
Page 1

Performance testing on AWS featuring
SIQM, NativeHA and NHA:CRR scenarios

Objective
In previous OCP reports, data has been published from scenarios running in a bare-metal OpenShift
Cluster in our Hursley datacenter. Many customers are looking to run their messaging workload both
on-premise and in cloud environments. This paper will look at the performance of running MQ Queue
Managers (QM) within OpenShift in AWS.

There are three main ways of running OpenShift in AWS:

• RedHat OpenShift Service on AWS (ROSA)

• RedHat OpenShift dedicated service

• OpenShift installed on EC2 instances

This Whitepaper will look at option 3 using Installer Provisioned Infrastructure (IPI), as it allows full
control of compute and storage options and the report will focus on popular choices in production use.

The NHA:CRR testing will consist of an OpenShift cluster in both US-east-2(N. Virginia) and US-west-
2(N. California) locations and demonstrate the performance seen in a highly available distributed
environment.

To assist in sizing and to show the impact of increasing availability, results will be shown for Single
Instance Queue Manager (SIQM), NativeHA (NHA) and NativeHA:Cross Region Replication (NHA:CRR).

The test scenario is the Request/Responder scenario (RR-CC) as featured in our xLinux MQ
Performance report. Each round trip is comprised of two message Puts and two message Gets and

utilizes pairs of queues to communicate between the requester clients and responder applications.

Environment
OpenShift: 4.18.17
MQ Operator: 3.6
MQ: 9.4.3.0-r1
Control Plane nodes: 3
Worker nodes: 4 (3 for NHA, 1 for client application)

Instance specification: m5.4xlarge – 16vCPU, 64GB RAM, 10GbE
Storage specification: EBS GP3

Test client: cphtestp (containerized MQI test application, ran in different AZ to active QM)
Test client config: 12 cpu request, 16 cpu limit, 16GB memory request/limit, pinned to us-east-2b

Network
The latency between the US-east-2 and US-west-2 locations for the NHA:CRR testing is approximately
47ms. Latency measured between availability zones <1ms.

A single threaded iperf3 test between nodes in different Availability Zones(AZ) measured ~5Gbps.
Additional threads could produce 10Gbps bandwidth as expected by the EC2 instance specification. A
single thread test between US-east-2 and US-west-2 was measured at ~500Mbps

Page 2

Storage

EBS GP3 storage was selected as it provides a good balance between cost and performance. 8GB
volumes created for SIQM. 50GB volumes for NHA. 100GB volumes for the NHA:CRR remote group.
We saw no difference in performance between encrypted and non-encrypted volumes, so settled on
the following Storage class configuration:

GP3 Throughput: 1000MB/s

GP3 IOPS: 4000

Encrypted: true

A single thread performing an MQ simulated workload (MQLDT testing) achieved 64MB/s with 128KB
block size. Increasing the block size and/or concurrency could push this towards 500MB/s which is

approaching the limit of this EC2 instances storage bandwidth.

A similar test against AWS EFS storage produced 16MB/s with a 128KB block size, peaking at 100MB/s
with 6 threads.

EBS gp3 does perform replication within an availability zone, and whilst it could be argued that it is
not strictly necessary given that NativeHA is already replicating between zones, it may provide faster
Pod/Node recovery than if instance storage was utilized and all data would need to be resynchronized
after a failure.

SIQM Test configuration and results
This section uses the following test configuration:

• Persistent

• 2K / 20K / 200K messages size

• JSON formatted payload

• TLS12 enabled for Application communication

• 8GB PV allocated to QM instance

• AWS Network (between AZ): 5-10Gb

• Core allocation to QM pod resources: 8 cores

Page 3

Figure 1 - 2K SIQM Persistent messaging

In the chart above for 2K Persistent messaging, the throughput of the QM approaches 10,000 round

trip/s with 250 requester clients.

Figure 2 - 20K SIQM Persistent messaging

The chart above shows that as we increase the message size to 20K, the QM can process ~6,500

round trip/s at 250 requester clients.

