

IBM MQ V9.4.3 for Linux (x86-64 platform)

Performance Report(For Monitoring Queue and Channel , Activity trace, MQ Trace)

Version 1.0 - August 2025

Keshava M Chandraiah

IBM MQ Performance

IBM India Software Lab

Bangalore

Introduction

The report has been prepared using IBM MQ V9.4.3. This report provides insights into
the overhead on message throughput and CPU utilization when using the techniques
mentioned below to analyse issues.

Monitoring in IBM MQ

IBM MQ provides monitoring attributes and status commands to keep track of
channels (communication links) and queues (message storage). This report
measures the performance impact of MQ Queue and Channel Monitoring
https://www.ibm.com/docs/en/ibm-mq/9.4.x?topic=network-real-time-
monitoring

MQ Activity Trace

The MQ Activity Trace uses the mqat.ini file as a configuration file. It controls how
much API call information MQ records for applications. This information can be
used to debug message flows, check application behaviour (Get/Put/Commit),
and messaging performance

https://www.ibm.com/docs/en/ibm-mq/9.4.x?topic=multiplatforms-activity-
trace-configuration-file-mqatini

MQ Trace

The MQ Trace is a diagnostic mechanism that records either internal MQ
operations (internal trace) or application-level API calls (API trace). It is usually
gathered on request from IBM Support, though some users have used it to
confirm application behaviour. The trace can include application level MQ API
calls (MQPUT, MQGET, MQOPEN, MQCLOSE, etc.).

https://www.ibm.com/docs/en/ibm-mq/9.4.x?topic=reference-strmqtrc-start-
trace

https://www.ibm.com/docs/en/ibm-mq/9.4.x?topic=network-real-time-monitoring
https://www.ibm.com/docs/en/ibm-mq/9.4.x?topic=network-real-time-monitoring
https://www.ibm.com/docs/en/ibm-mq/9.4.x?topic=multiplatforms-activity-trace-configuration-file-mqatini
https://www.ibm.com/docs/en/ibm-mq/9.4.x?topic=multiplatforms-activity-trace-configuration-file-mqatini
https://www.ibm.com/docs/en/ibm-mq/9.4.x?topic=reference-strmqtrc-start-trace
https://www.ibm.com/docs/en/ibm-mq/9.4.x?topic=reference-strmqtrc-start-trace

Workloads

Workloads used in the generation of performance data for this report. All
workloads are requester/responder (RR) scenarios which are synchronous in
style because the application putting a message on a queue will wait for a
response on the reply queue before putting the next message. They typically run
‘unrated’ (no think time between getting a reply and putting the next message on
the request queue).

Workload Description
RR-DQ-BB Distributed queueing between two queue

managers on separate hosts, with binding
mode requesters and responders.

RR-BB Binding mode requesters and responders
RR-CC Client mode requesters, and responders

on separate, unique hosts

 Refer below link for more information

https://github.com/ibm-messaging/mqperf/blob/gh-
pages/MQ_V9.4_Performance_Report_xLinux_v1.0.pdf

https://github.com/ibm-messaging/mqperf/blob/gh-pages/MQ_V9.4_Performance_Report_xLinux_v1.0.pdf
https://github.com/ibm-messaging/mqperf/blob/gh-pages/MQ_V9.4_Performance_Report_xLinux_v1.0.pdf

Monitoring Queue and Channel

The various workload used - RR-BB RR-DQ-BB RR-CC

Below commands used to alter Queue and Channel attribute

ALTER QMGR MONCHL(HIGH)

 ALTER QMGR MONQ(HIGH)

1) Workload (RR-BB)

Figure 1 - Monitoring Channel & Queue using RR-BB for Non-Persistent
messaging(2K)

