MP16: Capacity Planning and Tuning for IBM MQ for z/0OS

September 2024

IBM MQ Performance
IBM UK Laboratories
Hursley Park
Winchester
Hampshire

S021 2JN

Take Note!

77 L

Before using this report, please be sure to read the paragraphs on “disclaimers”, “warranty and

liability exclusion”, “errors and omissions” and other general information paragraphs in the “Notices”
section below.

Fourteenth edition, September 2024. This edition applies to IBM MQ for z/OS version 9.4.x
(and to all subsequent releases and modifications until otherwise indicated in new editions).

(© Copyright International Business Machines Corporation 2024.
All rights reserved.

Note to U.S. Government Users Documentation related to restricted rights. Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp.

Notices
DISCLAIMERS

The performance data contained in this report were measured in a controlled environment. Results
obtained in other environments may vary significantly.

You should not assume that the information contained in this report has been submitted to any
formal testing by IBM.

Any use of this information and implementation of any of the techniques are the responsibility of the
licensed user. Much depends on the ability of the licensed user to evaluate the data and to project
the results into their own operational environment.

WARRANTY AND LIABILITY EXCLUSION

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore
this statement may not apply to you.

In Germany and Austria, notwithstanding the above exclusions, IBM’s warranty and liability are
governed only by the respective terms applicable for Germany and Austria in the corresponding
IBM program license agreement(s).

ERRORS AND OMISSIONS

The information set forth in this report could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; any such change will be incorporated in
new editions of the information. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this information at any time and without notice.

INTENDED AUDIENCE

This report is intended for Architects, Systems Programmers, Analysts and Programmers wanting to
understand the performance characteristics of IBM MQ for z/OS 9.4 and earlier releases. The
information is not intended as the specification of any programming interfaces that are provided by
IBM MQ. Full descriptions of the WebSphere MQ facilities are available in the product publications.
It is assumed that the reader is familiar with the concepts and operation of IBM MQ.

Prior to IBM MQ for z/0S V8.0, the product was known as WebSphere MQ and there
are instances where these names may be interchanged.

LOCAL AVAILABILITY

References in this report to IBM products or programs do not imply that IBM intends to make
these available in all countries in which IBM operates. Consult your local IBM representative for
information on the products and services currently available in your area.

ALTERNATIVE PRODUCTS AND SERVICES

Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program,
or service.

USE OF INFORMATION PROVIDED BY YOU

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation to you.

TRADEMARKS and SERVICE MARKS

The following terms, used in this publication, are trademarks or registered trademarks of the IBM
Corporation in the United States or other countries or both:

o IBM®

o 2/OS®

e zSeries®)

o IBM Z@®

e zEnterprise®)
e MQSeries®)
o CICS®)

e Db2 for z/OS®)
o IMS™

o MVS™

e zEC12™

o z13™

o z14™

o z15™

o z16™

¢ FICON®

e WebSphere®)
o IBM MQ®

e zHyperLink®)

Other company, product and service names may be trademarks or service marks of others.

EXPORT REGULATIONS

You agree to comply with all applicable export and import laws and regulations.

Summary of Amendments

Date

Changes

2024-September

Version 2.13 include updates for:
e MQ v9.4 performance
o zHyperLink for writing to MQ active logs
o 64-bit support in channel initiator for SVRCONN channels.

2024-May

Version 2.12 include updates for:

Updated message selector performance

TLS start channel performance

Channel initiator task storage usage

Remove references to out-of-support MQ releases
Queue manager restart time with deep indexed queues

2023-May

Version 2.11 include updates for:

e Updated Common MSGID or CORRELID with deep shared queues

e Updated Maximum message rate for private and shared queues

e Updated Shared Queue persistent message throughtput after 63KB tran-
sition for Db2 v13.

e Using AT-TLS to encrypt data flowing over MQ channels - updated for
10Gb network on z16.

e Start/stop channel performance on z16.

2022-August-
November

Version 2.10 include updates for:
e MQ for z/0S 9.3 - ECSA usage, queue statistics
e MAXARCH - clarification of maximum size of recoverable data
e Impact of updating DASD, including maximum request/reply through-
put of persistent messaging on DS8900F
e CFCC 25 on IBM z16
e zHyperWrite on IBM z16 and DS8950F

2021-September

Version 2.9 include updates for MQ channel performance:
e Channel start and stop performance
e Using AT-TLS to encrypt data flowing over MQ channels - updated for
TLS 1.3

e Updates to first-open, last-close effects

Table of contents

1 Queue Manager

Queue manager attributes
Log data set definition L o
Should your archive logs reside on tape or DASD?
How to minimize recovery time
Should your installation use single or dual logging?
How large can your active logs be?
Striped logs e
Striped archive logso
8-byte log RBA L

How much log space does my message use?
What is my logging rate? L
How much log space do I need when backing up a CF structure?
How can we estimate the required log data rate for a system?
Page sets L e e
Page set usage
Size of page sets for a given number of messages
Number of page sets e
Recovering page sets Lo
How often should a page set be backed up?
Why WebSphere MQ for z/OS changed how it manages small messages in V7.0.1 . .
Buffer pools L
Buffer pool default sizes
Buffer pool usage L
Using buffers allocated in 64-bit storage
Page fixed buffers
Why not page fix by default? L
The effect of buffer pool size on restart time
Deferred Write Process
What changed in version 8.07 Lo oL
Oversized buffer pools

Recovery e
Restart o o o
How long will my system take to restart after a failure?
What happens during a checkpoint L oL
What happens during the recovery phase of restart
How long will each phase of the recovery take?

© 00 O UL U i W NN ==

What happens during the recovery phase of restart when ina QSG 39

Worked example of restart times Lo 40
Tuning L e e 42
Performance implications of very large messages 42
Queue Manager attribute LOGLOAD 42
What is LOGLOAD? e 42

What settings are valid for LOGLOAD? 42

What is an appropriate value for LOGLOAD? 42

When might a lower LOGLOAD be appropriate? 42

What happens at checkpoint oo 43

Impact of LOGLOAD on workload 43

Impact of LOGLOAD on log shunting 45

Impact of LOGLOAD on restart 45

Use of MQ Utilities o o e 46
IBM MQ Utilities: CSQUTIL o o .. 48

Queue Manager Trace e 50
Accounting Trace Costs 50
Storage Usage e 51

Who pays for data collection? o 51

Who pays for writing to SMF? o o 51

How much data is written? L 51

Statistics Trace Costs 53
Global Trace Costs o o 54
Performance / Scalability 56
Maximum throughput using persistent messages 56
What factors affect persistent message throughput 7 56
Application syncpoint specifics oL L 56
Message size and number of messages per commit L. 57
Indexed Queues 58
Indexed queue considerations L oo 58
Private indexed queue rebuild at restarto oL 58

How long will it take to restart a queue manager with deep indexed local queues 58
The effect of a single deep indexed queue upon Queue Manager restart 59
The effect of a multiple deep indexed queues upon Queue Manager restart . . 60

Queue manager initiated expiry processing o L 60
Queue manager SeCUrity Lo e e 62
How much storage is used? 62

The environment being measured L L oo Lo 62

The data 64
What can we gather from the chart? oo 64
Virtual storage usageo e 65
Object sizes o e 66
Pageset O usage 66

Virtual storage usage by object type oL 67

Initial CSA (and ECSA) usage i 68
CSA usage per connection 68
Buffer Pool Usage 68
Storage for security information L Lo 68
Impact of number of objects definedo 69

Use of indexed queues i e e e 69
Object handles 69
Number of pages in use for internal locks 69
Shared queue L 70

Using BACKUP CFSTRUCT command 70

Clustering e

2 Coupling Facility
CF link type and shared queue performance
How many CF structures should be defined?
What size CF structures should be defined?
CSQ_ADMIN . . e

Sizing structures at CFLEVEL(5)
Increasing the maximum number of messages within a structure
Use of system initiated alter processing
User initiated alter processing L Lo o

How often should CF structures be backed up?
Backup CESTRUCT limits e e s e e
Administration only queue manager
When should CF list structure duplexing be used?
How does use of duplexed CF structures affect performance of MQ?
CPU COStS . . . v v o e
Throughput

CF Utilization (CF CPU) e
Environment used for comparing Simplex versus Duplex CF structures

Duplexing the CSQ_ADMIN structure

Duplexing an application structure

Non persistent shared queue message availability
Coupling Facility o e
What is the impact of having insufficient CPU in the Coupling Facility?
When do I need to add more engines to my Coupling Facility?
What type of engine should be used in my Coupling Facility?

CF Level 19 - Thin Interrupts

CF Level 25 - Thin Interrupts
Why do I see many re-drives in the statistics report?

Effect of re-drives on performance

Batch delete of messages with small structures - CFLEVEL(4) and lower . .

Shared Message Data Sets - CFLEVEL(5),
Tuning SMDS e
DSBUFS

DSBLOCK
CFLEVEL(5) and small messages oo v i it
Who pays for messages stored on Shared Message Data Sets?

Db2 universal table space support Lo Lo
Is Db2 tuning important? L

Shared queue messages > 63KB o oL oL
Shared queue persistent message throughput after 63KB transition
Shared queue persistent message request/reply CPU costs

Shared queue persistent message request/reply CF costs

Storage Class Memory (SCM)
Using SCM with IBM MQ

Impact of SCM on Coupling Facility capacity 106

How much SCM is available? 108
How do I know I am using SCM and how much? 108
ALLOWAUTOALT(YES) usage with SCM 108
Useful guidelines: 108
Impact of SCM on Application performance 109
Non-Sequential gets from deep shared queue 110
RMF datao e 110
Example use cases for IBM MQ with SCM 111
Capacity — CFLEVEL(4 and less) — no offload available - “Improved Perfor-
MAaNCe” e e e e e e e e e e e e e e e e 112
Capacity — CFLEVEL(5) Offload - “Emergency Storage” 112
Capacity — CFLEVEL(5) — no offload - “Improved Performance” 112
Performance / Scalability 113
Does the CF Structure attribute “CFLEVEL” affect performance? 113
The impact on MQ requests of the CURDEPTH 0 to 1 transition 113
When would I need to use more than one structure? 114
When do I need to add more Queue Managers to my QSG? 114
What is the impact of having Queue Managers active in a QSG but doing no work? 114
What is a good configuration for my shared queues? 114
Shared queue persistent messages 115
Shared queue performance affecting factors 115
CFRM Attributes 116
Channel Initiator 117
What is the capacity of my channel initiator task? 117
Channel initiator task storage usage L L L o 118
What limits the maximum number of channels?, 118
How many channels can a channel initiator support? 119
How many SVRCONN channels can a channel initiator support? 120
MQ 9.4: 64-bit private storage usage for SVRCONN channels 121
MQ 9.4: 64-bit storage usage for SVRCONN channels 122
MQ 9.4: Limiting 64-bit memory usage 123
MQ 9.4: How many SVRCONN channels can be run unlimited 64-bit storage? 123
Does SSL make a difference to the number of channels I can run? 126
Channel initiator buffer pools 127
What happens when the channel initiator runs out of storage? 128
Channel Initiator Scavenger Task 0L 128
Defining channel initiator - CHINIT parameters 129
CHIADAPS . . . e 129
CHIDISPS and MAXCHL o e 130
Checking the OMVS Environment 131
Effect of Changing CHIDISPS 132
Tuning Channels 0 L e 133
Channel option BATCHHB 133
Channel option BATCHINT s, 133
Channel option BATCHLIM it 133
Channel option BATCHSZ e 133
Channel option COMPHDR, 133
Channel option COMPMSG 134
Channel option DISCINT e 136
Channel option HBINT o 136
Channel option KAINT 136

Channel option MONCHL 137

Channel option NPMSPEED 137

SVRCONN channel option SHARECNV 137

Tuning channels - BATCHSZ, BATCHINT, and NPMSPEED 138

How batching is implemented Lo 138

Setting NPMSPEED 139

Determine achieved batch size using MONCHL attribute 140

Setting BATCHSZ and BATCHINT 141

Channel Initiator Trace e 143

Why would I use channels with shared conversations? 144

Performance / Scalability Lo 145

Channel start/stop rates and costs 145

TLS channel start costs 146

Factors affecting channel throughput and cost 147

SSL and TLS e 148

When do you pay for encryption? Lo 148

How can I reduce the cost? L 149

Will using cryptographic co-processors reduce cost? 150

TLS 1.3 cipher support 150

Why use TLS 1.37 e 151

Deprecated CipherSpecs e 151

Starting TLS channels using aliases 152

Stopping TLS channels 152

Secret key negotiation costso 153

Cost of encryption using TLS ciphers 154

Can I influence which cipher is chosen? L. 155

SSLTASKS . . . e 156

How many do I need? 156

Why not have too many? 156

Why not have too few? o 156

SSLTASK statistics o . oo 156

SSL channel footprint L 157

SSL over cluster channels oL 0oL o 157

SSL over shared channels 157

Using AT-TLS to encrypt data flowing over IBM MQ channels 158

Who pays for AT-TLS 158

Limitations L e 158

Performance comparison Lo L 158

Is the reduced cost reflected in a throughput improvement? 162
Why is there no improvement to transfer rate despite the transport cost being

reduced? 163

Starting and stopping MQ channels protected by AT-TLS 164

AT-TLS start channel performance 165

AT-TLS stop channel performance 166

Should T use AT-TLS to provide encryption of my MQ channels? 166

Costs of Moving Messages To and From zOS Images 167

Non-persistent messages - NPMSPEED(FAST) 169

Persistent messageso e 170

4 System 172

Hardware e 172

DASD . . 172

Maximum request /reply throughput (DS8900F) 172

Upper bound on persistent message capacity - DASD log data rate 173

What is the effect of dual versus single logging on throughput? 174

Will striped logs improve performance? L. 174

Should MQ for z/OS use log striping? 174

Will striped logs affect the time taken to restart after a failure? 174
Benefits of using zZHPF with IBM MQ 175
When can it help with IBM MQ work? 175
Network o e e 176
IBM MQ and zEnterprise Data Compression (zEDC) 178
Reducing storage occupancy with zEDC o000 178
Can I use zEDC with MQ data sets? 178

What benefits might ITsee? L o 178

What impact might T'see? L 179

How we set up for testing Lo 179

What to watch out for o 180
Measurements Lo e 180

IBM MQ and zEnterprise Data Compression (zEDC) with SMF 183
Data set encryption L 184
Why use data set encryption 185
Data set encryption with the MQ queue manager 186
Active and Archive log encryption Lo Lo 187
Page set encryptiono e 189
Shared message data set encryption L Lo 190
MQPUT to SMDS e 191
MQGET - When the messages are read from SMDS buffers 192
MQGET - When the messages are read from local SMDS 192
MQGET - When the messages are read from remote SMDS 192
Comparing the cost of MQGETS from shared queue 193

Why are unencrypted gets more expensive than encrypted? 195
Summary of data set encryption costs with the MQ queue manager 196
zHyperWrite support for active logs oo 198
What is zHyperWrite? oo 199
Why does my log performance matter? L. 200
zHyperWrite test configuration 201
Reduced I/O time o 202
Reduced elapsed time for MQ commit 203
Improved sustainable log rate oo 204
Impact to MQ queue manager costs 205
Impact of I/O limitations on dual active and dual archive logs on older hardware207
Summary of zHyperWrite benefits L. 210
zHyperLink support for MQ active logs 211
What is zHyperLink? 0oL 214
Asynchronous (Traditional) I/O:o Lo L 214
Synchronous (zHyperLink) I/O:.o o oo L 214
zHyperLink and striped activelogs 215

Single Page I/O Response Times 216

Why might you use zHyperLink? oo 216
Requirements L 217
Monitoring your environmento Lo Lo 218
System commands 218

RME . . . 221

MQ Statistics 223
Getting best performance out of your zHyperLink environment 226
Do I have enough write sessions? 0. 227

What is the impact of zHyperLink cable length? 228

Are there sufficient zHyperLink paths to the DASD? 229

Performance Measurements o 0 e e e e e e e e e e e 231

Measurements in performance environment 232
Measurements in “real-world” environment oL 240

Cost of zZHyperLink o 245

Cost of zHyperLink is all relative L. 246

Checklist e 248

5 How It Works 249
Tuning buffer pools. 249
Introduction to the buffer manager and data manager 249

The effect of message lifespano Lo 250
Understanding buffer pool statistics 251

Definition of buffer pool statistics oo 253
Interpretation of MQ statistics 254
Observations on the problem interval 255

What was happening 256

Actions taken to fix the problem 000 256

Log manager e 257
Description of log manager concepts and terms L 257
Mustration of logging 258
When does a write to the log data set occur? 258
How data is written to the active log datasets 258
Single logging 258
Dual logging oL e 258
Interpretation of key log manager statistics 259
Detailed example of when data is written to log datasets 259
MQPUT example o 261

MQGET example 262
Interpretation of total time for requests Lo 262
What is the maximum message rate for 100 000-byte messages? 262

6 Advice 264
Use of LLA to minimize program load caused throughput effects 264
Frequent use of MQCONN/MQDISC - for example WLM Stored Procedures 264
Frequent loading of message conversion tables 265
Frequent loading of exits - for example, channel start or restart after failure 265
Frequent loading of CSQQDEFVo 265
System resources which can significantly affect IBM MQ performance 265
Large Units of Work o . . e 266
Application level performance considerations 267
Common MSGID or CORRELID with deep shared queues 268
Why is cost of MQGET higher when more than 5,200 messages have common identifier?270
Frequent opening of un-defined queues oL 271
Frequent opening of shared queues o o 272
How can I tell if I am seeing first-open or last-close effects? 276

