
How to maximise your single-threaded 
messaging rate  

Objective 

IBM MQ is a highly optimised, multi-threaded message broker able to service many concurrent 

connections. To achieve the best messaging throughput the general advice has always been to avoid 
the use of single-threaded applications, but we have had several similar enquiries recently that have 
commented the following: 

• “I want the highest messaging rate possible” 

• “I can’t run more than a single thread, the application is built that way” 

• “Why can’t MQ match the messaging rate of xyzMQ?” 

 

This report will discuss some configuration and tuning that will provide some answers to those 
questions; detailing what the performance benefit will be and what compromises to application design 

might have to be made to achieve those benefits. 

Background 

The vast majority of the MQ performance reports across distributed and appliance platforms feature a 
request/response scenario. This type of scenario is frequently used by our customers and provides 

repeatable results that can be recreated by customers using similar hardware and the configuration 
provided. The throughput results are measured in Round trips per second, with each round trip 
requiring two message PUTs and two message GETs. Some messaging provider reports that feature 

msg/sec headline values would need to be divided by 4 to be comparable with results that IBM publish 
as round trips/s. 

For the purposes of this report, we will be looking at the PUT (send) rate of a producer application 

sending 2K Non Persistent messages to a single queue. A GETting application consisting of 2 threads 
will be run local to the QM(using local bindings mode) to consume all messages sent and avoid 
growing the queue depth during the tests.  

The client runs on a single xLinux server, the QM runs on a separate xLinux server connected via a 
10Gb network. No latency was added between the client and the QM. Detailed specifications can be 
found in Appendix A. 

The test client for both sending and receiving is CPH (https://github.com/ibm-messaging/mq-cph). 
The configuration changes (to both QM.ini and cph) will be shown in the testing below, and how to 
monitor the QM to determine which connection mechanism is in use. 

FASTPATH binding, client binding, remote binding, bindings mode, 
server binding, standard binding 
The MQ documentation in this area can be a little confusing and we have multiple overlapping names 
that make it difficult to accurately describe the scenario and the configuration required to optimize the 
performance of that scenario. I will try and step through the different scenarios and how they are 

configured. 

  

https://github.com/ibm-messaging/mq-cph
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a) Standard binding (remote client) 

The application runs remote from the QM and communicates over the network with a Message 
Channel Agent(MCA) process that resides on the QM node. The MCA process then communicates using 
an IPC(Inter Process Communication) with the QM to perform the tasks required by the client. 

 

No QM tuning configuration required. No cph switches required. 

1 thread throughput: 8,900 msg/s 

runmqsc output: 

dis conn(*) all where(APPLTAG eq 'cph') 
AMQ8276I: Display Connection details. 
   CONN(E358A66500105240) 
   EXTCONN(414D5143504552463020202020202020) 
   TYPE(CONN) 
   PID(9464)                               TID(9) 
   APPLDESC(IBM MQ Channel)                APPLTAG(cph) 
   APPLTYPE(USER)                          ASTATE(NONE) 
   CHANNEL(SYSTEM.DEF.SVRCONN)             CLIENTID( ) 
   CONNAME(10.20.36.146)                   CONNOPTS(MQCNO_SHARED_BINDING) 
   USERID(mqperf)                          UOWLOG( ) 
   UOWSTDA( )                              UOWSTTI( ) 
   UOWLOGDA( )                             UOWLOGTI( ) 
   URTYPE(QMGR) 
   EXTURID(XA_FORMATID[] XA_GTRID[] XA_BQUAL[]) 
   QMURID(0.0)                             UOWSTATE(NONE) 
 

b) FASTPATH binding (remote client) 

The first tuning configuration that should be applied for most queue managers is to enable FASTPATH 
binding for the messaging channels. This is the default on the MQ appliance. This allows the MCA 

(Message Channel Agent) process that handles the incoming work at the QM, on behalf of the remote 
client to share the same memory space as the QM. The only reason that you wouldn’t enable this 
configuration is if you wanted to run user defined channel exits and had concerns about their 
robustness. 

Set by editing qm.ini and restarting the QM: 

Channels: 

MQIBindType=FASTPATH 

 

No cph switches required. 