Legend Description Corresponding CPU Usage
Base Rate Monitoring of Channel

and Queue = OFF
Base CPU

Trace-High Rate Monitoring of Channel
and Queue = High

Trace-High CPU

0

10

20

30

40

50

0

50000

100000

150000

200000

250000

300000

350000

400000

1 4 8 12 16 20 24 28 32 36 40
C

PU
%

Ro
un

d
tr

ip
s/

se
c

Requester Clients

Monitoring Channel-Queue(RR-BB)

Trace-High Rate Base Rate Trace-High CPU Base CPU

• The throughput for various Workloads for different Requester Clients are
same

• There is no impact on message throughput

2) Workload RR-DQ-BB

Figure 2 - Monitoring Channel & Queue using RR-DQ-BB for Non-Persistent
messaging(2K)

Legend Description Corresponding CPU Usage
Base Rate Monitoring of Channel

and Queue = OFF
Base CPU

Trace-High Rate Monitoring of Channel
and Queue = High

Trace-High CPU

• The throughput for various Workloads for different Requester Clients are
same

• There is no impact on message throughput

0

20

40

60

80

100

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1 100 200 300 400 500 600 700 800 900 1000

C
PU

%

Ro
un

d
tr

ip
s/

se
c

Requester Clients

Monitoring Channel-Queue(MDQ)

Base Rate Trace-High Rate Base CPU Trace-High CPU

3) Workload RR-CC

Figure 3 - Monitoring Channel & Queue using RR-CC for Non-Persistent
messaging(2K)

Legend Description Corresponding CPU Usage
Base Rate Monitoring of Channel

and Queue = OFF
Base CPU

Trace-High Rate Monitoring of Channel
and Queue = High

Trace-High CPU

• The throughput for various Workload’s for different Requester Clients are
same

• There is no impact on message throughput

0

10

20

30

40

50

60

70

80

0

50000

100000

150000

200000

250000

300000

350000

400000

1 30 60 90 120 150 180 210 240 270 300

C
PU

%

Ro
un

d
tr

ip
s/

se
c

Requester Clients

Monitoring Channel-Queue(RR-CC)

Base Rate Trace-High Rate Base CPU Trace-High CPU

Activity Trace

Performance Measurement – Trace Across All Application Pairs

The Activity Trace is applied across all Requester/Responder pairs for a given
workload

(Refer below section to know how to enable

 Appendix C : Enabling Activity Trace: Across All Application Pairs for

Trace Level=High)

Persistence

Figure 4 - Activity Trace for all application(RR-CC) for Persistent
messaging(2K) with Level = Low, Medium, High

0

20

40

60

80

100

120

0

20000

40000

60000

80000

100000

120000

140000

1 30 60 90 120 150 180 210 240 270 300

C
PU

%

Ro
un

d
tr

ip
s/

se
c

Requester Clients

ActivityTrace-Low,Med,High

Base Rate Trace-Low Rate Trace-Med Rate Trace-High Rate

Base CPU Trace-Low CPU Trace-Med CPU Trace-High CPU

Legend Description Corresponding CPU Usage
Base Rate No Activity Trace Base CPU
Trace-Low Rate Activity Trace enabled

for Low
Trace-Low CPU

Trace-Med Rate Activity Trace enabled
for Medium

Trace-Med CPU

Trace-High Rate Activity Trace enabled
for High

Trace-High CPU

Workload Message Rate CPU% Throughput Impact%
Without Activity Trace 124652 76
Activity Trace=Low 73375 94 −41
Activity Trace=Medium 35912 93 -71
Activity Trace=High 34754 95 -72

• The table gives the throughput for various Workloads when Requester Clients
reaches to 300

• This shows how message throughput is affected for a given Activity Trace
Level, with Medium and High trace levels having the most impact.