Can I reduce the impact from locking on my shared queues? 276

Is using an application to hold the queue open always appropriate? 277
Using GROUPID with shared queues 278
Comparing performance of GROUPID with CORRELID 278
Comparing performance of GMO options 279
Avoiding Get-Next when specifying GroupID 280
Using Message Selectors L 281
Who pays for the cost of message selection? 281

Is there a good message selector to use? 281

How do I know if I am using a good message selector? 281

Message selector performance L Lo 282
Message selector performance with private queues 283

Message selector performance with shared queues 285

Checklist: Using client-based selectors 287
Temporary Dynamic (TEMPDYN) Queues 288
TEMPDYN queues - MQOPEN 288
TEMPDYN queues - MQCLOSE 288
Queue Information 290
Tuning queues L e e e 290
Queue option ACCTQ 290
Queue option DEFPRESP 290
Queue option DEFREADA 290
Queue option MONQ 290
Queue option PROPCTL e 291
Maximum throughput using non-persistent messages 292
What factors affect non persistent throughput 292
Private queue oL oL e 293
What is the maximum message rate through a single private queue 7 293
Throughput for request/reply pairs of private queues 294

Shared queue L 296
Maximum persistent message throughput - private queue examples 297
Strict ordering - single reply application L 0L 297
Increasing number of reply applications 298
Maximum persistent message throughput - shared queue examples 299
Shared queue persistent message - CPU costs 300
Shared queue persistent message - CF usage 301
Message ordering - logical groups oL Lo 303
Does size of group matter? L 303
Large groups of small messages OR small groups of large messages? 303
Application tuning 306
How much extra does each waiting MQGET cost? 306
How much extra does code page conversion cost on an MQGET? 306
Event messages e 306
Triggering L. 306
What is the cost of creating a trigger or event message? 306
Two / Three Tier configurations 307
Why choose one configuration over the other? L. 308
Cost on the z/OS platform 308
Achievable Rate 309
Number of connecting tasks 310
Measurements L e e e 310
IMS Bridge: Achieving best throughput 313
Initial configuration 314
How does the IMS bridge work? 314
Putting messages from IBM MQ into IMS, 314

IMS putting reply messages to IBM MQ 314
Tuning the IMS subsystem L 315
Use of commit mode L L 317
Commit Mode 0 (Commit-Then-Send) 317

Commit Mode 1 (Send-Then-Commit) 317

Understanding limitations of the IMS bridge 319

When do I need more message processing regions? 321
Understanding the trace reports - run profile 322
Understanding the trace reports — call summary 323
Understanding the trace reports — region summary report 324
IMS Control Region issuing checkpoints whilst monitoring running 325
Understanding the Trace reports — Region IWAIT Report 326
Understanding the trace reports — Program Summary Report 327
Understanding the trace reports — Program I/O Report 328

When do I need more TPIPEs? 331

10 Hardware Considerations 335
Example: LSPR compared to actual results L 0. 336

Overview of Environment: Workload 336
Batch Applications 337
Hardware 337
LSPR tables 337

Non-persistent in-syncpoint messages Lo 338

11 MQ Performance Blogs 340

Chapter 1

Queue Manager

When installing IBM MQ for z/OS, it is important to consider the following configuration options
and decide on the most appropriate definitions for your particular queue manager environment. You
should consider these options before customizing the queue manager because it might be difficult to
change them once the queue manager has been defined.

The following configuration options should be considered:
e Using appropriate queue manager attributes

e Log data set definitions

Page set definitions

Buffer pool definitions

If you are using shared queues
o Coupling Facility (CF) structure definitions
o DB2 table definitions and associated buffer pool and group buffer pool definitions.
o Shared message data size and usage.

This chapter describes the factors that should be taken into account when designing your queue
manager environment.

Queue manager attributes

In a production environment for best performance, it is advisable that both global trace “TRACE(G)”
and channel initiator “TRACE(CHINIT)” are disabled unless requested by level 3 Service. For further
details of the impact on running with the queue managers global trace enabled, see “Trace Costs”.

Log data set definition

Before setting up the log data sets, review the following section in order to decide on the most
appropriate configuration for your system.

Should your archive logs reside on tape or DASD?

When deciding whether to use tape or DASD for your archive logs, there are a number of factors
that you should consider:

e Review your operating procedures before making decisions about tape or disk. For example,
if you choose to archive to tape, operators must be available to mount the appropriate tapes
when they are required.

e During recovery, archive logs on tape are available as soon as the tape is mounted. If DASD
archives have been used, and the data sets migrated to tape using hierarchical storage manager
(HSM), there will be a delay while HSM recalls each data set to disk. You can recall the data
sets before the archive log is used. However, it is not always possible to predict the order in
which they will be required.

e When using archive logs on DASD, if many logs are required (which might be the case when
recovering a page set after restoring from a backup) you might require a significant quantity
of DASD in order to hold all the archive logs.

e In a low usage system or test system, it might be more convenient to have archive logs on
DASD in order to eliminate the need for tape mounts.

How to minimize recovery time
To minimize recovery time and avoid operational complexity it may be best to

e Keep as much recovery log as possible in the active logs on DASD, preferably at least enough
for one day.

e Archive straight to tape.
e Page set image copy frequency should typically be at least daily.

Log shunting, introduced by WebSphere MQ version 6.0.0 (see WebSphere MQ for z/OS Concepts
and Planning Guide GC34-6582), makes it unlikely that archive logs will be required after a queue
manager failure as shunted log records contain sufficient information for transactional recovery.

However, media recovery from a page set or CF application structure failure still requires the queue
manager to read all log records since the date and time of the last image copy of that pageset or CF
structure backup.

There is some small CPU saving when reading from active versus archive log on disk, but the major
objective is to take maximum advantage of available disk space.

The tuning variables are image copy frequency, dualling all image copies to avoid fallback to previous
image copy and how much disk space can be made available for the active logs.

Should your installation use single or dual logging?

There is little performance difference between single and dual logging to write-cached DASD unless
the total I/O load on your DASD subsystem becomes excessive.

If your DASD type is a physical 3390 or similar, you are advised to use dual logging in order to
ensure that you have an alternative backup source in the event of losing a data set, including loss
by operator error. You should also use dual BSDSs and dual archiving to ensure adequate provision
for data recovery.

If you use devices with in-built data redundancy (for example, Redundant Array of Independent
Disks (RAID) devices) you might consider using single active logging. If you use persistent messages,
single logging can increase maximum capacity by 5 - 50% and can also improve response times.

If you use dual archive logs on tape, it is typical for one copy to be held locally, and the other copy
to be held off-site for use in disaster recovery.

Other reasons for dual logging:

e Software duplexing gives separate names to datasets, which reduces the risk of manual error
destroying data, e.g. deleting.

e Different names may map to different storage / management classes so one copy may be local
and the other remote.

How many active log data sets do you need?

You should have sufficient active logs to ensure that your system is not impacted in the event of an
archive being delayed.

In practice, you should have at least four active log data sets but many customers have enough
active logs to be able to keep an entire day’s worth of log data in active logs. For example, if the
time taken to fill a log is likely to approach the time taken to archive a log during peak load, you
should define more logs. You are also recommended to define more logs to offset possible delays in
log archiving. If you use archive logs on tape, allow for the time required to mount the tape.

How large can your active logs be?

Prior to MQ version 8.0, when archiving to DASD, the largest single archive dataset supported was
65,535 tracks as IBM MQ does not support splitting an active log to multiple archive datasets on
DASD and this is the size limit for data sets accessed with BDAM. This means that the maximum
size of an active log is 65,535 tracks, approximately 3.5GB. This limit exists because the size of the
log is restricted to the size of the largest archive log that IBM MQ for z/OS is able to access.

From version 8.0, BDAM is no longer used for archive access, so both active and archive logs on
DASD may be up to 4GB in size.

If archiving to tape then the largest active log remains at 4GB regardless of MQ release.

Note: When the archive logs are written to DASD and have a primary allocation exceeding 65,535
tracks, (available from version 8.0.0) it may be necessary to ensure the archive data sets are allocated
by a DFSMS data class that has a data set name type of LARGE or EXT. LARGE indicates that
data sets in the data class are to be allocated in large physical sequential format. EXT indicates
that data sets are to be allocated in extended physical sequential format. A setting of EXT is
recommended, and is required for striping of data sets. If you specify EXT, also set the IFEXT (if
extended) parameter to R (required) rather than P (preferred).

Note: We found that using archive logs of larger than 65,535 tracks resulted in additional CPU cost
within the queue manager address space. It is suggested that archive logs larger than 65,535 tracks
are only used when the queue manager is likely to be short of active logs. In the event of using these
larger archive logs, some additional benefit may be gained by striping across multiple volumes.

How large should the active logs be?

Your logs should be large enough so that it takes at least 30 minutes to fill a single log during the
expected peak persistent message load. If you are archiving to tape, you are advised to make the
logs large enough to fill one tape cartridge, or a number of tape cartridges. (For example, a log size
of 3GB cylinders on 3390 DASD will fit onto a 3592 tape with space to spare.) When archiving to
tape, a copy of the BSDS is also written to the tape. When archiving to DASD, a separate data set
is created for the BSDS copy. Do not use hardware compression on the tape drive as this can cause
a significant impact when reading the tape backwards during recovery.

If the logs are small (for example, 10 cylinders) it is likely that they will fill up frequently, which
could result in performance degradation. In addition, you might find that the large number of
archive logs required is difficult to manage.

If the logs are very large, and you are archiving to DASD, you will need a corresponding amount of
spare space reserved on DASD for SMS retrieval of migrated archive logs, which might cause space
management problems. In addition, the time taken to restart might increase because one or more
of the logs has to be read sequentially at start time.

Active log placement

High persistent message throughput typically requires that the active logs are placed on fast DASD
with minimum contention from other data set usage. This used to mean there should be no other
data set with significant use on the same pack as an active log. With modern RAID DASD the 3390
pack is logical with the physical data spread across multiple disk devices. However, the z/OS UCB
(unit control block) for the logical pack may still be a bottleneck. UCB aliasing is available with
the z/OS parallel access volumes (PAV) support enabled. You can then have several busy data sets
on such a logical pack with good performance for each. This can be exploited to ease any active
log placement problems. For instance, you could have the current active log on the same logical
pack as the preceding active log. This used to be inappropriate as the preceding log would be read
for archive offload purposes while the current active log is being filled. This would have caused
contention on a single UCB even to a logical pack.

Where UCB aliases are not available, then ideally, each of the active logs should be allocated on
separate, otherwise low-usage DASD volumes. As a minimum, no two adjacent logs should be on
the same volume.

When an active log fills, the next log in the ring is used and the previous log data set is copied to
the archive data set. If these two active data sets are on the same volume, contention will result,
because one data set is read while the other is written. For example, if you have three active logs
and use dual logging, you will need six DASD volumes because each log is adjacent to both of the
two other logs. Alternatively, if you have four active logs and you want to minimize DASD volume
usage, by allocating logs 1 and 3 on one volume and logs 2 and 4 on another, you will require four
DASD volumes only.

In addition, you should ensure that primary and secondary logs are on separate physical units. If
you use 3390 DASD, be aware that each head disk assembly contains two or more logical volumes.
The physical layout of other DASD subsystems should also be taken into account. You should also
ensure that no single failure will make both primary and secondary logs inaccessible.

Striped logs

The active logs can be striped using DFSMS. Striping is a technique to improve the performance of
data sets that are processed sequentially. Striping is achieved by splitting the data set into segments
or stripes and spreading those stripes across multiple volumes. This allows multiple UCBs and this
in conjunction with HyperPAV can improve the logging rate achieved with messages larger than
4KB. Messages smaller than 4KB will only write a single 4KB page and will not exploit striping.

Striped archive logs
Prior to IBM MQ version 8.0.0, archive logs used BDAM and as a result could not be striped.

From IBM MQ version 8.0.0, archive logs stored on DASD may be striped. Striping the archive logs
may result in an improvement in offload time.

Note: Remember than when moving from non-striped to striped archive logs, it is advisable to divide
the PRIQTY and SECQTY values in the CSQ6ARVP macro by the number of stripes otherwise
each stripe will be allocated with the specified size e.g.

CSQ6ARVP
parameter

No stripes 4 stripes

UNIT 3390 3390
ALCUNIT CYL CYL
PRIQTY 5600 1400
SECQTY 100 25

Log data set pre-format

Whenever a new log data set is created it must be formatted to ensure integrity of recovery. This
is done automatically by the queue manager, which uses formatting writes on first use of a log data
set. This takes significantly longer than the usual writes. To avoid any consequent performance loss
during first queue manager use of a log data set, use the log data set formatting utility to pre-format
all logs. See the supplied sample job SCSQPROC (CSQ4LFMT).

Up to 50% of maximum data rate is lost on first use of a log data set not pre-formatted on our
DASD subsystem. An increase in response time of about 33% with loss of about 25% in throughput
through a single threaded application was also observed.

New logs are often used when a system is moved on to the production system or on to a system
where performance testing is to be done. Clearly, it is desirable that best log data set performance
is available from the start.

Log data set - RAID5 or RAID10

When running tests designed to put persistent messages to the log datasets we have found no
discernible difference in performance when using DASD configured as RAID5 over similar tests
using DASD configured as RAID10.

8-byte log RBA

From version 8.0, IBM MQ for z/OS improves the availability of the queue manager by increasing
the period of time before the log needs to be reset by expanding the size of the log RBA (Relative
Byte Address) from 6 to 8 bytes. This increase is such that over 64,000 times as much data can now
be written before the log RBA needs to be reset.

In order to support the increased log RBA, additional data is logged. For example a typical request-
reply workload using a 1KB request message and a 4KB reply message would need an additional
7% log space over a queue manager using a 6-byte RBA. Were the reply message to be 64KB, the
addition space would be 2% compared to a queue manager using a 6-byte log RBA.

From version 9.3, IBM MQ for z/OS, new queue managers have by default 8-byte log RBA and are
capable of having up to 310 active logs.

Should I use zHyperLink to write to MQ active logs?

IBM MQ for z/0OS 9.4 introduced support for zHyperLink writes to MQ active logs and this is
described in detail in the “zHyperLink support for active logs” section of this document.

For a persistent workload, zHyperLink writes can dramatically reduce the time to complete the I/O
requests to disk, which can affect the response times of MQPUT, MQGET and MQCMIT.

Care should be taken when configuring MQ with zHyperLink, particularly when other subsystems
such as Db2 already use the zHyperLinks defined on a system, as additional load over the zHyperLink
paths may be sufficient to result in I/O reverting to asynchronous responses.

On our quiet performance systems, zHyperLink improved the peak log rate by up to 3 times over tra-
ditional asynchronous I/O workloads on an MQ queue manager. When moving from a configuration
where the existing channel paths to the DASD were heavily utilised onto a lightly-loaded zHyperLink

https://ibm-messaging.github.io/mqperf/MQ for zOS 9.4 Performance.pdf

configuration, MQ was able to sustain up to 5.9 times the logging rate of a queue manager that was
running on a system short of I/O resource.

The performance benefits of zHyperLink writes may be sufficient such that striped active logs are
not required.

The improvements to log write response times do come with additional cost to the MQ queue manager
address space and it is important to determine whether the potential log write rate improvements
outweigh the additional MQ costs.

How much log space does my message use?

The following tables are provided to give guidance as to the size of logged data for a range of
persistent messages. The logged data sizes are an average calculation based on using the process
described below. Some additional logging may be seen to due internal queue manager tasks.

These measurements were taken when they were the only workload running against the queue
manager. The logcopy dataset was large enough to contain all of the measurements performed.
Some additional log writes may be performed when the logcopy file becomes full and the next
logcopy dataset is used.

All messages used were persistent and the application specified whether the messages were put or
gotten in or out of syncpoint.

How the data was gathered:
e Queue Manager is started.
e DISPLAY LQG issued, note the RBA.
e Perform known workload, e.g. put 10,000 messages to queue.
e DISPLAY LOG issued, again note the RBA.
e Determine how much log data written by change in RBAs.

e Determine logging size per transaction by dividing the delta of the RBA by the known number
of transactions performed between DISPLAY LOG commands.

The measurements were run against local and shared queues, for a range of message sizes.
We measured putting and getting from the queues using 3 scenarios:

e 1 message is put or gotten out-of-syncpoint.

e 1 message is put or gotten followed by a MQCMIT.

e 10 messages are put or gotten in-syncpoint following by a MQCMIT. Note, the data in the
charts below show the measurements per message put or gotten, so using the data from the
Local Queue — Put table, the total size of logged data for the “Put*10, Commit” measurement
for a 1 byte message was 751 bytes * 10, i.e. 7510 bytes.