1 thread throughput: 11,700 msg/s 

runmqsc output: 

dis conn(*) all where(APPLTAG eq 'cph') 
     1 : dis conn(*) all where(APPLTAG eq 'cph') 
AMQ8276I: Display Connection details. 
   CONN(3672A665002C0040) 
   EXTCONN(414D5143504552463020202020202020) 
   TYPE(CONN) 
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   PID(11777)                              TID(3) 
   APPLDESC(IBM MQ Channel)                APPLTAG(cph) 
   APPLTYPE(USER)                          ASTATE(NONE) 
   CHANNEL(SYSTEM.DEF.SVRCONN)             CLIENTID( ) 
   CONNAME(10.20.36.146)                   CONNOPTS(MQCNO_FASTPATH_BINDING) 
   USERID(mqperf)                          UOWLOG( ) 
   UOWSTDA( )                              UOWSTTI( ) 
   UOWLOGDA( )                             UOWLOGTI( ) 
   URTYPE(QMGR) 
   EXTURID(XA_FORMATID[] XA_GTRID[] XA_BQUAL[]) 
   QMURID(0.0)                             UOWSTATE(NONE) 
 

c) Standard binding (local client – client binding) 

With the application co-located on the same host as the QM, you can still use the client binding as per 
the scenario (a) and as before the application would communicate with the MCA over the network 
stack, the MCA would then communicate via IPC with the QM.  

You wouldn’t ordinarily run this scenario, because with the application co-located with the QM, a direct 
‘bindings mode’ or ‘standard binding’ can be used which will always be the more performant 
configuration as it removes the need for any networking, the MCA process or IPC between MCA and 
the QM (see sections e and f). 

 

No QM tuning configuration required. No cph switches required. 

1 thread throughput: 36,300 msg/s 

runmqsc output (as section (a) - though CONNAME will reflect IP address of QM as client is co-located) 

 

d) FASTPATH binding (local client – client binding) 

With the application co-located on the same host as the QM, you can still use the client binding as per 
the previous section and with FASTPATH binding enabled, the MCA again shares the same memory 

space as the QM.  

You wouldn’t ordinarily run this scenario, because with the application co-located with the QM, a direct 
‘bindings mode’ or ‘standard binding’ can be used which will always be the more performant 
configuration as it removes the need for any networking or MCA process (see next sections). 

 

Set by editing qm.ini and restarting the QM: 

Channels: 

MQIBindType=FASTPATH 

 

No cph switches required. 

1 thread throughput: 41,900 msg/s 

runmqsc output (as section (b) - though CONNAME will reflect IP address of QM as client is co-located) 

 



Page 4 

e) Standard binding (local client – standard binding or ‘bindings mode’) 

With the application co-located on the same host as the QM, this option allows the application to 
connect directly to the QM using IPC but the application does not share the same memory space as 
the QM.  

 

No QM tuning configuration required.  

CPH uses the flag -jt mqb to enable this mode. 

1 thread throughput: 64,700 msg/s 

runmqsc output: 

dis conn(*) all where(APPLTAG eq 'cph') 
     3 : dis conn(*) all where(APPLTAG eq 'cph') 
AMQ8276I: Display Connection details. 
   CONN(9D77A66500530040) 
   EXTCONN(414D5143504552463020202020202020) 
   TYPE(CONN) 
   PID(12508)                              TID(1) 
   APPLDESC( )                             APPLTAG(cph) 
   APPLTYPE(USER)                          ASTATE(NONE) 
   CHANNEL( )                              CLIENTID( ) 
   CONNAME( )                              CONNOPTS(MQCNO_SHARED_BINDING) 
   USERID(mqperf)                          UOWLOG( ) 
   UOWSTDA( )                              UOWSTTI( ) 
   UOWLOGDA( )                             UOWLOGTI( ) 
   URTYPE(QMGR) 
   EXTURID(XA_FORMATID[] XA_GTRID[] XA_BQUAL[]) 
   QMURID(0.0)                             UOWSTATE(NONE) 
   CONNTAG(MQCT9D77A66500530040PERF0_2024-01-16_10.13.31cph) 
 

Note how there is no CHANNEL or CONNAME defined. 

f) FASTPATH binding (local client – fastpath binding) 

With the application co-located on the same host as the QM, this option allows the application to share 
the same memory space as the QM. You would only use this option if you had full confidence in the 
robustness of your application. Its configuration is defined from within the application using CNO 

(Connect) options and to share the same address space, the application has to run as the same user 
as the QM. 