Non Persistence

Figure 5 - Activity Trace for all application(RR-CC) for Non-Persistent
messaging(2K) with Level = Low, Medium, High

Legend Description Corresponding CPU Usage
Base Rate No Activity Trace Base CPU
Trace-Low Rate Activity Trace enabled

for Low
Trace-Low CPU

Trace-Med Rate Activity Trace enabled
for Medium

Trace-Med CPU

Trace-High Rate Activity Trace enabled
for High

Trace-High CPU

0

20

40

60

80

100

120

0

50000

100000

150000

200000

250000

300000

350000

400000

1 30 60 90 120 150 180 210 240 270 300

C
PU

%

Ro
un

d
tr

ip
s/

se
c

Requester Clients

ActivityTrace-Low,Med,High

Base Rate Trace-Low Rate Trace-Med Rate Trace-High Rate

Base CPU Trace-Low CPU Trace-Med CPU Trace-High CPU

Workload Message Rate CPU% Throughput Impact%
Without Activity Trace 362086 75
Activity Trace=Low 159619 100 −56
Activity Trace=Medium 55269 100 -85
Activity Trace=High 51713 100 -86

• The table gives the throughput for various Workloads when Requester Clients
reaches to 300

• This shows message throughput significantly affects for a given Activity Trace
Level. It affects significantly when TraceLevel=Medium or High

Performance Measurement - Activity Trace output redirected to external file

There is no impact on throughput when Activity Trace logging to the external file
system

Example /opt/mqm/samp/bin/amqsact -m -w 60 > /tmp/acttrace.log

Performance Measurement - Single Data Point Tests

The Activity Trace was enabled to capture end-to-end interactions between
Requester and Responder applications under the same workload of 100
Clients. The workload itself remains constant across all runs; what changes is
the scope of tracing applied.

In each iteration, the trace is applied to different sets of Requester/Responder
pairs as below:

• One Pair of Applications: Req0 ↔ Res0

• Five Pairs of Applications: Req0/Res0 … Req5/Res5

• Ten Pairs of Applications: Req0/Res0 … Req10/Res10

• Twenty Pairs of Applications: Req0/Res0 … Req20/Res20

• Forty Pairs of Applications: Req0/Res0 … Req40/Res40

• Sixty Pairs of Applications: Req0/Res0 … Req60/Res60

Each configuration is executed in a separate iteration, with traces collected only
for the selected pairs while the workload continues for all 100 clients.

This method ensures consistent workload conditions while analysing the impact
of tracing across varying levels of application concurrency, making it possible to
compare performance trends

 (Refer below section to know how to enable

 Appendix C : Enabling Activity Trace: Single Data Point Tests)

Persistence

Workload(RR-CC)-100 Req/Res-Low Level Activity Trace

Figure 6 - Activity Trace for Different Pair of applications(RR-CC) for Persistent
messaging(2K) with Level = Low

Legend Description Corresponding CPU Usage
Message Rate Represents From Base

Rate(No trace) to
Applying Activity
Trace(Low) for 1 Pair, 5
Pair, 10 Pair, 20 Pair, 40
pair, 60 Pair of Req/Res
Applications

CPU

Workload Message Rate CPU% Throughput Impact%
No Activity Trace 123112 70

0
10
20
30
40
50
60
70
80
90

0

20000

40000

60000

80000

100000

120000

140000

Base Rate Trace- 1
Pair

Trace- 5
Pair

Trace- 10
Pair

Trace- 20
Pair

Trace- 40
Pair

Trace- 60
Pair

C
PU

%

Ro
un

d
tr

ip
s/

se
c

Trace for a Req/Res Pair (out of 100)

ActivityTrace(Low)-Persist

Message Rate CPU

Activity Trace-Pair of 1 122297 70 -1
Activity Trace-Pair of 5 120939 69 -2
Activity Trace=Pair of 10 118929 70 −3
Activity Trace=Pair of 20 114727 72 −7
Activity Trace=Pair of 40 101697 80 −17
Activity Trace=Pair of 60 85006 84 −31

• The table gives the throughput for a trace of different pairs of Req/Res among 100
Requester Clients

• The message throughput is impacted progressively as the number of
applications being traced increases (dropping to 85006/sec for a trace of 60
Req/Res pairs).