Local Queues

Message Size Log Size in bytes
(bytes) Per message PUT
Put out of Syncpoint| Put then Commit Put*10, Commit
0 1057 1057 751
1 1060 1060 751
1024 2088 2088 1789

] 4096

9331

5331

5052

Message Size

Log Size in bytes

(bytes) Per Message GOT
Get out of Syncpoint| Get then Commit Get*10, Commit
0 481 481 186
1 481 481 186
1024 492 492 178
4096 527 527 192

Shared Queues

Message Size

Log Size in bytes

(bytes) Per Message PUT
Put out of Syncpoint| Put then Commit Put*10, Commit
0 683 1230 768
1 683 1230 768
1024 1687 2276 1802
4096 4780 5357 4884

Message Size

Log Size in bytes

(bytes) Per Message GOT
Get out of Syncpoint| Get then Commit Get*10, Commit
0 62 662 188
1 62 662 188
1024 69 650 177
4096 76 630 185

What is my logging rate?

Consider a requirement where a request/reply application needs to process 1000 transactions per
second and the request message is 1KB and the response message is 5KB. The workload is run using
local queues.

We can use the above charts to answer a question in the form of bytes per second, i.e.

Application Action Size (bytes)
Requester Put 1KB message out-of-syncpoint 1024 (message) + 1064
Server Get and commit 1KB 492
Server Put and commit 5KB 5120 (message) + 1300
Requester Get 5 KB message out-of-syncpoint 550
Total data logged during transaction 9550

In order to sustain 1000 transactions per seconds, the system needs to log at 1000 * 9550 bytes per
second, 9.11MB /second.

How much log space do I need when backing up a CF structure?

When backing up a CF structure, the messages on the queues (in the structure) and in the DB2
BLOB tables affect how much is logged. The DISPLAY LOG command can be used to determine
how much log space was used as described previously, however the CSQE121I message that is logged
following successful completion of structure backup also provides the same information, converted
into MB, e.g.:

CSQE121I @QMGR CSQELBK1 Backup of structure APPL1 completed at RBA=00004BFFFBSC,
size 24 MB

The following table gives guidance as to how much log data is written when the BACKUP CFSTRUCT
command is used for a queue of fixed depth but different size messages.

Backup size as
reported by
CSQE1211I (MB)

Overhead per
message (bytes)

Size of backup per
message (bytes)

Message

size (bytes) Queue depth

0 50,000 24 505 505
1 50,000 24 506 505
1024 50,000 73 1538 514
4096 50,000 219 4642 546

Using the above data as a guide we can predict that 200,000 messages of 4KB in the structure being
backup up would use approximately 200,000 * 4642 bytes, i.e. 855 MB.

How can we estimate the required log data rate for a system?

The approximate amount of data written to a IBM MQ log for a persistent message that is MQPUT
and committed then MQGET and committed is approximately:

.Message Ml\(g%y];g]iotal MQPUT + send on message Receive on message channel +
size (bytes) or client channel MQGET
channel with achieved batchsize with achieved batchsize
=1 =50 =1 =50
500 1,700 4,300 1,950 2,750 1,450
1,000 2,300 4,850 2,450 3,300 2,000
5,000 6,550 9,150 6,750 7,600 6,250
10,000 11,750 14,300 11,900 12,800 11,500
30,000 32,800 35,400 33,000 33,900 32,550
100,000 105,800 108,400 106,000 106,900 105555

Log data rate formulae If required a more detailed estimate may be derived from the following:

User message length + length(all headers) + 1000 bytes

Thus, for a 1000 byte persistent message put to and got from a local queue approximately 2300 bytes
of data will be written to the IBM MQ log. Using the maximum sustainable DASD data rates given
in the section “Upper bound on persistent messages capacity — DASD log data rate” , for 1000 byte
messages we estimate that up to 112 MB / 2,300 bytes = 51,061 persistent messages/second can
be processed on our DS8900F RAID-5 DASD subsystem; we have achieved this throughput in one

measurement scenario with enough concurrent processes, though there was an increased response
time. On other DASD subsystems you may get a different maximum.

For long messages the log data requirement is further increased by about 150 bytes per page occupied
by the message and all its headers.

For example a 10,000 byte user message requires three 4KB pages.
10,000 + header length + 1000 + (3%150) = 11,750 bytes of data (approximately) will be
required on the IBM MQ log for such a message on a local queue.

There is also the following log data requirement for each batch of messages sent or received on a
channel (except for batches consisting entirely of non persistent messages on an NPMSPEED(FAST)
channel):

e Messages in batch=1
o Log requires 2.5KB per batch for the sender
o Log requires 1.3KB per batch for the receiver
e Messages in batch=>50
o Log requires 3.7KB per batch for the sender
o Log requires 1.3KB per batch for the receiver

If most of your MQPUTs are done at a completely different time to most of your MQGETSs then you
should be aware that most of the log data is associated with the MQPUT rather than the MQGET.
As an example, you may receive messages over channels (MQPUTS) all day and only process those
messages (MQGETSs) in an overnight batch job.

For throughput estimating purposes assume:

1. For MQGET the log data requirement is about 500 bytes for messages up to a user length of
10 KB. This increases linearly to about 1 300 bytes for messages of user length 100 KB.

2. For MQPUT the actual message, including header data, is placed on the log. To estimate
MQPUT requirement calculate
Total log requirement (as above) - MQGET log requirement

NOTE: The above calculations only give throughput estimates. Log activity from other IBM MQ
processes can affect actual throughput.

10

Page sets

When deciding on the most appropriate settings for page set definitions, there are a number of
factors that should be considered. These are discussed in the following sections.

Page set usage

In the case of short-lived messages, few pages are normally used on the page set and there is little
or no I/0 to the data sets except at start time, during a checkpoint, or at shutdown.

In the case of long-lived messages, those buffer pool pages containing messages are normally written
out to disk. This is performed by the queue manager in order to reduce restart time.

You should separate short-lived messages from long-lived messages by placing them on different page
sets and in different buffer pools.

Size of page sets for a given number of messages

The maximum size of a pageset is:

e 64GB for V6.0.0 and subsequent releases
V6.0 performance for messages on such page sets is the same as that for existing 4GB page
sets. Utility performance is also unchanged per GB processed.

e 4GB for prior releases

The number of messages fitting into a page set is approximately as shown in the following charts
when using a version 6.0 or version 7.0.1 and subsequent release queue managers, assuming all
messages are the same size.

11

Pages per Message size Apbror eS| Npprox ety
message (user data plus all headers except MQMD) cot pageset
V7.0.1 onwards V7.0.1 onwards
V6 as shipped maxsh(())rtmsgs
8 27992 - 32040 27924 - 31971 27924 - 31971 125K 2M
7 23942 - 27991 23876 - 27923 23876 - 27923 142K 2285K
6 19894 - 23941 19828 - 23875 19828 - 23875 166K 2666K
5 15845 - 19893 15780 - 19827 15780 - 19827 200K 3200K
4 11796 - 15844 11732 - 15779 11732 - 15779 250K 4M
3 7747 - 11795 7684 - 11731 7684 - 11731 333K 5333K
2 3698 - 7746 3636 - 7683 3636 - 7683 500K 8M
Messages
per page

1656 - 3697 0 - 3635 1568 - 3635 1M 16M
2 981 - 1655 N/A 892 - 1567 2M 32M
3 643 - 980 N/A 554 - 891 3M 48M
4 440 - 642 N/A 351 - 553 4M 64M
5 305 - 439 N/A 216 - 350 oM 80M
6 208 - 304 N/A 119 - 215 6M 96M
7 136 - 207 N/A 47 - 118 ™ 112M
8 79 - 135 N/A 0-46 8M 128M
9 34-78 N/A N/A IM 144M
10 0-33 N/A N/A 10M 160M

Version 7.0.1 changed the manner in which short messages are stored. Refer to “Why WebSphere
MQ for z/OS changed the way it stored small messages in V7.0.1.” for the reasons for this change.

To revert to version 7.0.0 and earlier behaviour you can specify the following, either in the CSQINP2
DD or as a command against the queue manager:

REC QMGR (TUNE MAXSHORTMSGS 0)

You should allow enough space in your page sets for the expected peak message capacity. You should
also specify a secondary extent to allow for any unexpected peak capacity, such as when a build up
of messages develops because a queue server program is not running.

NOTE: Prior to V6.0.0 the application that causes page set expansion will have to wait until the
expansion has completed. This can be many seconds depending on the secondary extent size.

With V6.0.0 a page set that is allowed to expand will begin expansion when the 90% full threshold
is passed. While expansion is in progress each MQPUT to it will be delayed by a few milliseconds.
This means that is it less likely that an application needing to exploit a large page set will receive
a 2192 (media full) return code.

Where DASD space allows, initial allocation of the largest possible page set remains the best option
to minimize the possibility of an application stopping for media full reasons.

12

Number of page sets

Using several large page sets can make the role of the IBM MQ administrator easier because it
means that you need fewer page sets, making the mapping of queues to page sets simpler.

Using multiple, smaller page sets has a number of advantages. For example, they take less time to
back up and I/O can be carried out in parallel during backup and restart. However, consider that
this adds a significant overhead to the role of the IBM MQ administrator, who will be required to
map each queue to one of a much greater number of page sets.

The time to recover a page set depends on:
e The size of the page set because a large page set takes longer to restore.

e The time the queue manager takes to process the log records written since the backup was
taken; this is determined by the backup frequency and the amount of persistent log data (to
all queues on all page sets) required to be read and processed.

Recovering page sets

A key factor in recovery strategy concerns the period of time for which you can tolerate a queue
manager outage. The total outage time might include the time taken to recover a page set from a
backup, or to restart the queue manager after an abnormal termination. Factors affecting restart
time include how frequently you back up your page sets, and how much data is written to the log
between checkpoints.

In order to minimize the restart time after an abnormal termination, keep units of work short so
that, at most, two active logs are used when the system restarts. For example, if you are designing
an IBM MQ application, avoid placing an MQGET call that has a long wait interval between the
first in-syncpoint MQI call and the commit point because this might result in a unit of work that
has a long duration. Another common causes of long units of work is batch intervals of more than
5 minutes for the mover.

You can use the DISPLAY CONN command to display the RBA of units of work and to help resolve the
old ones. For information about the DISPLAY CONN command, see the IBM MQ Script Command
(MQSC) Reference manual.

How often should a page set be backed up?

Frequent page set backup is essential if a reasonably short recovery time is required. This applies
even when a page set is very small or there is a small amount of activity on queues in that page set.

If you use persistent messages in a page set, the backup frequency should be in the order of hours
rather than days. This is also the case for page set zero.

In order to calculate an approximate backup frequency, start by determining the target total recovery
time. This will consist of:

e The time taken to react to the problem.

e The time taken to restore the page set backup copy. For example, we can restore approximately
8GB of 3390 data per minute from and to DS8900F DASD using DFDSS. Using REPRO, the
rate was 3.5GB per minute - increasing to 5.2GB per minute when zHPF enabled..

e The time the queue manager requires to restart, including the additional time needed to recover
the page set.

This depends most significantly on the amount of log data that must be read from active and
archive logs since that page set was last backed up. All such log data must be read, in addition
to that directly associated with the damaged page set. When using fuzzy backup, it might be

13

necessary to read up to three additional checkpoints, and this might result in the need to read
one or more additional logs.

When deciding on how long to allow for the recovery of the page set, the factors you need to consider

are:

e The rate at which data is written to the active logs during normal processing:

(¢]

The amount of data required on the log for a persistent message is approximately 1.3 KB
more than the user message length.

Approximately 2.5 KB of data is required on the log for each batch of non fast messages
sent on a channel.

Approximately 1.4 KB of data is required on the log for each batch of non fast messages
received on a channel.

Non-persistent messages require no log data. NPMSPEED(FAST) channels require no
log data for batches consisting entirely of non-persistent messages.

The rate at which data is written to the log depends on how messages arrive in your
system, in addition to the message rate. Non-fast messages received or sent over a channel
result in more data logging than messages generated and retrieved locally.

e The rate at which data can be read from the archive and active logs.

(¢]

When reading the logs, the achievable data rate depends on the devices used and the
overall load on your particular DASD subsystem. For example, data rates of over 100
MB per second have been observed using active and archive logs on DS8900F DASD.

With most tape units, it is possible to achieve higher data rates for archived logs with a
large block size.

14

Why WebSphere MQ for z/OS changed how it manages small messages in
V7.0.1

In version 7.0.1 of WebSphere MQ for z/OS, a change to the way that M(Q handles small messages
was implemented.

Version 6.0.0 would attempt to fit as many messages as possible into each 4KB page, which gave an
increased capacity - for example it was possible to fit 10 messages of 32 bytes onto a single page,
which coupled with a 64GB page set limit, meant that a single page set could hold 160 million
messages.

There was a downside to this - because more than 1 message could be stored on a single page, it
was difficult to know exactly when all of the messages on any particular page had been retrieved
and the page became available for new messages. To resolve this problem, a scavenger task would
be initiated every 5 seconds to scan all of the pages to identify which pages could be re-used.

As clock speeds have increased, the achievable transaction rate has also increased and allowing a 5
second period between scavenger tasks meant more pages become empty but not marked as available.
It also means that the scavenger task has to do more work scanning the chains to determine if a
page can be marked as reusable.

From version 7.0.1, small messages are stored one per page. This mean that a 64GB pageset can
never contain more than 16 million messages (i.e. 1/10th of the capacity for 32 byte messages).

The benefit of this approach is that once the message has been gotten, the data page can be
deallocated immediately - there is no need to wait up to 5 seconds for the scavenger task.

In a high throughput environment, this means that there is less build up of unscavenged messages -
so messages are more likely to be found in buffers rather than being in the pageset.

As an example of the benefit of the new approach, this is the output from a “DISPLAY USAGE”
command against a V6.0.0 queue manager that has been running a non-persistent workload with
2KB messages where there is never more than 1 message on the queue. In this instance the test has
been running for 17 seconds:

Page Buffer Total Unused Persistent Nonpersistent Expansion
set pool pages pages data pages data pages count
_ 0 0 20157 19837 320 0 USER 0
_ 1 1 268542 102704 29 165809 USER 0

2 2 214725 214725 0 0 USER 0

From this message, it can be seen that there are 165,809 pages that are marked as used - this is
despite there being only 1 message on the queue at any time.

To further highlight the benefits, 2 charts are included. These show the results of a simple re-
quest /reply workload run using 2KB non-persistent private queue messages that are put and gotten
in-syncpoint. The measurements start with 1 requester and 1 server performing a request/reply
workload with a pair of queues defined on page set 1. As time goes on, more requesters and servers
are added - using queues on separate page sets - so there is never more than 1 message on any
particular page set.

These tests are run on a single z/OS 1.12 LPAR of a zEnterprise 196 (2817) with 16 dedicated
Processors.

15

ZEB Non-Persistent In-Svncpolint Workload
Throughput
o 120000
A 100000
L
“ soooo
.-
m 60000
-
= 40000
i
T 20000
=)
¥ 0
a 1 2 3 4 5 & 7 8 9 10 11 12 13 14 1s
oueus Pairs
| EOD 701
ZEB Non-Persistent In-Svncpolint Workload
Transaction Cost
250
E —_
(u} % Z00
- O
hoo
o0 1s0
mn m
5 0
m 4100
B oA
=
-
- 50
[
mn
2= 0
1 2 3 4 5 & 7 8 9 10 11 12 13 14 15
Cousue Pairs
WEDD T

The comparison of non-persistent out-of-syncpoint workloads is even more marked but this is also
assisted in the V7.0.1 measurement by the put-to-waiting getter being more likely to be successful.
The following 2 charts have been included to compare the results of a simple request/reply workload
run using 2KB non-persistent private queue messages that are put and gotten out-of-syncpoint.

The measurements start with 1 requester and 1 server performing a request/reply workload with a
pair of queues defined on page set 1. As time goes on, more requesters and servers are added - using
queues on separate page sets - so there is never more than 1 message on any particular page set.

These tests are run on a single z/OS 1.12 LPAR of a zEnterprise 196 (2817) with 16 dedicated
Processors.

16

V600 Transaction rate and cost
2KB Non-Persistent Out-of-Syncpoint Workload

40000 100 =

=

35000 %0 g

80 .

o 30000 o

5 0 o

g 25000 50 E

E 20000 so &

5 2

‘S 15000 0 =

a 30 g

C 10000 @

e 20 @

m

5000 10 8

0 0 =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 b

Queue Pairs
= Transaction rate --Cost [/ Transaction (microSeconds)
V701 Transaction rate and cost

2KB Non-Persistent Out-of-Syncpoint Workload .

4

350000.00 5 5

[+ E]

300000.00 0 =

= 3/ &

= =

5 250000.00 - E
o

@ 200000.00 5 L

S 150000.00 0 <

(5] -

@ 100000.00 1535

T 10 @

= 5000000 5 @

'_

0.00 0 =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 %

[=]

Queue Pairs o

A Transaction rate 4 Cost/ Transaction (microSeconds)

NOTE: The y-axis scale is significantly different between the version 6.0.0 and version 7.0.1 charts.

The v6.0.0 measurement peaks at 37,500 transactions per second with a transaction cost between
50 and 80 microseconds. Despite 70% of the messages being put to waiting getter, the 15 pagesets
all expanded multiple times - showing that the scavenger was unable to keep up.

The v7.0.1 measurement peaks at 300,000 transactions per second with a transaction cost between
25 and 40 microseconds. There were no pageset expansions nor were there any messages suggesting
that the buffer pools were too small.

As the queue manager is not expanding the pagesets to store the unscavenged messages the maximum
round-trip for these non-persistent out-of-syncpoint messages drops from 65 milliseconds to 1.1
milliseconds.