0

10

20

30

40

50

60

70

80

90

100

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250 300

R
o

u
n

d
 t

ri
p

/s

Requester clients

2K P - 8 Cores

Msg rate

Client CPU

QM CPU

0

10

20

30

40

50

60

70

80

90

100

0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150 200 250 300

R
o

u
n

d
 t

ri
p

/s

Requester clients

20K P - 8 Cores

Msg rate

Client CPU

QM CPU

Page 4

Figure 3 - 200K SIQM Persistent messaging

The above chart shows that with a 200KB message size, 64 threads can achieve ~1,400 round trip/s
which is driving over 500MB/s through the EBS storage layer and reaching saturation point.

The base SIQM data shows good overall performance in AWS, though utilizing increasing numbers of
threads to achieve peak throughput. IO saturation was reached in the 200K test.

NHA Test configuration and results
This section uses the following test configuration:

• Persistent

• 2K / 20K / 200K messages size

• JSON formatted payload

• TLS12 enabled for Application and Live HA Group communication

• 50GB PV allocated to Live group instances

• IMGLOGLN set to 12500MB (25% of PV) – Controls when MQ media images are taken

• LZ4 Compression Enabled, CompressionThreshold=64 within NHA group

• AWS Network (between AZ): 5-10Gb

• Core allocation to QM pod resources: 8 cores

0

10

20

30

40

50

60

70

80

90

100

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300

R
o

u
n

d
 t

ri
p

/s

Requester clients

200K P - 8 Cores

Msg rate

Client CPU

QM CPU

Page 5

Figure 4 - 2K NHA Persistent messaging

The above chart shows how closely NHA performs in comparison to the SIQM performance with 2K
message size, with data now being persisted in 3 different AZ.

Figure 5 - 20K NHA Persistent messaging

The above chart shows that a small difference between SIQM and NHA performance appears as the
message size has increased to 20KB. The NHA scenario still demonstrates over 5,000 round trip/s at
250 requester clients.

0

10

20

30

40

50

60

70

80

90

100

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250 300

R
o

u
n

d
 t

ri
p

/s

Requester clients

2K P - 8 Cores

Msg rate

SIQM

Client CPU

QM CPU

0

10

20

30

40

50

60

70

80

90

100

0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150 200 250 300

R
o

u
n

d
 t

ri
p

/s

Requester clients

20K P - 8 Cores

Msg rate

SIQM

Client CPU

QM CPU

Page 6

Figure 6 - 200K NHA Persistent messaging

At 200KB message size, the NHA scenario is limited by the 10GbE networking bandwidth between the

nodes in different AZ. Higher specification EC2 instance types are available that could be utilized in
such high bandwidth scenarios.

NHA:CRR Test configuration and results
This section uses the following test configuration:

• Persistent

• 2K / 20K / 200K messages size

• JSON formatted payload

• TLS12 enabled for Application, Live HA Group, Recovery HA Group and Live->HA replication

• 8GB PV allocated to QM instance

• 50GB PV allocated to Live group instances

• 100GB PV allocated to Recovery group instances

• IMGLOGLN set to 12500MB (25% of PV) – Controls when MQ media images are taken

• LZ4 Compression enabled, CompressionThreshold=64 within NHA groups and between the live

and recovery groups

• AWS Network (between AZ): 5-10Gb

• AWS Network (cross region): 0.5-1Gb

• Core allocation to QM pod resources: 8 cores

0

10

20

30

40

50

60

70

80

90

100

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300

R
o

u
n

d
 t

ri
p

/s

Requester clients

200K P - 8 Cores

Msg rate

SIQM

Client CPU

QM CPU

Page 7

Figure 7 - 2K NHA:CRR Persistent messaging

The 2K test above performs identically whether you have CRR enabled to the DR Recovery group or

not, even with 47ms of latency between the two regions. Hence, the blue NHA:CRR line is obscured by
the purple NHA line above.