Workload(RR-CC)-100 Req/Res-Medium Level Activity Trace

Figure 7 - Activity Trace for Different Pair of applications(RR-CC) for Persistent
messaging(2K) with Level = Medium

Legend Description Corresponding CPU Usage
Message Rate Represents From Base

Rate(No trace) to
Applying Activity
Trace(Medium) for 1 Pair,
5 Pair, 10 Pair, 20 Pair, 40
pair, 60 Pair of Req/Res
Applications

CPU

0

20

40

60

80

100

0

20000

40000

60000

80000

100000

120000

140000

Base Rate Trace- 1
Pair

Trace- 5
Pair

Trace- 10
Pair

Trace- 20
Pair

Trace- 40
Pair

Trace- 60
Pair

C
PU

%

Ro
un

d
tr

ip
s/

se
c

Trace for a Req/Res Pair (out of 100)

ActivityTrace(Med)-Persist

Message Rate CPU

Workload Message Rate CPU% Throughput Impact%
No Activity Trace 123112 70
Activity Trace-Pair of 1 121270 70 −1
Activity Trace-Pair of 5 120555 70 −2
Activity Trace=Pair of 10 115998 72 −6
Activity Trace=Pair of 20 106294 77 −14
Activity Trace=Pair of 40 75395 85 −39
Activity Trace=Pair of 60 50697 90 −59

• The table gives the throughput for a trace of different pairs of Req/Res among 100
Requester Clients

• The message throughput is impacted progressively as the number of
applications being traced increases (dropping to 50697/sec for a trace of 60
Req/Res pairs).

Workload(RR-CC)-100 Req/Res-High Level Activity Trace

Figure 8 - Activity Trace for Different Pair of applications(RR-CC) for Persistent
messaging(2K) with Level = High

Legend Description Corresponding CPU Usage
Message Rate Represents From Base

Rate(No trace) to
Applying Activity
Trace(High) for 1 Pair, 5
Pair, 10 Pair, 20 Pair, 40
pair, 60 Pair of Req/Res
Applications

CPU

0

20

40

60

80

100

0

20000

40000

60000

80000

100000

120000

140000

Base Rate Trace- 1
Pair

Trace- 5
Pair

Trace- 10
Pair

Trace- 20
Pair

Trace- 40
Pair

Trace- 60
Pair

C
PU

%

Ro
un

d
tr

ip
s/

se
c

Trace for a Req/Res Pair (out of 100)

ActivityTrace(High)-Persist

Message Rate CPU

Workload Message Rate CPU% Throughput Impact%
No Activity Trace 123112 69
Activity Trace-Pair of 1 122209 69 -1
Activity Trace-Pair of 5 120055 71 −2
Activity Trace=Pair of 10 115276 71 −6
Activity Trace=Pair of 20 105176 76 −15
Activity Trace=Pair of 40 72270 86 −41
Activity Trace=Pair of 60 47346 87 −62

• The table gives the throughput for a trace of different pairs of Req/Res among 100
Requester Clients

• The message throughput is impacted progressively as the number of
applications being traced increases (dropping to 47346/sec for a trace of 60
Req/Res pairs).

NonPersistence

Workload(RR-CC)-100 Req/Res-Low Level Activity Trace

Figure 9 - Activity Trace for Different Pair of applications(RR-CC) for
NonPersistent messaging(2K) with Level = Low

Legend Description Corresponding CPU Usage
Message Rate Represents From Base

Rate(No trace) to
Applying Activity

CPU

0

20

40

60

80

100

0
50000

100000
150000
200000
250000
300000
350000
400000
450000

Base Rate Trace- 1
Pair

Trace- 5
Pair

Trace- 10
Pair

Trace- 20
Pair

Trace- 40
Pair

Trace- 60
Pair

C
PU

%

Ro
un

d
tr

ip
s/

se
c

Trace for a Req/Res Pair (out of 100)