 

An MQI application needs to set: 

MQCNO.Options |= MQCNO_FASTPATH_BINDING: 

CPH uses the flag -jf true to enable this option. -jt mqb must also be set. 

 

1 thread throughput: 90,500 msg/s 

runmqsc output: 
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dis conn(*) all where(APPLTAG eq 'cph') 
     3 : dis conn(*) all where(APPLTAG eq 'cph') 
AMQ8276I: Display Connection details. 
   CONN(9D77A66500694045) 
   EXTCONN(414D5143504552463020202020202020) 
   TYPE(CONN) 
   PID(12793)                              TID(1) 
   APPLDESC( )                             APPLTAG(cph) 
   APPLTYPE(USER)                          ASTATE(NONE) 
   CHANNEL( )                              CLIENTID( ) 
   CONNAME( )                              CONNOPTS(MQCNO_FASTPATH_BINDING) 
   USERID(mqm)                             UOWLOG( ) 
   UOWSTDA( )                              UOWSTTI( ) 
   UOWLOGDA( )                             UOWLOGTI( ) 
   URTYPE(QMGR) 
   EXTURID(XA_FORMATID[] XA_GTRID[] XA_BQUAL[]) 
   QMURID(0.0)                             UOWSTATE(NONE) 
   CONNTAG(MQCT9D77A66500694045PERF0_2024-01-16_10.13.31cph) 
 

Note that the userid of the client application had to be the same as the QM (mqm) 

 

So you’ve now seen the performance benefits that can be achieved by enabling FASTPATH, co-locating 
the client with the QM and using bindings mode connections. If your clients are remote, and you wish 
to improve the performance of scenario (b) above, there are still some alternative methodologies that 

you might consider: 

• Asynchronous Put 

• Distributed Queuing (QM->QM message transfer) 

• Client/channel compression 

Asynchronous Put 

Performing messaging in a single thread for a default MQI configuration requires the MQPUT to wait 
for a response from the QM to acknowledge message receipt before subsequent messages can be 
sent. This requires a full line turnaround (Msg sent followed by receipt of Ack) in between each 
message, and thus messaging rate is heavily dependent (and restricted) by the latency of the 
connection to the QM. 

If an application->QM ping time is 1ms, then the theoretical maximum message rate a single thread 
could achieve would be 1000 msg/sec; though once you allow for application code, networking and 
QM processing, the realistic maximum would be much less. 

Asynchronous Put can be enabled for a destination, and this allows the application to send subsequent 
messages without waiting for acknowledgements from the QM. This avoids the line turnaround cost 

but puts a cost on the application should it wish to a) determine if not all messages were received, 
and b) resend those messages if required. 

The application can query about the number of messages received by the QM and the status of those 
messages by issuing an MQSTAT call. The application would have to store messages (at potentially 
some risk of loss) and incorporate the logic to resend any that weren’t successfully received by the 
QM. 

 

Set by editing the local queue definition: 

runmqsc QM 

ALTER QLOCAL(QUEUE1) DEFPRESP(ASYNC) 
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No QM tuning configuration required. No cph switches required. This is the same scenario as 

section(a) with the client located remotely. The number of responders has been increased to 10 
threads to ensure that the queue does not accumulate messages. 

1 thread throughput: 51,000 msg/s 

After enabling FASTPATH (See section (b) above), the result is: 

1 thread throughput: 63,000 msg/s 

As you can see, that’s quite a difference when the line turnaround can be avoided. This is especially 
suitable for scenarios where the data being flowed is temporal and it might not matter for an odd 
message to be lost, as a later message would soon supersede it. This style of application would avoid 
having to store and potentially resend messages which didn’t arrive. 

Summary of results 

Pulling together all of the results from the sections above, the table below shows what rate was 
achieved for a single threaded cph application putting 2K non-persistent messages on a single MQ 
queue. 

Remember that these rates are what can be achieved on the hardware and infrastructure the tests 
were run on here, your own results will of course be different. 