Summary

If capacity is the key requirement, then the v7.0.1 small message change may not be the most
appropriate as the capacity for small messages can be as little as a tenth of the v6.0.0 capacity.

17

IBM MQ works more efficiently when queue depths are lower - messages in buffers cost less to get
than messages in pagesets, getting messages from deep queues costs more than getting messages
from shallow queues - and this small message change continues this theme with significant benefit
to throughput.

18

Buffer pools

A buffer pool is an area of virtual storage in the private region of the queue manager address space.
A BUFFPOOL definition gives the size in 4KB pages. Buffer pools are used to minimize I/0 to
and from page sets on disk. Thus both buffer pool sizes and actual usage can significantly affect the
performance of queue manager operation, recovery, and restart. Each message queue is defined to a
particular storage class (STGCLASS). Each STGCLASS is assigned to a page set (PSID). Each of
the 100 page sets (0 to 99) is assigned to a particular buffer pool (BUFFPOOL). Thus any particular
queue uses only one bufferpool and is ultimately stored in only one page set.

An outline of how buffer pools are managed is given in “Introduction to the buffer manager and
data manager”.

Buffer pool default sizes

The following table shows suggested values for buffer pool definitions. Two sets of values are given,;
one set is suitable for a test system, the other for a production system or a system that will become
a production system eventually.

Table: Suggested test and production definitions for buffer pool settings
Definition setting Test system Production system
1050 buffers
(These were the supplied sample 50 000 buffers
BUFFPOOL 0 values until release V5.2. They | These are the supplied sample
are usually too small for values from release V5.2
production)

BUFFPOOL 1 1050 buffers 20 000 buffers
BUFFPOOL 2 1050 buffers 50 000 buffers
BUFFPOOL 3 1050 buffers 20 000 buffers

Buffer pool usage

From V8.0.0 up to 100 buffer pools (0-99) may be defined, up from the previous limit of 16 buffer
pools. This allows a 1:1 mapping of buffer pool to page set so that the buffer pools can be more
finely tuned to their usage.

We recommend you use only 4 buffer pool definitions unless you:
1. Have class of service provision reasons for separating one set of queues from another

2. Have known queues which have different behaviour at different times or would otherwise be
better isolated in their own individual buffer pools. This might be for their own performance
benefit or to protect the performance of the other queues.

Prior to version 8.0.0, the storage for buffer pools was limited to the amount of space available within
the overall queue manager address space virtual storage limit. From version 8.0.0, the buffer pools
may be allocated using above the bar storage which provides multiple benefits including:

e Larger buffer pools can be allocated which reduce the need for writing to page set and being
impacted by the increased I/O time to read/write from page set.

e Makes more space available in the queue manager’s 31-bit storage for other things that haven’t
been moved above the bar e.g. more handles.

NOTE: The optimum value for these parameters is dependent on the characteristics of the individual
system. The values given are only intended as a guideline and might not be appropriate for your

19

system. To make good use of the size recommendations you should consider separating buffer pool
usage as follows:

1. A buffer pool for page set zero and the page set(s) containing system related
messages.
Page set zero contains IBM MQ objects some of which must be frequently updated. For
example, queue objects have to maintain a CURDEPTH value. Ideally, keep page set zero
for these system-defined objects only. A crude estimate for the number of buffer pool pages
required for the system objects in page set zero is half the number of objects.
The page set containing just system related messages, for example page set one, should also map
to this buffer pool. System related messages are typically those in the SYSTEM.CLUSTER.*
and SYSTEM.CHANNEL.SYNCQ queues

It may be beneficial to put the SYSTEM.CLUSTER.* queues in their own buffer pool.

Queues that can grow large unexpectedly (for example, the dead-letter queue) are particularly
inappropriate for this buffer pool. We suggest you put such queues in the ‘everything else’
buffer pool.

This buffer pool should be large enough never to cross the less than 15% free threshold.

This will avoid unnecessary reads from the page set which will effect overall IBM MQ system
performance if they are for system objects. A good starting point for the size of this buffer
pool might be 50,000 pages.

Alter model queue definitions to point to a storage class other than SYSTEM so that they will
not map to buffer pool zero.

2. A buffer pool for queues for your important long-lived messages.
When using buffers from 31-bit storage (below the 2GB bar), a good starting point for the
size of this buffer pool might be 20,000 pages.
Long-lived messages are those that remain in the system for longer than two checkpoints, at
which time they are written out to the page set.
While it is desirable within limits to define such a buffer pool so that it is sufficiently large
to hold all of these messages, it is not advised to exceed 50,000 pages prior to version &,
otherwise there may be a concentration of the necessary page set I/O at checkpoints which
might adversely affect response times throughout the system.
Version 8.0 is capable of running with larger buffer pools but be aware of the impact at
checkpoint by reviewing the “Deferred Write Processor” section.

3. A buffer pool for queues for your performance critical short lived messages.
A good starting point for the size of this buffer pool might be 50,000 pages.
This means that you have to have only short lived messages in queues on page sets that you
define to this buffer pool. Normally, the number of pages in use will be quite small, however,
this buffer pool should be made large to allow for any unexpected build up of messages, such
as when a channel or server application stops running.
In all cases, this buffer pool should be large enough never to cross the less than 15% free
threshold.

4. A buffer pool for everything else.
You might not be able to avoid this buffer pool crossing the less than 15% free threshold.
This is the buffer pool that you can limit the size of if required to enable the other three to
be large enough. Queues such as the dead-letter queue, SYSTEM.COMMAND.* queues and
SYSTEM.ADMIN.* queues should be placed here. A good starting point for the size of this
buffer pool might be 20,000 pages.

See “Definition of Buffer Pool Statistics” for information about statistics to help monitor buffer pool
usage. In particular, ensure that the lowest % free space (QPSTCBSL divided by QPSTNBUF)
is never less than 15% for as many of the buffer pool usage types shown above as possible. Also

20

ensure where possible that the buffer pools are large enough so that QPSTSOS, QPSTSTLA and
QPSTDMC remain at zero.

NOTE: It is good practise to monitor buffer pool usage over a period of time to determine whether
particular buffer pools of the appropriate size. If a monitored buffer pool never exceeds 50% used,
it may be beneficial to reduce the size which would allow the administrator to allocate this storage
to a buffer pool that is too small.

Using buffers allocated in 64-bit storage

Buffer pools can be defined with the attribute LOCATION(ABOVE) so that the buffers are allocated
in 64 bit storage. This means that these buffer pools can be made much larger so that all message
access is from storage, which can enhance application performance by reducing disk 1/O to and from
page set.

Page fixed buffers

Even with large buffer pools, for some kinds of processing where queue depths build up where it
may not be possible to keep all of the data in the buffer pool. In these cases data is written to the
page set during MQPUT and read from page set during MQGET processing. Where the highest
levels of performance are required for this type of high I/O intensity workload, the buffer pool can
be defined with PAGECLAS(FIXED4KB) which ensures that the buffers are permanently fixed in
real storage so the overhead of the page-fix before the I/O and the unfix after I/O is removed.

Why not page fix by default?

If PAGECLAS(FIXED4KB) is specified and there is insufficient real memory available in the LPAR,
the queue manager may fail to start or may impact other address spaces.

The effect of buffer pool size on restart time

Restart time is not normally dependent on buffer pool size. However, if there are persistent messages
on the log that were not written to a page set before a queue manager failure, these messages are
restored from the log during restart and are written to the page set at the checkpoint that occurs
following restart completion. This should have no greater impact than any other checkpoint, and
might complete before much application activity resumes.

If you reduce the buffer pool size significantly before restarting a system after an abnormal termi-
nation, this can lead to a one-time increase in restart time. This happens if the buffer pool is not
large enough to accommodate the messages on the log thus requiring additional page set I/O during
restart.

For further information on buffer pools, statistics and data manager, see section “Tuning buffer
pools”.

Deferred Write Process

The deferred write process, also known as DWP or DWT, is a set of queue manager tasks that causes
data held in buffer pools to be written to page set independently of the putting application(s).

Typically when a buffer pool reaches 85% full, DWP will start to write the oldest data from the
buffer pool into the associated page set, making more buffer pool pages available to applications.
This will continue until the buffer pool usage drops below 75% full.

Should the rate of data being put onto the buffer pool exceed the rate that DWP can write to page
set and the buffer pool usage reaches or exceeds 95% full, then synchronous writes to page set occur,
which can increase the elapsed time that an application takes to put a message.

21

What changed in IBM MQ version 8.0.07
There were 2 changes in version 8.0 that affected the performance of the DWP.
e Increase in number of buffer pools from 16 to 100.

e Moving buffer pools from 31-bit storage to 64-bit storage. By moving the buffer pools above
the 2GB “bar”, the total amount of storage allocated to buffer pools can be much larger than
1GB.

Prior to version 8.0, DWP would write up to 4 pages of data in a single I/O request. With the
potential increase in the number of buffer pool pages that may need to be written, this version of
DWP could take a substantial time to write the data to page set, and this increased the likelihood
that applications putting messages would be affected by synchronous I/Os.

From version 8.0, DWP attempts to write 16 pages of data per I/O request and may have up to 64
parallel I/Os in-flight. This means that DWP can process up to 1024 pages (4MB) of data at a single
time per buffer pool. With a maximum of 64 parallel I/Os per buffer pool, the use of HyperPAVs is
recommended to exploit these parallel I/Os.

Oversized buffer pools
Oversized buffer pools are where the size of the buffer pool is larger than the pageset.

When using 64-bit storage for MQ buffer pools and there is a 1:1 mapping of buffer pool to page
set, there may be benefits to performance if the buffer pool is sized to 105% of the size of the page
set.

By oversizing the buffer pool to such an extent, the effect from page stealing DWP can be minimised.
This also has the effect of reducing the impact from synchronous writes to page set as the buffer
pool reaches its capacity.

The benefits from this will only be observed if your buffer pool is constantly reaching capacity and
synchronous writes are occurring to page set.

How many DWP tasks are there?

There is a deferred write process for each buffer pool. With version 8.0’s change to support 100
buffer pools, this can have an effect on the number of tasks running within the queue manager.

The DWP is also used during checkpoint processing to process data that has been held in the buffer
pool through 2 checkpoints. Once data in buffer pools has been through 2 checkpoints, the DWP
task will write the messages to the page set.

How much data could DWP write at checkpoint?

Prior to version 8.0, the total amount of space used by buffer pools was likely to be less than 1GB
of the queue managers 31-bit storage.

Since DWP will run when the buffer pool usage reaches 85%, the maximum amount of data that
could be written at checkpoint was approximately 85% of 1GB, or around 220,000 pages.

In version 8.0, buffer pools may be much larger although there is no practical benefit in exceeding
the size of the page set, which are limited to 64GB. In version 8.0 the maximum amount of data
that can be written at checkpoint is actually limited by the log size, which has a maximum size of

4GB.

Note: Determining how much data is written by DWP at checkpoint is not as simple as the size
of the log. As discussed in “How much log space does my message use?”, a 0-byte message put to
a local queue will log 1057 bytes. However this is not necessarily the same as the amount of data
that DWP will write to the page set. DWP will write full 4KB pages - regardless of the data size.

22

This means that a persistent message of up to 3635 bytes on the buffer pool will result in a 4KB
write I/O to the page set.

For a 0 byte message, which caused 1057 bytes to be logged, there could be 3 messages logged per
4KB page, so a 4GB log could contain 12GB of buffer pool data that is eligible to be written by
DWP at the second checkpoint.

Where there are multiple messages per commit, the amount of data logged is reduced. For example
we have seen 10 messages of 0 bytes in a unit of work caused 751 bytes per message to be logged. In
this instance, the log could write 5 messages per 4KB of log space. This has the potential to result
in up to 20GB of buffer pool data that is eligible to be written by DWP at the second checkpoint.

What impact is there when DWP writes large amounts of data?

On our systems using DS8870 DASD, the DWP task was able to write data buffer pool to page set
at a rate of between 300-600 MB/sec. When there is 4GB of data to be written to a single page set,
this can mean that DWP is driving I/O for between 7 to 13 seconds. This increased load on the I/O
subsystem can result in an impact on application workload until the DWP workload is complete.

In a system with less responsive DASD, the impact may be greater. For example if DWP is only
able to write the 4GB of data at 100MB per second, there could be 41 seconds where an application
workload using persistent messages is affected by the moving of data from buffer pool to page set.

The use of high performance FICON (zHPF) can reduce the impact on active workload when the
queue manager DWP is initiated to write large amounts of data from buffer pool to page set.

DWP is also used at queue manager shutdown to write any persistent messages from buffer pool to
page set but as there is less likely be MQ workload running on the queue manager, it is unlikely to
be impacted.

23

Recovery

Achieving specific recovery targets

If you have specific recovery targets to achieve, for example, completion of the queue manager
recovery and restart processing in addition to the normal startup time within xx seconds, you can
use the following calculation to estimate your backup frequency (in hours):

Formula (A)

Backup frequency = (Required restart time * System recovery log read rate)
(hours) (in secs) (in MB/sec)

Application log write rate (in MB/hour)

For example, consider a system in which IBM MQ clients generate an overall load of 100 persistent
messages per second. In this case, all messages are generated locally. If each message is of user
length 1 KB, the amount of data logged per hour is of the order:

100 * (1 + 1.3 KB) * 3600 seconds = approximately 800 MB
where

100 = message rate per second

(1 +1.3 KB) = amount of data logged for each 1KB persistent message.
Consider an overall target recovery time of 75 minutes. If you have allowed 15 minutes to react
to the problem and restore the page set backup copy, queue manager recovery and restart must then

complete within 60 minutes applying formula (A). This necessitates a page set backup frequency of
at least every:

3600 seconds * 60 MB per second / 800 MB per hour = 270 hours
In this example, the backup time means that there would be 210GB of data to restore.

It is preferable to recover the data from active logs - and with MQ allowing a maximum log size of
4GB and 310 active logs, there is capacity for 1240GB of data to be held in active logs.

For example if the active logs are 2GB each and there are 10 logs, there are only 20GB of data
available on the active logs. Based on this the backup would need to occur every 25 hours

20 GB / 800MB per hour = 25.6 hours

This assumes that all required log data is on active logs using DS89000F DASD. (If you can only
read from the log at 0.5MB per seconds the calculation would be every:

3600 seconds * 0.5 MB per second / 800 MB per hour = 2.25 hours

If your IBM MQ application day lasts approximately 12 hours, one backup every 2 days is appro-
priate. However, if the application day lasts 24 hours, one backup every day is more appropriate.

Another example might be a production system in which all the messages are for request-reply
applications (that is, a persistent message is received on a receiver channel and a persistent reply
message is generated and sent down a sender channel).

In this example, the achieved batch size is one, and so there is one batch for every message. If there
are 50 request replies per second, the overall load is 100 persistent messages per second. If each
message is 1 KB in length, the amount of data logged per hour is of the order:

50((2 * (1+1.3 KB)) + 1.4 KB + 2.5 KB) * 3600 = approximately 1500 MB

24

where:

50 = message pair rate per second

(2* (1 + 1.3KB)) = amount of data logged for each message pair

1.4 KB = overhead for each batch of messages received by each channel

2.5 KB = overhead for each batch of messages sent by each channel

In order to achieve the queue manager recovery and restart within 30 minutes (1800 seconds) requires
that page set backup is carried out at least every:

1800 seconds * 60 MB per second / 1500 MB per hour = 72 hours
This assumes that all required log data is on DS8900F where the IDCAMS REPRO achieves
60MB /second.

Periodic review of backup frequency

You are recommended to monitor your IBM MQ log usage in terms of MB per hour (log size in MB
over hours to fill that log).

You should perform this check periodically and amend your page set backup frequency if necessary.

Restart

How long will my system take to restart after a failure?
This section describes the factors relating to recovery that affect the restart time of a queue manager:

e What happens when a transaction processes an IBM MQ request. This describes the stages
that a transaction goes through.

e What happens during the recovery phase of restart.
e How long each recovery phase of restart takes.
e An example of a calculation of time required for the recovery phase of restart.

The length of time that a queue manager takes to restart depends on the amount of recovery
that it has to do. This covers recovery of applications that were processing persistent messages
(transactional recovery), and media recovery which involves both recovery of a page set after a
failure and recovery of persistent messages in a buffer pool that had not been written to a page set.

There are four stages to the recovery phase of the log during restart
1. Preparing for recovery.

2. Determining the status of IBM MQ and connected tasks at the point of failure. This includes
identifying the lowest page set recovery RBA.

3. Bringing the system up to date: this might involve media recovery and forward transaction
recovery of in-doubt and in-commit transactions.

4. Backing out changes for those tasks that were in-flight and in-backout at the time the queue
manager stopped.

Other factors that may affect restart times include:

e Rebuilding indexed queues - refer to performance report **RETIRED ** MP1G “WebSphere
MQ for z/OS V7.0.1 Performance Report" (archived) section on "Indexed queues". ** NEED
A SECTION IN MP16 **

25

ftp://ftp.software.ibm.com/software/integration/support/supportpacs/individual/mp1g.pdf
ftp://ftp.software.ibm.com/software/integration/support/supportpacs/individual/mp1g.pdf

e Rebuild subscriptions.
e Structure recovery.