ActivityTrace(Low)-NonPersist

Message Rate CPU

Trace(Low) for 1 Pair, 5
Pair, 10 Pair, 20 Pair, 40
pair, 60 Pair of Req/Res
Applications

Workload Message Rate CPU% Throughput Impact%
No Activity Trace 397646 50
Activity Trace-Pair of 1 392391 81 −1
Activity Trace-Pair of 5 391168 80 −2
Activity Trace=Pair of 10 382602 81 −4
Activity Trace=Pair of 20 356086 87 −10
Activity Trace=Pair of 40 282702 92 −29
Activity Trace=Pair of 60 221154 94 −44

• The table gives the throughput for a trace of different pairs of Req/Res among 100
Requester Clients

• The message throughput is impacted progressively as the number of
applications being traced increases (dropping to 221154/sec for a trace of 60
Req/Res pairs).

Workload(RR-CC)-100 Req/Res-Medium Level Activity Trace

Figure 10 - Activity Trace for Different Pair of applications(RR-CC) for
NonPersistent messaging(2K) with Level = Medium

Legend Description Corresponding CPU Usage
Message Rate Represents From Base

Rate(No trace) to
CPU

0

20

40

60

80

100

120

0
50000

100000
150000
200000
250000
300000
350000
400000
450000

Base Rate Trace- 1
Pair

Trace- 5
Pair

Trace- 10
Pair

Trace- 20
Pair

Trace- 40
Pair

Trace- 60
Pair

C
PU

%

Ro
un

d
tr

ip
s/

se
c

Trace for a Req/Res Pair (out of 100)

ActivityTrace(Med)-NonPersist

Message Rate CPU

Applying Activity
Trace(Medium) for 1 Pair,
5 Pair, 10 Pair, 20 Pair, 40
pair, 60 Pair of Req/Res
Applications

Workload Message Rate CPU% Throughput Impact%
No Activity Trace 397646 50
Activity Trace-Pair of 1 394274 79 -1
Activity Trace-Pair of 5 381073 82 −4
Activity Trace=Pair of 10 354069 85 −11
Activity Trace=Pair of 20 311358 90 −22
Activity Trace=Pair of 40 233442 94 −41
Activity Trace=Pair of 60 153806 96 −61

• The table gives the throughput for a trace of different pairs of Req/Res among 100
Requester Clients

• The message throughput is impacted progressively as the number of
applications being traced increases (dropping to 153806/sec for a trace of 60
Req/Res pairs).

Workload(RR-CC)-100 Req/Res-High Level Activity Trace

Figure 11 - Activity Trace for Different Pair of applications(RR-CC) for
NonPersistent messaging(2K) with Level = High

0

20

40

60

80

100

120

0
50000

100000
150000
200000
250000
300000
350000
400000
450000

Base Rate Trace- 1
Pair

Trace- 5
Pair

Trace- 10
Pair

Trace- 20
Pair

Trace- 40
Pair

Trace- 60
Pair

C
PU

%

Ro
un

d
tr

ip
s/

se
c

Trace for a Req/Res Pair (out of 100)

ActivityTrace(High)-NonPersist

Message Rate CPU

Legend Description Corresponding CPU Usage
Message Rate Represents From Base

Rate(No trace) to
Applying Activity
Trace(High) for 1 Pair, 5
Pair, 10 Pair, 20 Pair, 40
pair, 60 Pair of Req/Res
Applications

CPU

Workload Message Rate CPU% Throughput Impact%
No Activity Trace 397646 50
Activity Trace-Pair of 1 395040 80 -1
Activity Trace-Pair of 5 381711 80 −4
Activity Trace=Pair of 10 353848 85 −11
Activity Trace=Pair of 20 308267 90 −22
Activity Trace=Pair of 40 239130 94 −40
Activity Trace=Pair of 60 147179 96 −63

• The table gives the throughput for a trace of different pairs of Req/Res among 100
Requester Clients

• The message throughput is impacted progressively as the number of
applications being traced increases (dropping to 147179/sec for a trace of 60
Req/Res pairs).

