51

• 192GB RAM

B.3.2 Software

• Red Hat Enterprise Linux Server release 8.5 (Ootpa)

• MQ-CPH MQI test driver (see Appendix D:)

• IBM MQ V9.4

52

Appendix C: Glossary of terms used in this report.

CD Continuous delivery.

JMSPerfharness JMS based, performance test application

(https://github.com/ot4i/perf-harness)

LTS Long term service.

MQ-CPH C based, performance test application

(https://github.com/ibm-messaging/mq-cph)

https://github.com/ot4i/perf-harness
https://github.com/ibm-messaging/mq-cph

53

Appendix D: Resources

MQ Performance GitHub Site

https://ibm-messaging.github.io/mqperf/

IBM MQ Performance: Best Practises, and Tuning Paper:

https://ibm-messaging.github.io/mqperf/MQ_Performance_Best_Practices_v1.0.1.pdf

IBM MQ Test Harnesses Launch Page (includes links to containerised versions of MQ-CPH

& JMSPerfHarness) :

Test Harnesses.

MQ-CPH (The IBM MQ Performance Harness for MQI in C)

https://github.com/ibm-messaging/mq-cph

 Tutorial: MQ-CPH_Introduction.pdf

JMSPerfHarness (The IBM MQ Performance Harness for JMS)

https://github.com/ot4i/perf-harness

 Tutorial: jmsperfharness_tutorial1.md

https://ibm-messaging.github.io/mqperf/
https://ibm-messaging.github.io/mqperf/MQ_Performance_Best_Practices_v1.0.1.pdf
https://ibm-messaging.github.io/mqperf/testharness.html
https://github.com/ibm-messaging/mq-cph
https://github.com/ibm-messaging/mq-cph/blob/master/samples/MQ-CPH_Introduction.pdf
https://github.com/ot4i/perf-harness
https://github.com/ot4i/perf-harness/blob/main/samples/jmsperfharness_tutorial1.md