To understand what happens in these log recovery stages you need to understand what happens to
a transaction as it updates recoverable resources (such as persistent messages) and commits them.
You also need to understand what happens at when a checkpoint occurs. The next section gives a
simplified description of these things.

What happens as a transaction processes an IBM MQ request Consider a CICS trans-
action that gets two persistent IBM MQ messages, updates a DB2 table, and commits the work by
issuing the EXEC CICS SYNCPOINT command. This will use two-phase commit because resources
in both IBM MQ and DB2 are updated.

Transaction activity What happens within the queue manager

Transaction starts. Internal IM MQ state: Initial state
The message is Tocked.
Because a unit of recovery did not exist for this transaction:
e A unit of recovery is created.
e The state is changed to "in flight".
e A "Start unit of recovery" (Start UR) is moved to the log
buffers.
MQGET request issued. e The LOG RBA of this record is saved as STARTRBA in the
unit of recovery record.
The "message deleted" flag is set in the message, and this change
is moved to the log buffers.
The current queue depth is decremented and this change is also
moved to the log buffers.
Final internal IBM MQ state: In flight.
The message is locked.
The "message deleted" flag is set in the message, and this change
is moved to the log buffers. The current queue depth is decre-
mented and this change is also moved to the log buffers.
Final internal IBM MQ state: In flight.

MQGET the second mes-
sage.

DB2 table update made
EXEC CICS SYNC-
POINT issued.

A "Begin Commit phase 1™ is moved to the log buffers.
The state is changed to "In commit 1".
Resource managers prepare for the commit.

ia n n
CICS issues the first part The state is changed to "In doubt".

of the two phase commit

(the prepare request) to
IBM MQ.

An "End commit phase 1" record is moved to the log buffers and
the RBA of this record is saved in the ENDRBA field of the unit
of recovery record

The log buffers up to and including this record are forced to disk.
Returns "OK" to CICS.

Final internal IBM MQ state: In doubt.

26

CICS issues the prepare to
DB2.

See Note.

Providing both IBM MQ
and DB2 replied OK,
CICS issues the second
part of the two phase
commit (the commit) to
MQSeries.

A ™Phase 1 commit to Phase 2 commit™ record is moved to the
log buffers.

The state is changed to "In commit 2", the transaction is now in
"Must complete" state.

The log buffers up to and including this record are forced to disk.
The state is set to "End phase 2 commit".

An "End phase 2 Commit" record is moved to the log buffers.
Any locked resources are unlocked.

The unit of recovery is deleted.

The state is set to "Initial state". Returns to CICS.

Final internal MQSeries state: Initial state

Providing both MQSeries
and DB2 replied OK,
CICS issues the second
part of the two phase com-
mit (the commit) to DB2.

NOTE: The calls to DB2 describe what Iogically happens. In
practice, CICS optimizes the call to the last resource manager by
passing the prepare and commit request together. In this example,
DB2 was the last resource manager, in other cases IBM MQ might
be the last resource manager, and so the prepare and commit

requests would be treated as one request.

Note: If any resource manager is unable to commit, the requests are backed out

What happens during a checkpoint

During a checkpoint, information about the following items is moved to the log buffers and the
buffers are forced to DASD.

Incomplete units of recovery.

Recovery RBAs of all page sets.

e Unit of work descriptors for peer recovery.

e IMS bridge checkpoint and all Set and Test Sequence Number (STSN) information.

When a checkpoint occurs it starts a process for writing old changed buffer pool pages to disk. These

disk writes are not part of the checkpoint itself.

27

What happens during the recovery phase of restart

The
The

following figure shows an example of the messages produced during the recovery phase of restart:
messages are described in the following text.

Figure: Example queue manager job log showing recovery messages

CSQJ099T ©I2A LOG RECURDING TO COMMENCE WITH
STARTRBA=0211B7845000

CSQROO1I ©@12A RESTART INITIATED

CSQROO3I ©12A RESTART...PRIOR CHECKPOINT RBA=0211B7842C44
CSQROO4I ©@12A RESTART...UR STATUS COUNTS

IN COMMIT=1, INDOUBT=0, INFLIGHT=1, IN BACKOUT=0

CSQROO7I @12A STATUS TABLE

T CON-ID THREAD-XREF S URID DAY TIME

S IYCPVCO1 1119E2ACC3D7F1F50000036C F 0211B7F88502 138 17:05:51
CSQROO5I @12A RESTART...COUNTS AFTER FORWARD RECOVERY IN COMMIT=0,
INDOUBT=0

CSQROO6I ©12A RESTART...COUNTS AFTER BACKWARD RECOVERY INFLIGHT=0, IN
BACKOUT=0

CSQRO0O2I ©@12A RESTART COMPLETED

Phase 1, restart begins

The

queue manager displays message CSQRO01I to indicate that restart has started.

|

CSQROO1I @12A RESTART INITIATED

The

CSQJ099I message preceding the CSQRO01I message contains the approximate RBA at the

point of failure.

|

CSQJO099I ©@12A LOG RECORDING TO COMMENCE WITH STARTRBA=0211B791A000

Phase 2, determine the state of the system at point of failure

1.

The last checkpoint record is located from the BSDS.
CSQRO003I @12A RESTART...PRIOR CHECKPOINT RBA=0211B7842C44

The recovery RBAs of each page set are read from the checkpoint records.

Page 0 of every page set is read to obtain the last logged RBA for the page set. The lowest
RBA of all the page sets is used to determine where the log should be read from for media
recovery.

An in-memory table is built from information in the checkpoint records of the tasks that were
active at the checkpoint.

The log is read in a forward direction from the checkpoint to the point of failure. The in-
memory table is updated as tasks complete or new tasks start.

Message CSQRO004I displays how many tasks were in each state at the point of failure.

CSQROO4I ©@12A RESTART...UR STATUS COUNTS IN COMMIT=1, INDOUBT=O,
INFLIGHT=1, IN BACKOUT=0

Phase 3, forward recovery

1

. A list of all of the log ranges required for forward recovery is built from the list of tasks that
are in doubt and in commit. Note: Because the log ranges between the STARTRBAs and

28

ENDRBASs are known from the units of recovery, only the logs that contain these ranges are
used. This means that some archives might not be used.

2. The range of log records for the page sets is from the earliest RBA in the page sets up to the
point of failure. In normal operation the earliest RBA is within three checkpoints before the
point of failure. If it has been necessary to use a backup version of a page set, the earliest
RBA might be considerably earlier.

3. These ranges are combined, and a list is built of the required log ranges and the corresponding
active or archive logs. The logs are read from the lowest RBA to the highest.
Note: The logs are searched sequentially from the beginning of the data set until the start of
the required log RBA is found, and then read to the end RBA.

4. For each task that is in commit, log records between the start of the unit of recovery and the
ENDRBA are processed, and the changes reapplied.

5. For each task that is in doubt, log records between the start of the unit of recovery and
the ENDRBA are processed, and the changes reapplied. Locks are obtained on resources as
required in the same way that they are obtained during normal operation.

6. The log is read from the lowest RBA for all of the page sets and the data is replayed to rebuild
the buffer pools (and the page sets if you are recovering from a backup version) as they were
at the point of failure. All log records from the earliest required RBA are read, even if they
do not apply to the particular page set.

7. These forward recovery steps are combined in one forward scan of the log.

8. Once this forward recovery has completed, transactions in "must-commit" state are completed.
All in-doubt units of recovery stay in doubt (with any resources still locked) until they are
resolved, (for example when the CICS region reconnects).

9. Message CSQRO05I displays how many tasks are in commit or in doubt after forward recovery.

CSQROOST @12A RESTART...COUNTS AFTER FORWARD RECOVERY IN COMMIT=O0,
INDOUBT=0

Phase 4, backward recovery.

1. The log records for in-flight or in-backout transactions are processed and any changes made
by these transactions are undone.

2. Every log record is processed from the last written record, back to the earliest RBA of any
transaction that was in flight or in backout. You can determine this RBA from the URID
specified in message CSQROO07I for records with a status of F or A.

CSQROO7I ©@12A STATUS TABLE
T CON-ID THREAD-XREF S URID DAY TIME

S IYCPVCO1 1119E2ACC3D7F1F50000032C C 0211B7843536 138 16:59:32
S IYCPVCO1 1119E2ACC3D7F1F50000036C F 0211B7F88502 138 17:05:51

3. Message CSQRO002I is issued at completion.

CSQROO6T ©I2A RESTART...COUNTS AFTER BACKWARD RECOVERY INFLIGHT=0, IN
BACKOUT=0
CSQRO02I ©@12A RESTART COMPLETED

29

How long will each phase of the recovery take?

Most of the time taken to recover is spent processing the active or archive logs. This has two
components:

1. Making the data sets available to the queue manager (for example mounting a tape or recalling
a data set from HSM for archive logs).
This time depends on your operational environment and can vary significantly from customer
to customer.

2. Reading the active and archive logs.
This depends on the hardware used, for example DASD or tape, and the speed at which data
can be transferred to the processor. (On DS8900F DASD we achieved between 1200 MB
per second reading the active logs backwards and 800 MB per second reading the active logs
forwards.)

The figures below estimate the time needed to read the logs for each stage of recovery. You should
include your estimate of how long it will take to make the media available.

Phase 1, restart begins The recovery environment is established, so this is very short.

Phase 2, determine the state of the system at the point of failure The active log that
was being used at the point of failure is read from the start to locate the last checkpoint (this might
be at the start of the log). The log is then read from this checkpoint up to the point of failure.

The point of failure could be just before another checkpoint was about to be taken, in the worst
case, the point of failure might be at the end of a log, You can estimate how much data is written
between checkpoints by calculating the size of a log divided by the number of checkpoints in the
time it takes to fill this log. (In our tests, with a log of 1000 cylinders of 3390 it took approximately
5 minutes to read to the end of this log.)

When reading the log data sets, the I/Os are performed such that multiple pages are read in parallel
and will benefit from z/0OS features such as HyperPav being available.

The size of the messages being processed can impact the CPU time taken in this phase of recovery,
as a workload consisting of small messages may result in a higher usage of CPU time (SRB) than
the equivalent amount of data being recovered from a large message workload, which in a CPU
constrained system may increase the elapsed time for restart.

Phase 3, forward recovery This covers three activities:
e Recovering in-commit and in-doubt tasks.
e Applying changes to a page set if a backup copy has been used.
e Rebuilding the page sets to the point of failure.

The duration of forward recovery is primarily dependent upon the number of pages that need to be
read from page set as the I/O must be performed serially one page at a time, as well whether all of
the changed data can be help in buffer pools.

The CSQRO30I message reports the range of data that may be processed as part of forward log
recovery. From this range, the maximum number of pages that may need to be read from disk can
be calculated by dividing the difference by 4096.

On our test systems connected to DS8900F DASD, each read of a 4KB page took approximately
140 microseconds, which equates to 7140 pages per second (27.9MB/second).

When z High Performance Ficon (zHPF) was enabled, the page I/O time was reduced and gave
approximately a 50% improvement in read rate.

30

The number of pages that need to be read will depend on the workload and in our tests saw instances
of between 10% and 100% of the pages specified by the CSQR030I message having to be read from
disk.

Phase 3, Recovering in-commit and in-doubt tasks Most time is spent reading the logs
between the STARTRBA and ENDRBA for in-doubt and in-commit tasks. The log is read in a
forward direction until the start RBA is located, and then the records are read and processed from
that point. If a unit of recovery spans more than one tape, the whole of the first tape has to be
read. For in-doubt tasks, any locks are re-obtained. Backwards log recovery is dependent upon
the number of long running tasks that need to be recovered, but it should be notes that the data
is not read backwards, instead the starting record is read directly and then the logs are processed
forwards.

Tasks that have been through 2 checkpoints and have been log shunted may require less data to be
read for recovery.

In our measurements using simple long running tasks, such as those that put a message and wait
prior to committing the data, backwards recovery was of the order of 10 seconds or less but with
more tasks to recover, backwards recovery may take longer.

Phase 3, Applying changes to a page set if a backup copy has been used If a backup
copy of a page set is used, the log needs to be read from the point when the backup was taken,
and all records read forward from that point. If you did not record the log RBA when the backup
was taken, you can use the date and time when the backup was taken and look in a printout of the
BSDS to find the archive logs that will be needed.

To calculate the time needed to read the logs:

1. Calculate the difference between the log RBA at the start of backup and the RBA at the point
of failure (the STARTRBA value in message CSQJ099I).
If the backup was taken when the queue manager was active (a fuzzy backup), the RBA in the
page set might be up to three checkpoints before the RBA when the backup was taken. This
might be up to three additional archive logs.

2. Divide the RBA range (in MB) by the data rate your DASD or TAPE can sustain to calculate
the time required to process this amount of data.

The worst case is when there is a damaged page set that was not backed up and has to be redefined.
This sets the page set RBA to 0, and so all logs from the very first are required for recovery. In the
example above, the previous checkpoint is 0211B7842C44. This is about 2300 GB of data. If this
can be read at 56 MB per second, this will take almost 12 hours, but if the reads occur at 1GB per
second the time is reduced to approximately 38 minutes.

If the page set had been backed up when the queue manager was down at the RBA of 021000000000,
the required range of RBAs is 0211B7842C44 - 021000000000 (about 7000 MB of data). If this can
be read at 56 MB per second, this is about 2 minutes plus the time to read from the checkpoint to
the point of failure. You also need to add the time taken to make any archive log available, and
include the time to restore the page set from a backup copy.

It is significantly faster to use DFDSS dump and restore than to use IDCAMS REPRO. For example,
for a dataset of 1600 cylinders DFDSS dump took 15 seconds, and IDCAMS REPRO took 26 seconds.
In both cases the backup dataset was the same size as the original dataset.

Rebuilding the page sets to the point of failure To recover a page set, up to three checkpoints
worth of data has to be read from log. This is typically two checkpoints worth, but if the system
failed when processing a checkpoint, three checkpoints worth of data needs to be processed. By

31

having at least three active log data sets, you will ensure that these records are read from the active
logs, and not archive logs.

Phase 4, undo any changes for tasks that were in flight or in backout (backward re-
covery) The log has to be read in a backward direction from the point of failure to the earliest
URID for those tasks that were in flight or in backout (a status of F or A). Reading backwards is
considerably slower than reading forwards, (by a factor of 5 on some tapes, and on our DS8800 was
half the rate of reading forwards), and is even slower if data compaction is used. In the example
above, if the system failed when the RBA was 211F0000000, there is about 900 MB of data to be
read. If the rate of reading backwards is 56 MB per second this will take about 16 seconds.

32

Example of calculation of restart time This section gives a worked example for the time taken
to restart a queue manager that had tasks in different states when it stopped.

The calculations are to give an indication of the time taken to recover, for example, will a queue
manager take 10 minutes or 10 hours to restart, rather than an accurate value.

Configuration

Dual logging was used, with 3 active logs in a ring. Each log was 100 cylinders of 3390 (about 74
MB each). Small logs were used for illustration purposes.

When archiving to tape, a Virtual Tape System (3494-VTS B16) was used. This looks like a 3490E
to z/0S. Physically, the data is written to DASD before being ultimately staged to a 3590 tape.

Request/reply CICS transactions were used. The transaction put a 1000-byte persistent message to
a server queue, and a batch server retrieved the message and put the reply back to the originator.

The in-doubt, in-flight, and in-commit transactions were achieved as follows:

e CEDF was used to suspend the in-flight transaction after the transaction had written a message
and before the commit. Many transactions were run.

e The in-doubt transaction was created by suspending the application before the "Phase 1 com-
mit to Phase 2 commit" was moved to the log buffers. Many transactions were run.

e The in-commit transaction was suspended the same way as the in-flight transaction. Many
transactions were then run and the in-commit transaction was allowed to commit. The queue
manager was then cancelled. Because the "End phase 2 commit" had not been written to the
log data set, the transaction becomes in commit at system restart. If any other transaction
had run that caused the log buffers to be forced to disk, the in-commit transaction would
have had its "End phase 2 commit" written to the log data set, and would be seen as having
completed at system restart.

The following table shows the tapes that were used, and their RBA ranges:

Number STARTRBA ENDRBA
1 0 000000009FFF
2 00000000A000 00O0004659FFF
3 00000465A000 000008CA9FFF
4 000008CAA000 OOOOOD2F9FFF
5 00000D2FA000 000011949FFF
6 00001194A000 0O0O0015F99FFF
7 000015F9A000 OOOO1ABE9FFF
8 00001A5EA000 00001EC39FFF
9 00001EC3A000 000023289FFF

10 00002328A000 0000278D9FFF

The log data on tapes 9 and 10 is still available on the oldest two of the ring of active logs. Active
logs are always used in preference to archive logs where possible.