Figure 8 - 20K NHA:CRR Persistent messaging

The 20K test above again performs similarly whether you have CRR enabled to the DR Recovery group
or not, even with the inter-region latency. A throughput rate of over 5000 round trip/s is achieved

0

10

20

30

40

50

60

70

80

90

100

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250 300

R
o

u
n

d
 t

ri
p

/s

Requester clients

2K P - 8 Cores

Msg rate

NHA

Client CPU

QM CPU

0

10

20

30

40

50

60

70

80

90

100

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300

R
o

u
n

d
 t

ri
p

/s

Requester clients

20K P - 8 Cores

Msg rate

NHA

Client CPU

QM CPU

Page 8

with a 20K message size; this is measured from the application perspective and does not reflect the

message data that may be lost due to the asynchronous nature of the connection between the
regions. Monitoring the RPA (Recovery Point Actual), with RPA being the amount of data that you
would lose should a failure occur at the primary site, is an important part of deploying a distributed

scenario. Our initial whitepaper on NHA:CRR discusses this aspect in more detail.

Figure 9 - 200K:CRR Persistent messaging

The above chart again shows that in this 200K distributed AWS scenario, the addition of the DR
location has had little impact to the messaging rate that can be achieved by the highly available
primary site.

All this data shows that enabling NHA:CRR has very little impact when the replication infrastructure is
able to support the messaging volume, and we have gained a full set of consistent data at our
recovery site, albeit a little behind our live site. If the replication infrastructure cannot keep pace with
the messaging workload at the live group, the recovery group may eventually require a rebase (i.e. a
new recovery log to be sent to the recovery group).

Scaling Results
The results presented so far have been with a QM CPU request/limit of 8 cores. To illustrate how MQ

performs in the AWS environment with smaller levels of CPU resources, the 2K, 20K and 200K

message tests have been run against the MQ QM in multiple CPU configurations and the peak
throughput noted.

The active and replica QM are each deployed with the same CPU request/limits.

The graph below shows how the MQ QM scales across varying CPU cores with a 2K message size.

0

10

20

30

40

50

60

70

80

90

100

0

100

200

300

400

500

600

0 50 100 150 200 250 300

R
o

u
n

d
 t

ri
p

/s

Requester clients

200K P - 8 Cores

Msg rate

NHA

Client CPU

QM CPU

Page 9

Figure 10 - 2K Scaling

The chart above shows how we can support nearly 800 round trips/s at half a single CPU core right up

to nearly 10,000 round trips/s at 8 CPU cores for Native HA Persistent messaging. The results are
similar for SIQM and NHA:CRR scenarios.

For NP messaging against a SIQM the respective values are approximately 2,500 and 27,000 round
trips/s.

The graph below shows how the MQ QM scales across varying CPU cores with a 20K message size.

0.5 1 2 4 8

2K P NHA 841.57 1721.08 3389.4 6099.46 9667.73

2K P NHA:CRR 803.41 1758.12 3305.05 6302.04 9815.68

2K P SIQM 912.69 1971.13 3557.52 6348.94 9882.37

2K NP SIQM 2559.11 4964.38 9075.72 16029.94 26987.4

0

5000

10000

15000

20000

25000

30000
R

o
u

n
d

 t
ri

p
/s

CPU Cores (Limit)

2K Message Scaling

Page 10

Figure 11 - 20K Scaling

The chart above shows how we can support over 500 round trips/s at half a single CPU core right up
to over 5,000 round trips/s at 8 CPU cores for Native HA Persistent messaging. The results are similar
for NHA:CRR scenarios. The SIQM scenario starts to show a benefit over the NHA scenarios.

For NP messaging against a SIQM the respective values are approximately 1,500 and 16,000 round

trips/s.

The graph below shows how the MQ QM scales across varying CPU cores with a 200K message size.