MQ Trace v/s Activity Trace (Low, Medium, High)

Comparison of IBM MQ Trace and Activity Trace at Low, Medium, and High levels

MQ Trace is a facility typically used to support IBM in diagnosing behaviour. It typically
has a heavy impact on performance due to the depth of tracing that is performed. MQ
Trace enabled at the API level.

The Activity Trace is applied across all Requester/Responder pairs for a given workload,
with varying trace levels (Low, Medium, High)

Persistence

Workload(RR-CC)

Figure 12 - Activity Trace v/s MQ Trace(API) - applications(RR-CC) for Persistent
messaging(2K)

Legend Description Corresponding CPU Usage
Base Rate No Activity Trace Base CPU
Trace-Low Rate Activity Trace enabled

for Low
Trace-Low CPU

Trace-Med Rate Activity Trace enabled
for Medium

Trace-Med CPU

Trace-High Rate Activity Trace enabled
for High

Trace-High CPU

Trace-MQ Rate MQ Trace (API only)
enabled

Trace-MQ CPU

Workload Message Rate CPU% Throughput Impact%
Without Trace 124652 76
Activity Trace=Low 73375 94 −41
Activity Trace=Medium 35912 93 −71
Activity Trace=High 34754 95 −72
MQ Trace 37083 95 −70

0

20

40

60

80

100

120

0
20000
40000
60000
80000

100000
120000
140000

1 30 60 90 120 150 180 210 240 270 300

C
PU

%

Ro
un

d
tr

ip
s/

se
c

Requester Clients

Activity Trace v/s MQTrace - Persistence

Base Rate Trace-Low Rate Trace-Med Rate Trace-High Rate

Trace-MQ Rate Base CPU Trace-Low CPU Trace-Med CPU

Trace-High CPU Trace-MQ CPU

• The table gives the throughput for various Workloads when Requester Clients
reaches to 300

• Turning on Activity Trace at medium or high levels has a performance impact
similar to MQ Trace. However, this impact can be reduced by applying the
trace selectively, as demonstrated in the previous sections

Non Persistence

Workload(RR-CC)

Legend Description Corresponding CPU Usage
Base Rate No Activity Trace Base CPU
Trace-Low Rate Activity Trace enabled

for Low
Trace-Low CPU

Trace-Med Rate Activity Trace enabled
for Medium

Trace-Med CPU

Trace-High Rate Activity Trace enabled
for High

Trace-High CPU

Trace-MQ Rate MQ Trace (API only)
enabled

Trace-MQ CPU

0

20

40

60

80

100

120

0

50000

100000

150000

200000

250000

300000

350000

400000

1 30 60 90 120 150 180 210 240 270 300

C
PU

%

Ro
un

d
tr

ip
s/

se
c

Requester Clients

Activity Trace v/s MQTrace - NonPersistence

Base Rate Trace-Low Rate Trace-Med Rate Trace-High Rate

Trace-MQ Rate Base CPU Trace-Low CPU Trace-Med CPU

Trace-High CPU Trace-MQ CPU

Workload Message Rate CPU% Throughput Impact%
Without Trace 363210 74
Activity Trace=Low 159619 100 −56
Activity Trace=Medium 55269 100 −84
Activity Trace=High 51713 100 −85
MQ Trace 55607 100 −84

Figure 13 - Activity Trace v/s MQ Trace(API) - applications(RR-CC) for
NonPersistent messaging(2K)

• The table gives the throughput for various Workloads when Requester Clients
reaches to 300

• Turning on Activity Trace at medium or high levels has a performance impact
similar to MQ Trace. However, this impact can be reduced by applying the
trace selectively, as demonstrated in the previous sections

Conclusion

• Monitoring of channels and queues provides valuable operational insights
while adding no measurable performance overhead, making it safe to use

• The overhead of Activity Trace depends on the trace level selected. By
applying trace only to specific applications, the overhead can be reduced,
though the impact should always be carefully evaluated before use.