Output from when the queue manager was restarted after it was cancelled Phases 1
and 2, - estimate of the time needed

The following figure shows an example of output from a queue manager at restart:

33

08.36.13 CSQJ099T @V2IA LOG RECORDING TO COMMENCE WITH
STARTRBA=0000296A8000

08.36.13 CSQROO1I @V21A RESTART INITIATED

CSQROO3I @V21A RESTART...PRIOR CHECKPOINT RBA=0000278DF333
08.36.27 CSQRO04I @V21A RESTART...UR STATUS COUNTS

IN COMMIT=1, INDOUBT=1, INFLIGHT=1, IN BACKOUT=0

CSQROO7I @V21A STATUS TABLE

T CON-ID THREAD-XREF S URID TIME
S IYCPVCO2 1869E2ACC3D7F2F50000046C FOOOOOOOA1F55 .. 08:14:35
S IYCPVCO2 1869EE04C9D5C3D40016274C D0O000046280C4 .. 08:18:56
S IYCPVCO2 1869F206C3D7F2F50034023C COOO008E340A0 .. 08:24:11

This shows that the time between issuing message CSQRO001I and message CSQRO004I (phase 1) is
14 seconds.

e The RBA in the CSQJ099I message (0000296A8000) is just after the point of failure.
e The last checkpoint is at 0000278DF333.
e The number of bytes between these two values is approximately 31 MB.

e If the log can be read at 2.7 MB per second, this will take about 12 seconds.

Phase 3, forward recovery - estimate of the time needed
e Tape 2 was read forwards and took 21 seconds. This is for the in-doubt transaction.

e Tapes 4 through 8 were read forwards; each tape took about 25 seconds to read. Tapes 9
and 10 were not needed because the data was still in active logs. This is for the in-commit
transaction.

08.47.05 CSQROOST @V2IA RESTART...COUNTS AFTER FORWARD RECOUOVERY
IN COMMIT=0, INDOUBT=1

CSQROO7I @V21A STATUS TABLE

T CON-ID THREAD-XREF S URID TIME

S IYCPVCO2 1869EE04C9D5C3D40016274C D0000046280C4 .. 08:18:56

The time taken between issuing message CSQRO005I and message CSQRO004I was 10 minutes 38
seconds, of which 6 minutes 30 seconds was spent mounting the tapes. The tapes were being read
for just over 4 minutes. There is one task in commit and one in doubt.

The in-commit and in-doubt tasks are processed during forward recovery and the in-flight task is
processed during backward recovery. There is no way of knowing when the last RBA was written
for the in-doubt or in-commit units of recovery. For normal, well-behaved, transactions the time
between the start of the unit of recovery and the commit request is short, but it might take a long
time for the in-doubt unit of recovery to be resolved.

Processing the in-doubt transaction The in-doubt transaction was created by suspending the
application before the "Phase 1 commit to phase 2 commit" was written to the logs. This was the
only transaction running at the time so the RBA range between the STARTRBA and the point
where the transaction was suspended was small.

The log has to be read from the "Start UR" to the "End commit phase 1". The STARTRBA is on
tape 2 and the log has to be read sequentially to locate the STARTRBA. Then the log is read and
processed up to the ENDRBA.

34

The START UR of the in-doubt transaction is 0000046280C4 and the STARTRBA of tape 2 is
00000000A000. The number of bytes to be read to locate the STARTRBA is:

0000046280C4 - 00000000A000 = 74MB

The test system can achieve a rate of 2.7 MB per second which means that it takes 27 seconds to
read 7T4MB. The time taken to read the records for the unit of recovery up to the ENDRBA is small
in this example. (In the example above, Tape 2 was read for 27 seconds.)

Processing the in-commit transaction The in-commit transaction put a message and was
suspended the same way as the in-flight transaction. Many other transactions then ran. This
suspended transaction was then allowed to commit, in the sense that the "end phase 2 commit" was
moved to the log buffers. Before the buffers were written to the log data set the queue manager was
cancelled. Because the "End phase 2 commit" has not been moved to the log data set, it becomes
in commit at system restart.

e The STARTRBA of the transaction is on tape 4, and the whole of the tape has to be read, from
RBA 000008CAA000 forward. It is read from the start of the tape up to the STARTRBA,
and then from the STARTRBA up to the commit records.

e You might know how your applications behave, and know if they have long units of recovery.
In this example the ENDRBA is at the point of failure (0000296A8000).

e The amount of data to be read is 0000296 A8000 - 000008CA A000. This is about 547 MB. On
the test system, this could be read in 202seconds (at a rate of 2.7MB per second).In the above
example, this was read in about 240 seconds.

Recovery of the buffer pools The RBA from the page sets is within three checkpoints of the
point of failure. The checkpoints were occurring when the log switched, so up to three active logs
have to be read. Each log is 74MB, and at 2.7 MB per second will take about 27 seconds per log.
For three checkpoints this will be 82 seconds. This activity occurs in parallel to the recovery of the
in-commit and in-doubt tasks.

Total time for this forward recovery The time taken for forward recovery is the greater of:
e 27 seconds for the in-doubt unit of recovery plus 202 seconds for the in-commit unit of recovery
e 82 seconds for the recovery of the buffer pools which is approaching 4 minutes, and close to

the actual elapsed time.

Phase 4, backward recovery - estimate of time needed The active logs were read backwards,
so the archive logs on tape 10 and 9 were not needed.

08.47.05 CSQROO7T @V2IA STATUS TABLE
T CON-ID THREAD-XREF S URID TIME

S IYCPVCO2 1869EE04C9D5C3D40016274C D0000046280C4 .. 08:18:56
08.47.54 IKJ56221I DATA SET MQMDATA.TAPE.V21A1.A0000008 NOT ALLOCATED...

This shows that it took 54 - 05 = 49 seconds to process the log records already in memory and to
read the active logs backwards.

e Tapes 2 through 8 were read backwards taking between 85 and 140 seconds per tape, for a
total of 12 minutes 31 seconds.

09.04.50 CSQROO6T @V2IA RESTART...COUNTS AFTER BACKWARD
RECOVERY

INFLIGHT=0, IN BACKOUT=0

CSQRO0O2I @V21A RESTART COMPLETED

35

The time taken between issuing message CSQRO006I and message CSQRO005I is 17 minutes 45 seconds,
of which 4 minutes was spent mounting the tapes and 12-13 minutes reading the tapes.

There is one task in flight with an RBA of 0000000A1F55. The log has to be read backwards from
the point of failure to this RBA.

The point of failure is at 0000296A8000, so the amount of data to be read is 0000296A8000 -
0000000A1F55. which is nearly 700 MB. If the rate for reading data backwards is about 0.5 MB per
second this will take about 1400 seconds (nearly 24 minutes). !

Total restart time The time for recovery is the total of the time in the three phases, that is
11 seconds + 202 seconds + 24 minutes (nearly half an hour) plus the time to mount tapes (for
example, 13 tapes at 1 minute each) giving a total time of nearly 45 minutes.

NOTE: These numbers are on older hardware and the logs are deliberately small to highlight the
recovery process and time.

Using the Virtual Tape System, where the data had not been destaged to 3590 tapes, the data could be read
at about 2.6 MB per second. When the data had been moved to tape, the average rate was about 0.6 MB per
second, this includes the time to locate and mount the tape as well as reading it.

36

Messages which show the page set status at startup

A message CSQI0491 is produced to show the RBA needed by each page set during forward recovery.
If the two RBA values are different this is due to a page set backup being used.

09.37.29 CSQI049I ©# Page set O has media recovery
RBA=0000479AF9FA, checkpoint RBA=0000479AF9FA
09.37.29 CSQIO49I @# Page set 1 has media recovery
RBA=0000479AF9FA, checkpoint RBA=0000479AF9FA
09.37.29 CSQIO49I Q@# Page set 2 has media recovery
RBA=0000479AF9FA, checkpoint RBA=0000479AF9FA
09.37.29 CSQIO49I O# Page set 3 has media recovery
RBA=0000479AF9FA, checkpoint RBA=0000479AF9FA

Messages to show progress during forward and backward recovery There are 4 messages:
CSQRO030I

This shows the maximum log range required for forward recovery.

Note: Not every log in this range might be needed.

CSQRO0311

This message is produced approximately every 2 minutes, and shows the current log RBA being
processed during forward recovery. From two of these messages, and the RBA range in message
CSQRO30I, you should be able to calculate the maximum time the forward recovery phase will take.
You will also need to include the time taken to make the archive logs available. Active and archive
logs might be on different media and thus be processed at different rates.

CSQRO032I

This shows the maximum log range required for backward recovery. Every log in this range will be
needed.

CSQRO033I

This message is produced approximately every 2 minutes, and shows the current log RBA being
processed during backward recovery. From two of these messages, and the RBA range in message
CSQRO032I, you should be able to calculate the maximum time the forward recovery phase will take.
You also need to include the time taken to make the archive logs available.

09.37.30 CSQRO30T @# Forward recovery log range

from RBA=0000479AF9FA to RBA=0000479B33A0

09.37.30 CSQROO5I @# RESTART...COUNTS AFTER FORWARD RECOVERY
IN COMMIT=0, INDOUBT=0

09.37.30 CSQRO32I @# Backward recovery log range

from RBA=0000479B33A0 to RBA=000008561B58

09.38.43 CSQRO33I @# Reading log backwards, RBA=00003E022000
09.40.43 CSQRO33I @# Reading log backwards, RBA=00002E39A11D
09.42.43 CSQRO33I @# Reading log backwards, RBA=00001E686466
09.44.43 CSQRO33I @# Reading log backwards, RBA=00000EAB6000
09.45.31 CSQROO6I @# RESTART...COUNTS AFTER BACKWARD RECOVERY
INFLIGHT=0, IN BACKOUT=0

09.45.31 CSQROO2I ©# RESTART COMPLETED

37

Messages about page set recovery RBA produced at checkpoints
produced during a checkpoint. It identifies the RBA stored in page 0 of the page set, and the lowest

RBA of any page in the buffer pool for that page set. These values are usually the same.

09.45.31 CSQPOI8TI ©# CSQOPBCKW CHECKPOINT STARTED FOR ALL BUFFER POOLS
09.45.31 CSQPO21I @# Page set O new media recovery
RBA=0000479B4000, checkpoint RBA=0000479B4000

09.45.31 CSQP019I @# CSQP1DWP CHECKPOINT COMPLETED FOR BUFFER
POOL 3, 2 PAGES WRITTEN

09.45.31 CSQPO21I @# Page set 1 new media recovery
RBA=0000479B4000, checkpoint RBA=0000479B4000

09.45.31 CSQPO21I @# Page set 2 new media recovery
RBA=0000479B4850, checkpoint RBA=0000479B4850

09.45.31 CSQP021I @# Page set 3 new media recovery
RBA=0000479B50A0, checkpoint RBA=0000479B50A0

09.45.31 CSQP0O19I @# CSQP1DWP CHECKPOINT COMPLETED FOR BUFFER
POOL 2, 19 PAGES WRITTEN

09.45.32 CSQP019I @# CSQP1DWP CHECKPOINT COMPLETED FOR BUFFER
POOL 1, 21 PAGES WRITTEN

09.45.32 CSQP019I @# CSQP1DWP CHECKPOINT COMPLETED FOR BUFFER
POOL O, 87 PAGES WRITTEN

09.45.32 CSQY022I ©# QUEUE MANAGER INITIALIZATION COMPLETE
09.45.32 CSQ9022I ©# CSQYASCP ’START QMGR’ NORMAL COMPLETION

38

Message CSQP0211 is

What happens during the recovery phase of restart when in a QSG

The following figures show examples of the additional messages produced during recovery phase of
restart when the queue manager is in a queue sharing group.

Reconnecting to the structures in the coupling facility

12.14 .45 CSQE140T QVTSI CSQEENFR Started listening for ENF 35
events for structure CSQ_ADMIN

12.14.45 IXL014I IXLCONN REQUEST FOR STRUCTURE PRF5CSQ_ADMIN
WAS SUCCESSFUL. JOBNAME: VTS1MSTR ASID: 0C91

CONNECTOR NAME: CSQEPRF5VTS101 CFNAME: AACFO1

ADDITIONAL STATUS INFORMATION:

CONNECTION HAS BEEN REESTABLISHED

12.14.45 CSQE141I @VTS1 CSQEENFR Stopped listening for ENF 35
events for structure CSQ_ADMIN

12.14.45 CSQEOO5I @VTS1 CSQECONN Structure CSQ_ADMIN connected

as CSQEPRF5VTS101, version=CA5DC40EEF336E88 0001043C

12.14.45 CSQEO021I @VTS1 CSQECONN Structure CSQ_ADMIN

connection as CSQEPRF5VTS101 warning, RC=00000004 reason=02010407
codes=00000000 00000000 00000000

The queue manager attempts to reconnect to the named structure when it is notified that the
coupling facility is available. The queue manager then connects to the named structure but issues
warning with reason 02010407 (IXLRSNCODESPECIALCONN). These messages may be repeated
for the application structures too.

CFLEVEL(5)

12.14.45 CSQE252I @QVTS1 CSQEDSS4 SMDS(VTS1)

CFSTRUCT (APPLICATION1) data set MQMDATA.VTS1.SMDS.APPL1 space map
will be rebuilt by scanning the structure

12.14.45 CSQE255I @VTS1 CSQEDSS4 SMDS(VTS1)

CFSTRUCT (APPLICATION1) data set MQMDATA.VTS1.SMDS.APPL1 space map has
been rebuilt, message count 10240

The queue manager initiates the rebuilding of the shared message data set space map by scanning
the coupling facility structure. Upon completion the CSQE2551 message is logged showing that
there are 10240 messages held on the structure.

Peer level recovery

12.14 .45 CSQEOIIT @QVTSI CSQESTE Recovery phase 1 started for structure
CSQSYSAPPL connection name CSQEPRF5VTS101

12.14.45 CSQEO13I @VTS1 CSQERWI1 Recovery phase 1 completed for structure
CSQSYSAPPL connection name CSQEPRF5VTS101

12.14.45 CSQEO12I @VTS1 CSQERWI2 Recovery phase 2 started for structure
CSQSYSAPPL connection name CSQEPRF5VTS101

12.14.45 CSQEO14I @VTS1 CSQERWI2 Recovery phase 2 completed for structure
CSQSYSAPPL connection name CSQEPRF5VTS101

12.14.45 CSQEO06I @VTS1 CSQECLOS Structure CSQSYSAPPL connection name
CSQEPRF5VTS101 disconnected

39

Phase 1 of the peer level recovery process involves recovering units of work that were in progress at
time of failure.

Phase 2 involves recovering failed queue managers the in-flight messages for that queue manager.

Worked example of restart times

After an abnormal shutdown, extra time is needed to recover the system from the log data sets, to
rebuild the system to the point of failure, and then to commit or roll back the work.

In the measurements below, CICS applications put messages to a queue and a batch server program
processes the message and puts a reply on the specified reply-to queue. The CICS application then
gets the reply and terminates.

A certain number of CICS transactions were run and then the queue manager was cancelled and
restarted.

During restart the duration between the start of the queue manager and key restart messages being
produced were recorded.

Number of CICS Time between Time between Time between
transactions startup and CSQRO01I and CSQRO002I and
CSQRO0011I CSQRoO002I CSQYo0221

0 7 seconds 1 second 0.2 seconds

10000 7 seconds 59 seconds 0.2 seconds

There is a linear relationship between the time between messages CSQR001I and CSQRO002I and
the number of CICS transactions that have run between the last checkpoint and the system being
cancelled.

If there are ongoing units of work that existed before the latest checkpoint when the system ended,
MQ will have to go back further in the log to the start of the units of work, and read the log from
that point. This will extend the restart time. This could happen with channels that have a very
long BATCHINT time specified, or on which the remote end of a channel has failed and messages
are in doubt.

A checkpoint is taken at the following times:
e When an active log fills and switches to the next active log.

e When the number of writes to log buffers (Write Wait + Write Nowait + Write Force in the log
manager statistics) exceeds the number specified for the LOGLOAD parameter of CSQ6SYSP.
The number of writes to log buffers is reset to zero after a checkpoint.

When an ARCHIVE LOG command is issued, because this forces a log switch.
At shutdown.

1000 transactions were run, and the log statistics show that the number of "writes to log buffers"
was about 31 000, or 31 "write to log buffers" per transaction. This means that, with a LOGLOAD
value of 450 000, we could run 450 000/31 (=14 516) transactions before a checkpoint occurs. If the
system fails just before a checkpoint, the time between restart messages CSQRO01I and CSQRO002I
would be about 85 seconds. (10000 transactions take 59 seconds, so 14516 would take 85 seconds.)
This gives a total restart time of about 7 4+ 85 4+ 0.2 = 92 seconds.

Note: Different message sizes might have different numbers of "write to log buffers" per transaction.

40

Effect of the number of objects defined on start up time

Restart time is affected by the number of objects that are defined because these are read in and
validated during startup.

Number of objects Time between Time between Time between
de‘f]ined startup and CSQRO001I and CSQRO002I and

CSQRO0011 CSQRO002I CSQY0221

140 7 1 0.2

4140 7 3.6 0.2

14484 7 7.6 0.2

With 14 484 objects defined, the default allocation of 1050 buffers for buffer pool 0 is too small.
After the size of the buffer pool had been increased, the buffer pool statistics showed that 1230
buffers had been used.

41

Tuning

Performance implications of very large messages
The use of very large messages is likely to impact performance in the following ways:

e Page set I/O is more likely with very large messages than with the same amount of data in
smaller messages. Buffer pools are much more likely to be so full that synchronous output to
page sets is required. This significantly slows all applications using an affected buffer pool.

e For persistent messages the log I/0 load will be great and other smaller messages are likely to
be significantly slowed waiting for log I/O or even just space in log buffers. Ensure that log
parameter OUTBUFF is set at its maximum (4000).

e Increased virtual storage usage in applications and in the IBM MQ channel initiator.

o This is likely to cause increased real storage usage in applications and IBM MQ buffer
pools.

o The maximum number of channels all transmitting 100-MB messages is unlikely to exceed
15 because of virtual storage limitations. The use of BATCHSZ(1) is recommended for
any channel transmitting very large messages

These considerations could cause an increase in elapsed time and CPU cost for every message in
your queue manager compared to using the same amount of data in several smaller messages.