0.5 1 2 4 8

20K P NHA 612.2 1162.63 2280.87 3477.85 5252.08

20K P NHA:CRR 582.92 1181.18 2127.27 3555.58 5106.69

20K P SIQM 607.62 1343.29 2462.22 4472.48 6546.06

20K NP SIQM 1675.45 2987.08 5349.58 9329.93 15965.57

0

2000

4000

6000

8000

10000

12000

14000

16000

18000
R

o
u

n
d

 t
ri

p
/s

CPU Cores (Limit)

20K Message Scaling

Page 11

Figure 12 - 200K Scaling

The chart above shows how we can support over 100 round trips/s at half a single CPU core right up

to around 500 round trips/s at 8 CPU cores for Native HA Persistent messaging. The results are similar
for NHA:CRR scenarios. The SIQM scenario shows a clear benefit over the NHA scenarios due to not

having to send messaging data to replica QM

For NP messaging against a SIQM the respective values are approximately 400 and 3,000 round
trips/s.

Conclusion
The new capabilities of NHA:CRR provide further availability to your messaging infrastructure by
supporting asynchronous replication to a disaster recovery (DR) site remote from the location of your
Live HA group (already providing High Availability). The AWS combination of multiple AZs and regions

helps create a truly available solution for MQ.

AWS offers a wide choice of deployment options for MQ on OpenShift scenarios, with a myriad of

compute nodes, storage options, network bandwidth, AZs and regions available for use. This

whitepaper illustrates the performance of some popular AWS choices to help guide your selection. As
always, you are recommended to test with your own application clients and deployment choices to
ensure your performance requirements can be met.

0.5 1 2 4 8

200K P NHA 136.78 261.36 478.63 504.88 507.39

200K P NHA:CRR 118.27 250.43 459.36 518.81 526.4

200K P SIQM 249.72 458.81 838.49 1432.1 1432.14

200K NP SIQM 416.77 771.36 1362.74 2397.56 2959.17

0

500

1000

1500

2000

2500

3000

3500
R

o
u

n
d

 t
ri

p
/s

CPU Cores (Limit)

200K Message Scaling

Page 12

Links
cphtestp

https://github.com/ibm-messaging/cphtestp

Performance Test on NHA:CRR
https://ibm-messaging.github.io/mqperf/PerformanceTestOnNHACRR.pdf

Native HA Performance on OpenShift
https://github.com/ibm-messaging/mqperf/blob/gh-pages/openshift/OCP4.12-NativeHA.pdf

NHA:CRR Documentation

https://www.ibm.com/docs/en/ibm-mq/9.4?topic=containers-native-ha-cross-region-replication

NHA:CRR Advanced tuning
https://www.ibm.com/docs/en/ibm-mq/9.4?topic=operator-advanced-tuning-native-ha-crr

Monitoring system resource using amqsrua

https://www.ibm.com/docs/en/ibm-mq/9.4?topic=stmat-monitoring-system-resource-usage-by-
using-amqsrua-command

Metrics published on the system topics
https://www.ibm.com/docs/en/ibm-mq/9.4?topic=trace-metrics-published-system-topics

https://github.com/ibm-messaging/cphtestp
https://ibm-messaging.github.io/mqperf/PerformanceTestOnNHACRR.pdf
https://github.com/ibm-messaging/mqperf/blob/gh-pages/openshift/OCP4.12-NativeHA.pdf
https://www.ibm.com/docs/en/ibm-mq/9.4?topic=containers-native-ha-cross-region-replication
https://www.ibm.com/docs/en/ibm-mq/9.4?topic=operator-advanced-tuning-native-ha-crr
https://www.ibm.com/docs/en/ibm-mq/9.4?topic=stmat-monitoring-system-resource-usage-by-using-amqsrua-command
https://www.ibm.com/docs/en/ibm-mq/9.4?topic=stmat-monitoring-system-resource-usage-by-using-amqsrua-command
https://www.ibm.com/docs/en/ibm-mq/9.4?topic=trace-metrics-published-system-topics