• At Higher and Medium levels, Activity Trace introduces an overhead
comparable to MQ Trace(API only). Therefore, both tracing methods
should be enabled selectively and only for diagnostic purposes, with
careful consideration of performance impact

• It was also observed that enabling Activity Trace alone (even without
applying changes to the mqat.ini) impacts message rate significantly,
with up to an 80% reduction as by default all applications would be
traced.

Appendix A: Test Configurations

A.1 Hardware/Software – Set1 All of the testing in this document (apart from
when testing results are shown from a different platform and are clearly
identified as such) was performed on the following hardware and software
configuration:

A.1.1 Hardware Server1, client1 & client2 are three identical machines:

Lenovo ThinkSystem SR630 V3

Processor: 2 × 16-core Intel® Xeon® Gold 6544Y CPUs @ 3.60 GHz

Memory: 256 GB RAM

Storage:

2 × 800 GB Lenovo ThinkSystem 2.5in PM1655 Mixed Use SAS
24Gb HS SSDs, RAID0 (Boot/OS)

2 × 1.6 TB NVMe SSDs, RAID0 (Data)

Networking:

2 × 10 GbE interfaces

2 × 100 GbE interfaces

Lenovo System x3550 M5 – [5463-L2G] 2 x 12 core CPUs. Core:
Intel® Xeon® E5-2690 v3 @ 2.60GHz 128GB RAM

 A.1.2 Software

Red Hat Enterprise Linux Server release 9.6 (Plow)

MQ-CPH MQI test driver (see Appendix B :)

Appendix B : Resources

MQ-CPH (The IBM MQ C Performance Harness)

https://github.com/ibm-messaging/mq-cph

https://github.com/ibm-messaging/mq-cph

https://ibm-messaging.github.io/mqperf

https://github.com/ibm-messaging/mqperf/blob/gh-
pages/MQ_V9.4_Performance_Report_xLinux_v1.0.pdf

Appendix C: Enabling Activity Trace (Modification to mqat.ini)

 Across All Application Pairs for Trace Level = High

Below stanza enables trace for all applications which having prefix Requester or
Responder

 ApplicationTrace:

ApplName=Requester*

Trace=ON

TraceLevel=HIGH

ApplicationTrace:

ApplName=Responder*

Trace=ON

TraceLevel=HIGH

ApplicationTrace:

ApplName=*

Trace=OFF

Single Data Point Tests

Below stanza enables trace for 5 Pair of applications such as
Requester0/Responder0 Requester1/Responder1 Requester2/Responder2
Requester3/Responder3 Requester4/Responder4 for a Trace Level = HIGH

ApplicationTrace:

ApplName=Requester0

Trace=ON

TraceLevel=HIGH

ApplicationTrace:

ApplName=Responder0

Trace=ON

TraceLevel=HIGH

ApplicationTrace:

ApplName=Requester0

Trace=ON

TraceLevel=HIGH

ApplicationTrace:

ApplName=Responder1

Trace=ON

TraceLevel=HIGH

ApplicationTrace:

ApplName=Requester1

Trace=ON

TraceLevel=HIGH

ApplicationTrace:

ApplName=Responder2

Trace=ON

TraceLevel=HIGH

ApplicationTrace:

ApplName=Requester2

Trace=ON

TraceLevel=HIGH

ApplicationTrace:

ApplName=Responder3

Trace=ON

TraceLevel=HIGH

ApplicationTrace:

ApplName=Requester4

Trace=ON

TraceLevel=HIGH

ApplicationTrace:

ApplName=Responder4

Trace=ON

TraceLevel=HIGH

ApplicationTrace:

ApplName=*

Trace=OFF