Queue Manager attribute LOGLOAD
What is LOGLOAD?

LOGLOAD is defined as the number of log records written by IBM MQ between the start of one
checkpoint and the next.

Checkpoint processing will begin with the first of:
e the LOGLOAD threshold is reached.
e the end of the active log is reached.

e the queue manager is stopped.

What settings are valid for LOGLOAD?
Valid values for LOGLOAD range from 200 up to 16 million log records.
The value of LOGLOAD can be changed by either of the following methods:

e use the SET SYSTEM command. To permanently change this, put the SET SYSTEM com-
mand into a data set in the CSQINP2 concatenation.

e update the CSQ6SYSP parameter and regenerate the parameter module.

What is an appropriate value for LOGLOAD?

In our measurements the best performance, in terms of transaction cost and throughput, have been
obtained with a LOGLOAD in the range of 4 million to 16 million.

When might a lower LOGLOAD be appropriate?

There may be occasions where a LOGLOAD of less than 4 million may be appropriate to your
system, for example:

e When restart time is defined by an SLA. See “Restart” for more information.

42

e When using IBM InfoSphere Data Replication for DB2 for z/OS as part of an Active-Active
solution and the system uses multiple outbound IBM MQ channels defined between the
capture and apply queue managers.

o In this instance we found that a lower LOGLOAD of 100,000 helped reduce instances
where one transmission queue might achieve better throughput due to a more favourable
log force frequency.

What happens at checkpoint

When a checkpoint is driven, the Deferred Write Process (DWP) will be invoked to write data that
has been held in the buffer pool through 2 checkpoints from the buffer pool to the page set. More
information can be found in the section titled “Deferred Write Process”.

Note: There can be a significant difference in the rate that data can be written by DWP depending
on the IBM MQ release. We saw an individual DWP writing data to page set at the following
rates:

e VT710: 25MB per second
e V800: 300-600MB per second

This increase in write rate in IBM MQ version 8.0.0 is due in part to an increase in the number of
pages written per I/O request (from 4 to 16) and also due to the number of parallel I/Os (up to 64),
which can have an impact on the I/O subsystems response times.

Impact of LOGLOAD on workload

The value of LOGLOAD can have an impact on the throughput (messages per second) and the cost
of those messages in the queue manager address space.

Measurements were run on V710 and V800 queue managers and used the following scenarios:
e Low queue depth - request/reply workload where the queue depths are low.

e High queue depth - deep queue processing where the queue was pre-loaded with messages
and subsequently messages were put and got in random order whilst maintaining a high queue
depth.

e High variance in depth - sending messages between queue managers using channels. E.g.
where the rate that the messages arrive on the transmit queues exceeds the rate at which
the messages can be got and sent across the network. This results in the transmit queues
changing from empty to deep, until the point where the putting task completes, which then
allows the transmit queue depth to drop to 0 as the channel initiator completes sending all of
the messages.

Low queue depth

For both the V710 and V800 measurements there was little impact from LOGLOAD with messages
up to 100KB.

For larger messages, a small LOGLOAD value did impact the cost per transaction in the queue
managers’ address space and as such, the optimal value for LOGLOAD would be 1 million upwards.

43

CPU microseconds per transaction
(2964-703)

Request/Reply using 4MB messages
Cost per transaction (Queue manager address space only)

—&- V710 QM —e—V800 QM

2800
2600
2400
2200
2000
L
1600

1400
0 500000

: =

>

1000000 1500000 2000000

LOGLOAD setting

2500000 3000000 3500000 4000000

High queue depth

Optimum performance for this workload type was observed when the LOGLOAD was in the range
4 million to 16 million.

The following chart shows the achieved transaction rate with 100KB messages that are randomly
got using a CORRELID and then put back to the queue.

a4

Transactions / seconds (2964-T03)

High Queue Depth: Random message Get/Put
Transaction Rate

== 710 —e—vB00

1400
1200
1000

0 1000000 2000000 3000000 4000000 3000000
LOGLOAD

In the V710 measurement, the largest impact is to the elapsed time of the MQPUT where it is
delayed for log write.

Note: For this workload type, the V800 queue manager is using 64-bit buffer pools and benefits
from the more intensive DWP and as a result is less affected by log writes as there are buffers

available.

High variance in depth

44

Optimum performance for this workload type was observed when the LOGLOAD was in the range
4 million to 16 million but there were exceptions which include:

e Sending data across multiple channels where the applications have a dependency of message
ordering across the channels, such as when using IBM InfoSphere Data Replication for DB2
for z/OS with V710 queue managers which may benefit from a LOGLOAD at the lower end of
the scale. In our measurements a LOGLOAD of 100,000 showed the most reliable performance
largely due to reducing the effects of log-forces being skewed towards one channel, resulting in
a more even balancing of log writes - which led to messages being sent at similar rates instead,
and ultimately meant that messages became available for processing by the apply task sooner.
In test measurements this had the effect of reducing the elapsed time for a fixed size workload
by 12% when compared with a LOGLOAD in the range 4-16 million.

Impact of LOGLOAD on log shunting

Long running transactions can cause unit of work log records which span log data sets. IBM MQ
handles this scenario by using log shunting, a technique which moves the log records to optimize the
quantity of log data retained and queue manager restart time.

When a unit of work is considered to be long, a represention of each log record is written further
down the log. This is known as “log shunting”.

At each checkpoint, whether triggered by reaching the end of an individual active log or by reaching
the LOGLOAD threshold, long running transactions that are eligible for log shunting will be shunted.
A smaller LOGLOAD value can impact the number of transactions being shunted and can also
increase the amount of data being logged - which in turn can result in the checkpoints driven by a
small LOGLOAD value to occur more frequently.

Impact of LOGLOAD on restart
The time taken to start a queue manager can be divided into four parts:

1. The time taken to load the M@ modules and for each component to initialize. Message
CSQRAOO01I is issued when this phase is complete.

2. The time taken to process the logs and recover any in-flight work; after a normal shutdown
this work is very small. Message CSQRO002I is issued when this phase is complete.

3. The time taken to read every object definition from page set 0 and to perform a consistency
check on it. Message CSQY022I is issued when this phase is complete.

4. The time taken to process the statements in CSQINP2. Message CSQ90221 is issued when
this phase is complete.

The setting of LOGLOAD can affect the amount of work that needs to be completed when processing
the logs. The time spent in forwards recovery is largely influenced by the number of pages that need
to be read from the page set(s). This is discussed in more detail in the “"How long will each phase
of recovery take?” section.

The following chart gives a guide to the recovery times as LOGLOAD increases, resulting in increased
reads from page set.

45

QM Restart: Forward recovery time as more data needs recovering

Measurement on 2964-703 connected to DS8870 DASD where I/O time was 233 microseconds per page

N Size of forward recovery range — Time spent in forward recovery

8000 400 =

- L]

a 7000 330 §
=

g 6000 300 &

2 =

§ 5000 250 g

E 4000 200 g8

3 3000 150 =2

£ 2000 100 &

E 1000 l 30 4

E

i 0 0o 8

]

(1]

100000 230000 500000 1000000 2000000 4000000 8000000 12000000 16000000

LOGLOAD

Notes on chart: The proportion of pages read relative to the range of data specified by the
CSQRO030I message varies. In this example the variation is between 10% (for LOGLOAD 500,000)
and 100% (for LOGLOAD 1,000,000). In these extreme cases the amount of data specified by the
CSQRO30I message was not particularly large, i.e. less than 1GB but when LOGLOAD was 4 million
or higher, the range of data was TGB of which 80% required reading, resulting in forward recovery
times of 340 seconds.

Use of MQ Ultilities

If possible avoid setting MAXUMSGS high. The number of MQ operations within the scope
of a single MQCMIT should usually be limited to a reasonably small number. For example, you
should not normally exceed 100 MQPUTs within a single MQCMIT. As the number of operations
within the scope of one MQCMIT increases the cost of the commit increases non-linearly because of
the increasing costs involved in managing very large numbers of storage blocks required to enable a
possible backout. So for queues with many tens of thousands of messages it could be very expensive
to set MAXUMSGS greater than the number of messages and use CSQUTIL utility functions like
COPY or EMPTY.

The 9.3 Administration Reference states, in the context of CSQUTIL utilities,
Syncpoints:

The queue management functions used when the queue manager is running operate within a syncpoint
so that, if a function fails, its effects can be backed out. The queue manager attribute, MAXUMSGS,
specifies the mazimum number of messages that a task can get or put within a single unit of recovery.

The utility issues an MQCMIT call when the MAXUMSGS limit is reached and issues the warning
message CSQUOSTI. If the utility later fails, the changes already committed are not backed out.

Do not just rerun the utility to correct the problem or you might get duplicate messages on your
queues.

Instead, use the current depth of the queue to work out, from the utility output, which messages have
not been backed out. Then determine the most appropriate course of action. For example, if the
function is LOAD, you can empty the queue and start again, or you can choose to accept duplicate
messages on the queues.

To avoid such difficulties if the function fails, there are two options:

46

o Temporarily increase the value of MAXUMSGS to be greater than the number of messages in:
o The number of messages in the queue, if you are working with a single queue.
o The longest queue in the page set, if you are working with an entire page set.

o Use the utility to LOAD the messages to a temporary queue. Then use the MQSC MOVE
command to move the messages from the temporary queue to the target queue.

o The LOAD and MOVE approach may take longer but moves the messages in a number
of small units of work so is more efficient in terms of CPU cost.

o Ezample move command: MOVE QL (tempq) TOQLOCAL(targetq) TYPE(ADD)

47

IBM MQ Utilities: CSQUTIL

The CSQUTIL utility program is provided with IBM MQ to help perform backup, restoration and
re-organization tasks and to issue MQ commands.

These tasks include page set management functions including formatting and increasing the size of
the page sets.

In order to increase the size of the page set, it is necessary to create the new page set and format it
using the FORMAT function and then copy the contents of the existing page set into the new page
set, using the COPYPAGE function.

The FORMAT and COPYPAGE functions may be performed within the same CSQUTIL job step
or in separate steps.

FORMAT

The FORMAT function is used to format page sets, initialising them such that they can be used by
the queue manager. On our system, each gigabyte of data took approximately:

e 0.35 CPU seconds
e 15 seconds elapsed

This means that to format a 4GB page set, it took 1.4 CPU seconds (on a 3-processor 8561-7G1
with DS8900F DASD) and 1 minute elapsed for the job to complete.

Enabling zZHPF reduced the time for format a 4GB page set to 40 seconds but made no difference
to the cost of the format.

The queue manager does have the capability to expand and format a page set whilst it is active,
in the situation when it does not have sufficient capacity. In order to perform this expansion, the
queue manager will slow any MQPUTs to queues on the page set whilst the expand and format
takes place.

COPYPAGE

The COPYPAGE function is used only for expanding page sets to copy one or more page sets to a
larger page set. The entire source page set is copied to the target page set, regardless of how many
messages there are on the page set.

On our system, copying each gigabyte of page set took approximately:
e 0.91 CPU seconds
e 11.3 seconds elapsed

This means that to format a 4GB page set, it took 3.64 CPU seconds (on a 3-processor 8561-7G1
with DS8900F DASD) and 45 seconds elapsed for the job to complete.

RESETPAGE [FORCE]

The RESETPAGE function is like the COPYPAGE function except that it also resets the log
information in the new page sets.

The “RESETPAGE” function:
e Does a copy and reset, using a source page set and a target page set.

e The target page set should have been opened previously, preferably using the FORMAT com-
mand, otherwise the step may fail with a "CSQU156E GET failed for CSQTxxxx data set.
VSAM return code=00000008 reason code=00000074" message.

48

e The target page set size should be equal to or greater than the current size of the source page
set including any expansions. The RESETPAGE function does not have the ability to expand
the target page set and instead will fail before attempting the copy.

On our lightly loaded system (on a 3-processor 8561-7G1 with DS8900F DASD), each gigabyte of
page set took approximately:

e 1.25 CPU seconds
e 23 seconds elapsed

This means that to RESETPAGE a 4GB pageset it took 5 CPU seconds and 93 seconds for the job
to complete.

The “RESETPAGE FORCE” function:
e Does a reset in place, using only the source page set.
e This means that the page set will be of the appropriate size.

e As the same page set is being accessed for read and write operations, the rate of reset is
significantly lower than the "RESETPAGE" option.

On our lightly loaded system (on a 3-processor 8561-7G1 with DS8900F DASD), each gigabyte of
page set took approximately:

e 1.16 CPU seconds
e 37.5 seconds elapsed

This means that to RESETPAGE a 4GB pageset it took 4.64 CPU seconds and 2 minutes 30 seconds
for the job to complete.

Enabling zHPF reduced the time to RESETPAGE FORCE on a 4GB page set to 1 minute 37 seconds
but made no difference to the cost of the format.

Conclusions for RESETPAGE

e In order to ensure that queue manager down-time is minimised, it is advisable to use "RESET-
PAGE" rather than "RESETPAGE FORCE", unless there is insufficient storage for a second
set of page sets for the queue manager.

e If multiple page sets are to be reset, they should be processed as separate jobs run in parallel.

e Given that these jobs can be long running, it is advisable to check the service class is appro-
priate and the priority is not degraded over time.

49

Queue Manager Trace

For guidance on trace options for the channel initiator i.e. trace(chinit), accounting class 4 and
statistics class 4, refer to section “Channel Initiator - trace costs”.

To help understand the data generated by accounting and statistics trace, see SupportPac MP1B
“Interpreting accounting and statistics data”.

Accounting Trace Costs
Accounting trace classes 1 and 3 write an SMF 116 record for each transaction.

Additional “continuation” records may be written when class 3 accounting is enabled depending
on the number of queues accessed by the transaction. Typically the primary SMF 116 record can
support up to 8 queues and each continuation record can support a further 9 queues. For example,
an application that accesses 20 queues would see 3 SMF 116 records, one primary and 2 continuation
records, the first of which has data for 9 queues and the second has data for the final 3 queues.

The amount of data written to SMF can impact the CPU costs when enabling accounting trace,
particularly in an environment with a high transaction rate, as can where the SMF data is stored,
for example we have observed that writing high volumes of data to logstreams? is lower cost than
writing to SMF MAN datasets.

In a CICS environment with a high transaction rate, the logging of records to SMF MAN datasets
may result in the queue manager reporting CSQW133E ‘‘TRACE DATA LOST’’ messages as SMF may
not be able to write the data to its datasets sufficiently quickly. In this case it is advisable either to
use logstreams rather than SMF MAN datasets or to use TRACE(A) CLASS(3) for short periods of
time (60 seconds).

Consider a CICS transaction that performs a single MQPUT1 followed by an EXEC CICS SYNCPOINT
and EXEC CICS RETURN when the connected queue manager has accounting trace enabled:

CICS Region Queue manager SMF

i Accounting trace
CICS Transaction data collection

MOQPUT1 P putl data
CLASS(1 or 3)
EXEC CICS SYNCPOINT * commit data

CLASS(3 only)

* backout
Eﬁg{ﬂg%nmnw (anything since|} Call SMF

lastcommit) || fo write)

* other | data

SMF writes to
MAM datasets

CLASS(3 only) or logsiream

The diagram attempts to show when the queue manager will gather accounting data.

2SMF write rates are discussed in section “IBM MQ and zEnterprise Data Compression (zEDC)?”

50

http://www-01.ibm.com/support/docview.wss?uid=swg24005907

e Accounting data will be stored for the MQPUT1 for either class 1 or 3.
e When trace class 3 is enabled:
o EXEC CICS SYNCPOINT will result in the queue manager storing “commit” data.

o EXEC CICS RETURN will result in the queue manager storing “backout” and “other” data
relating to the end of task processing. Note: The action performed under the IBM
MQ accounting data type “backout” is not actually backing out, rather a resetting of the
transaction state within the queue manager.

e At transaction end, the queue manager calls SMF to request the data be written to the SMF
data repository (MAN datasets or logstreams).
Storage Usage

Prior to MQ version 8, MQ would initialise certain accounting data areas regardless of the class 3
accounting trace status. Enabling class 3 accounting would cause further data areas to be allocated
as well as driving the writing of the data to SMF.

From MQ version 8 onwards, the storage used for accounting is only allocated when class 3 accounting
is enabled.

The total storage used per connection for accounting trace class 3 is usually between 4KB and 8KB
but can be higher when a connection accesses many queues.

Who pays for data collection?

Typically there is an increase in the costs attributed to the application address space.

Class 3 accounting may also see an increase in the costs attributed to the queue manager address
space.

Who pays for writing to SMF?

There is typically an increase in CPU usage in the SMF address space, which is dependent on the
amount of data written in each SMF 116 record.

Class 3 accounting may also see an increase in the queue manager address space for the aggregation
of task related data.
How much data is written?

Accounting trace class 1 typically writes 436 bytes per transaction, regardless of the number of
queues accessed by the transaction.