Scenario Rate 

Standard binding (remote client) 8,900 msg/s 

FASTPATH binding (remote client) 11,700 msg/s 

Standard binding (local client – client binding) 36,300 msg/s 

FASTPATH binding (local client – client binding) 41,900 msg/s 

Standard binding (local client – standard binding or ‘bindings mode’) 64,700 msg/s 

FASTPATH binding (local client – fastpath binding) 90,500 msg/s 

Asynchronous Put (remote client) 51,000 msg/s 

Asynchronous Put (remote client with FASTPATH) 63,000 msg/s 

 

I’ve got a high latency link between the client and QM, what are my options? 

Using additional concurrent clients would normally be enough to increase throughput in high latency 
scenarios, as you then have multiple threads of execution sending/receiving data over the high latency 
link. If you are single threaded, then one way of increasing throughput is to send the messages 
asynchronously as discussed in the section above; the second way is to use an additional MQ QM 
which then delivers the message to the destination QM via distributed queuing. 
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Adding 500μs of delay between our client and QM, the throughput of section(b) would drop to  

1650 msg/s 
 
Enabling asynchronous put in that same scenario, allows the throughput to achieve 52,000 msg/s 

 
If we then install a QM local to the client and configure distributed queueing to deliver the messages 
to the remote QM, the client can get acknowledgement quickly and leave MQ to manage the high 
latency transmission. 
 
With the same amount of latency, throughput of 36,000 msg/s can be achieved (this is the delivery 
rate to the local QM and the consumption rate of the remote QM) 

 
As the latency increases, you will likely need to increase the maximum depth of the transmission 
queue, increase the MQ batch size and/or add throttling to the client application. 
 
Now that we have a QM local to the client again, we can use local bindings to make the client handoff 

even faster. This increases the throughput rate to: 57,000 msg/s but also requires the channel batch 

size to be increased (to 200) to ensure that messaging workload can be transmitted to the remote QM 
whilst avoiding excessive queueing at the transmission queue. 
 
If the latency between the QM rises further, then additional configuration or application changes might 
be required. For a 2ms latency, a rate of 52,000 msg/s was achieved, with a batch size of 500; with 
the larger batch size increasing the average end-to-end message processing latency. 
 

Network restriction – Use MQ client compression to maximise throughput 

 
This would usually only be relevant to tests with concurrent workload but could apply to the single 
threaded case in extreme cases. MQ can apply compression to the message payload when the MQ 

client is communicating with a remote QM; and also between two QM in the distributed queueing 

topology.  
 
Both scenarios will add a little CPU and latency as the payload is compressed and uncompressed, but 
where the network environment is heavily restricted, this mechanism can be used to provide an 
overall increase in throughput. In my testing with a repeating payload the ZLIBFAST encryption 

offered a good balance between speed and compression rate, offering up to 6x throughput 
improvement. From MQ 9.4 an additional compression algorithm is available (LZ4FAST) which can 
provide further gains.  The performance gain you receive will depend on whether the data can be 
easily compressed (text-based message data such as XML and JSON will compress better than binary 
data), and how restrictive the network bottleneck is that you are trying to overcome. 

Conclusions  

In most scenarios MQ performs well with little or no tuning required by application users. In scenarios 

that inherently limit performance (single/low threadedness, high latency, network bottlenecks); some 
reconfiguration of your scenario/topology may be required to achieve specific SLA (Service Level 
Agreement) requirements. 

This document discusses a number of approaches to improving performance in those scenarios, how 
users could test these topologies (using open source tooling – see Appendix B) and apply them to 
their own environments. 
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Appendix A 

The three machines used for the performance tests in this report have the following specification: 

Category Value 

Machine x3550 M5 

OS Red Hat Enterprise Linux Server 7.3 

CPU 2x12 (2.6Ghz)  

RAM 128GB RAM 

Network 10Gb/40Gb Ethernet  

Disks 2x 480GB SSD      

RAID ServeRAID M5210 (4GB Flash RAID cache) 

 

Appendix B 

The tooling used to generate this report is available here: https://ibm-
messaging.github.io/mqperf/testharness.html 

 

 

https://ibm-messaging.github.io/mqperf/testharness.html
https://ibm-messaging.github.io/mqperf/testharness.html