Accounting trace class 3 data will depend on the number of queues used but as a guide, a transaction
accessing 2 queues typically writes 8324 bytes.

A class 3 SMF 116 record with 8 queues would typically write 25076 bytes.

This means that for storing data for 1,000,000 transactions the following storage would be required:
e class 1: 415MB
e class 3 with 2 queues: 7938MB
e class 3 with 8 queues: 23914MB

o1

Trace(A) CLASS(1) costs: TRACE(A) CLASS(1) can be estimated as:
e Data gathering:
o 2 microseconds per API (MQPUT, MQPUT1, MQGET only)
o Writing to SMF:

o plus 1-5 microseconds. The record is fixed length and is relatively small keeping costs
down.

Trace(A) CLASS(3) costs: The costs for TRACE(A) CLASS(3) can be estimated as®:
e Data gathering:
o 1-3 microseconds per API (including commit, backout and other)
o Writing to SMF::

o plus 6-50 microseconds for the primary SMF record (depending on size), lower costs were
observed when fewer queues were accessed)

o plus up to 60% of the cost of writing the primary SMF record for each continuation
record, again depending on how many queues the continuation record contains.

3Based on measurements on zEC12.

52

Comparing costs — a working example: Consider a CICS transaction that costs 1 millisecond
(1000 microseconds) and performs the following interactions with an MQ queue manager:

MQPUT1

COMMIT as a result of EXEC CICS SYNCPOINT
BACKOUT as a result of EXEC CICS RETURN
OTHER as a result of EXEC CICS RETURN

Enabling class 1 accounting trace would be expected to add the following cost to the transaction:

MQPUT1 +2 microseconds.
Writing to SMF +3 microseconds.
Total 1005 microseconds (+0.5%)

Enabling class 3 accounting trace would be expected to add the following cost to the transaction:

MQPUT1 +2 microseconds.
COMMIT +2 microseconds.
BACKOUT +2 microseconds.
OTHER +2 microseconds.

Writing to SMF 425 microseconds
Total 1033 microseconds (+3.3%)

Accounting trace considerations

e The impact of accounting trace will depend on what proportion of the transaction is weighted
towards MQ — for example if a transaction spends 50% of its lifetime in MQ, the impact of
trace may be much higher than those in the preceding examples.

e By contrast a transaction that performs DB2 SQL, reading and writing of files and complicated
calculations may see a small impact from accounting trace.

e The size and persistence of the message being put or gotten does not impact the cost of
accounting trace.

e Class 3 accounting in a high transaction environment can generate vast amounts of data. It
can be useful to enable this trace periodically to monitor your systems.

Statistics Trace Costs

TRACE(S) costs are not significant as they are not dependent on transaction rate nor transaction
volumes.

This includes the queue statistics trace, class(5), that was introduced in MQ for z/OS 9.3 and
extended to more than fifty data points per queue in IBM MQ for z/0S 9.4.

53

https://ibm-messaging.github.io/mqperf/MQ for zOS 9.3 Performance.pdf
https://ibm-messaging.github.io/mqperf/MQ for zOS 9.4 Performance.pdf

Global Trace Costs

NOTE: From a performance perspective, disabling TRACE(G) is advised as the global trace costs
vary significantly depending on the MQ workload being processed.

WebSphere MQ for z/OS version 7.1.0 changed how the queue manager global trace is gathered. In
previous releases, the global trace data was stored in a single storage area which on a busy system
with multiple processors could result in a high degree of contention when writing the trace data.
Version 7.1.0 exploits 64-bit storage to allocate an area of storage for each thread, which reduces
the contention issues seen previously.

The destination of the trace can have a significant affect on the performance achieved when running
with trace enabled.

The following 2 charts show the impact of running with TRACE(G) enabled in an LPAR with
high workload, low resource contention from an MQ perspective, i.e. workload is spread out over
multiple queues that are hosted on multiple pagesets with multiple buffer pools, only a single pair
of requester /server applications accessing each pair of queues.

Impact of Queue Manager Trace - Transaction Cost

MNon-Persistent In-Syncpaint 2K Messages

900
700 --.r,"!’-'-/_—‘ - W
700 —

600 r_,,_———r-‘—"

500

g

Cost | Tran=saction {cpu microssconds)

400
300
o e e S——————
I:I‘_ 2 3 - 5 6 [B
Queue Pairs
== Trace{G) Disabled —— Trace(G) Dest(Res) Enabled

—a— Trace{G) Dest(GTF) Enabled

The first chart compares the cost per transaction when attempting to process messages in a re-
quest /reply type scenario where the server messages are processed inside of syncpoint, i.e. the
server gets and puts its messages in-syncpoint.

NOTE: This transaction cost is the cost incurred by the requester application, the server application
and the queue manager address space. The applications used are performing very little non-IBM
MQ related workload.

e When TRACE(G) is off, the transaction cost is relatively flat at approximately 100 microsec-
onds.

e When TRACE(G) with DEST(RES) enabled, the effect of global trace doubles the transaction
cost.

e With TRACE(G) DEST(GTF) the transaction cost increases significantly to more than 8

times the cost of running with global trace disabled.

The subsequent chart shows how the achieved transaction rate is affected by global trace.

54

Impact of Queue Manager Trace - Transaction Rate

Non-Persistent In-Syncpoint 2K Messages

60000.00
50000.00
40000.00
30000.00
20000.00
10000.00

0.00

Transactions ! Second

Queuwe Pairs

—m_ Trace(G) Disabled —& _ Trace(G) Dest(Res) Enabled
—&__ Trace(G) Dest(GTF) Enabled

The above chart shows how the achieved transaction rate are constrained much sooner when TRACE(G)
is enabled, especially with destination GTF selected. A significant proportion of the time is spent
waiting for serialization to process the trace records.

95

Performance / Scalability

Maximum throughput using persistent messages

You should consider whether you really need persistent messages. Many applications do not re-
quire the advantages of persistent messages, and can make use of the cheaper, faster non-persistent
messages instead. Some users do not use persistent messages at alll

If you use persistent messages then allocate your log data sets on your best DASD.

What factors affect persistent message throughput ?

The extra factor affecting throughput of persistent rather than non-persistent messages is the per-
formance of the IBM MQ log, which depends on the following:

Type and overall usage of the DASD subsystem used for the MQ log data sets.

The data rate that the DASD subsystem can sustain for the IBM MQ log data sets. This sets
the upper limit for the IBM MQ system.

The DASD subsystem and control unit type, the amount of DASD cache, and the number of
channel paths to the DASD. All will have an effect on throughput.

Total I/O contention within the system.

IBM MQ log data set placement. Having logs on heavily used DASD volumes can reduce
throughput.

The average time to complete an I/O to the DASD volume, which depends on the amount of
data to be logged as well as the DASD subsystem characteristics and IBM MQ log data set
placement. Using zHPF may provide some relief in this instance — see “Benefits of using zHPF
with IBM MQ”

See “Maximum persistent message throughput — private queue” for an example of the rates achieved.

Application syncpoint specifics

The rate of commits or out of syncpoint requests. This is application specific. Each commit
or out of syncpoint request involving a persistent message requires the application to wait for
completion of an MQ log I/O (a log force). A two-phase commit requires the application to
wait for the completion of two separate MQ log I/Os (2 log forces).

The worst case is 2 MQ log forces for each MQPUT and each MQGET. For instance.

o Consider a CICS application might update a recoverable VSAM file and MQPUT a
message in one unit of work. This requires a 2-phase commit and therefore 2 MQ log
forces.

o That message is then processed (MQGET) by a DB2 stored procedure which updates a
database and commits the unit of work. This requires a 2-phase commit coordinated via
RRS and therefore 2 MQ log forces.

Another case is 1 log force for each MQPUT and each MQGET. For instance consider

o A channel receiving messages at an achieved batchsize of 1, MQPUTs each message and
commits the batch (this is typical for a channel unless deliberate batching of messages or
a very high message rate occurs). This requires a 1-phase commit.

o A CICS program MQGETs this message, updates a DB2 database, MQPUTs a reply
message then commits. This requires a 2-phase commit.

56

o A channel MQGETSs and sends the reply message back to the originator at an achieved
batchsize of 1. This requires a 1-phase commit.

o Thus there are 4 MQ log forces for the 2 messages processed, which is an average of 1 log
force per MQPUT and MQGET.

e Because each application using persistent messages is likely to be I/O-bound on the log you
will probably need many application instances to achieve best throughput.

e However, some applications require strict message ordering. This means only a single applica-
tion instance is allowable.

Message size and number of messages per commit

Message size and number per commit affect the amount of data which must be written to the log
for each log force.

Similar amounts of data per commit will usually give similar throughput. For example, 5 persistent
messages of size 1KB require about 11.5KB of data to the log when fully processed by MQPUT
and MQGET. 1 persistent message of size 10KB requires a similar amount of log data. Similarly 50
persistent messages of size 1KB which are MQPUT in one unit of work and MQGET in one unit of
work will have similar IBM MQ log performance as one persistent message of 100KB.

o7

Indexed Queues

Indexed queue considerations

If a non-indexed queue contains more than a few messages and an MQGET with a specific MSGID
or CORRELID is used then costs can be very high as the queue will have to be searched sequentially
for the matching message. Clearly any queue used by an application that requires specific MQGETs
should be specified with the appropriate INDXTYPE.

Prior to version 7.0.1, queue indexes were maintained in 31-bit queue manager storage. This meant
that there was an implementation limit as to how many messages could be stored on an indexed
queue and on our systems this was around 7.2 million messages. From version 7.0.1 of WebSphere
MQ for z/OS onwards, indexed queue data is maintained in 64-bit storage and the queue manager
is able to store in excess of 100 million messages on indexed queues.

The amount of storage used for each message on an indexed queue is 136 bytes of above bar storage.

These indexes must be recreated during queue manager initialization for all persistent messages in
each indexed private queue. This requires that the first page of all the messages for each indexed
queue be read from the pagesets. This is done sequentially queue by queue. For private indexed
queues this will increase initialization elapsed time by the order of a few milliseconds per page read.
For instance, a private indexed queue consisting of 8 million persistent messages of increases elapsed
time of initialization by about 250 seconds using DS8950 DASD.

QSGDISP(SHARED) indexed queues have indexes implemented within the CF list structure and so
do not require recreation at queue manager initialization. The maximum number of messages in a
QSGDISP(SHARED) indexed queue is limited only by the maximum number of messages possible
in a CF list structure.

Private indexed queue rebuild at restart

Private indexed queues have virtual storage indexes which must be rebuilt when a queue man-
ager restarts. IBM MQ allows these indexes to be rebuilt in parallel and offer the “QINDXBLD
(WAIT/NOWAIT)” CSQ6SYSP parameter. The WAIT option gives previous release behaviour and
is the default whereas, NOWAIT allows initialization to complete before the index rebuilds complete.

Thus NOWAIT allows all applications to start earlier. If an application attempts to use an indexed
queue before that queue’s index is rebuilt then it will have to wait for the rebuild to complete. If
the rebuild has not yet started then the application will cause the rebuild to start immediately, in
parallel with any other rebuild, and will incur the CPU cost of that rebuild.

Each index rebuild still requires that the first page of all the messages for that indexed queue be read
from the page set. The elapsed time to do this is of the order of a few milliseconds per page read.
Buffer pool page usage is not significantly affected by the index rebuild. Thus other applications
will not be impacted by buffer pool contention with index rebuilds.

Up to ten separate index rebuilds can be processed in parallel plus any rebuilds initiated by appli-
cations.
How long will it take to restart a queue manager with deep indexed local queues?

When a queue manager is restarted and there are persistent message on the indexed queues, it is
necessary for the queue manager to rebuild those indexes.

This rebuilding process can be seeing in the queue manager log as below:

CSQIOO07I @QMGR CSQIRBLD BUILDING IN-STORAGE INDEX FOR <queueName>
CSQIO06I @QMGR CSQIRBLD COMPLETED IN-STORAGE INDEX FOR <queueName>

58

As mentioned previously the queue manager is not available for work until all the indices are rebuilt,
unless CSQ6SYSP parameter QINDXBLD is set to NOWAIT.

The depth of the indexed queue impacts the time taken to restart a queue manager.
The queue manager allocates a maximum of 10 threads to rebuild indexes.

e If durable subscriptions exist, the SYSTEM.DURABLE.SUBSCRIBER.QUEUE may be re-
built first.

e The deepest indexed queues are rebuilt next.
To be able to index a queue, each message has to be read:

e For short messages where MAXSHORTMSGS O has been set, multiple messages may exist on a
single page

e For other messages, there will be one page read for each message.

e For deep queues there will be significant page set activity.

The effect of a single deep indexed queue upon Queue Manager restart

The following chart shows the measured CPU cost to start an MQ for z/0OS 9.3 queue manager
when a single indexed queue has increasing depth. The queue manager has been configured with
MAXSHORTMSGS O to allow up to 8 messages of 100 bytes per 4K page.

CPU Time taken to restart Queue Manager with single deep indexed queue
Queue Manager configured with MAXSHORTMSGS 0

200
180
160
140
120
100
80
60
40
20

CPU Seconds (IBM z16)

0 10 20 30 40 50 60 70 80 90 100

Millions of Persistent Messages on Indexed Queue at Queue Manager Start
—#— V930 —— Linear (V930)

A trend line has been added to provide an indication of how long it would take to restart a queue
manager with 100 million small messages.

In the measurements for a single deep queue, the index rebuilding process was able to use a single
processor at approximately 10% usage.

This means that for a queue with 8 million short messages on the queue, the CPU time was 14.5
seconds and the elapsed time was 147 seconds.

Using the trend line, we would predict that a queue with 100 million messages would use 180 CPU
seconds and would take approximately 30 minutes to restart on a 3 processor LPAR of an IBM z16.

59

The effect of a multiple deep indexed queues upon Queue Manager restart

The following measurement shows the measured CPU cost to restart a queue manager with an
increasing number of deep indexed queues on a single page set.

If the queue manager had not been configured with MAXSHORTMSGS 0, each 64GB pageset would
have been limited to 16 million messages of up to 3697 bytes.

CPU Time to restart Deep Indexed Queues

Queue Manager restart on 3 CPU LPAR running z/OS 3.1 on IBM z16

12
10.0
10
7.8
2 8
=
5 6 5.9
& 39
2 4 ‘
© 2.0
2
: [
0
0 1 2 3 4 5

Number of Indexed Queues with 1 million messages per queue

As with the single deep indexed queue, the rebuilding of multiple indices is not a particularly CPU-
intensive function, so the measurement is not constrained by having 3 processors available when
re-building more than 3 queues concurrently. In this case the time taken to rebuilt the queue indices
is constrained by the rate at which the data can be read from DASD.

In terms of elapsed time taken to restart the queue manager, with a single queue that had 1 million
messages, the queue manager was ready after 19 seconds. When restarting with 5 queues each with
1 million messages, the queue manager was ready after 20 seconds and the system reported peak
CPU usage to the equivalent of 75% of a single processor.

Note: For the measurements with a single deep indexed queue and multiple deep indexed queues,
the z/OS LPAR was configured with zHPF disabled. When the measurements were repeated with
zHPF, the elapsed time for the re-building of the indices was reduced by up to 33%.

Queue manager initiated expiry processing

If the queue manager attribute EXPRYINT is non-zero then at startup and subsequent EXPRYINT
second intervals any messages whose expiry time has been passed will be deleted by a system process.
EXPRYINT can be changed, including to or from zero using an ALTER QMGR command. The
default for EXPRYINT is zero, which gives the previous release behaviour of no queue manager
initiated expiry processing. Minimum non-zero EXPRYINT is 5 seconds.

The “REFRESH QMGR TYPE(EXPIRY) NAME(......)" command requests that the queue manager
performs an expired message scan for every queue that matches the selection criteria specified by
the NAME parameter. (The scan is performed regardless of the setting of the EXPRYINT queue
manager attribute.)

60

For private local queues this system process uses significantly less CPU time than employing your
own application to browse complete queues. This is partly because the system knows when there
is no possibility of there being any expired messages on a private local queue and because if it
is necessary to browse a queue, the system process avoids the overheads involved in repeated calls
across the application/system boundary. For the case where the system knows there are no messages
to expire on any private queue the CPU cost at each scan is not significant.

For shared local queues each defined queue must be processed. A single queue manager, of those
with non-zero EXPRYINT in the queue sharing group, will take responsibility for this processing.
If that queue manager fails or is stopped or has its EXPRYINT set to zero then another queue
manager with non-zero EXPRYINT will takeover. The CPU cost at each EXPRYINT interval will
depend on a number of factors:

e Number of messages on queue (all messages including those with expiry not set will be scanned)
as the message may be put by a different queue manager in the QSG).

e Size of message on queue
e Where the message is stored

For example, for 1IKB messages on a shared queue, the cost is of the order 5 CPU microseconds
(8561-703) per each message. This cost increases to 10 CPU microseconds (8651-703) when the
system actually browses and deletes the expired messages.

With a non-zero EXPRYINT in a queue sharing group, it is worth emphasising that all messages on
shared queues will be scanned - each of which requires a call to the CF. If the message is determined
to be eligible for expiry, a second call to the CF will be made. On our IBM z15 with an internal CF,
all calls were synchronous and took an average 3.5 CPU microseconds of CF CPU. A less responsive
CF, whether remote, duplexed or generally busier may take longer to perform the scan and expiry
calls.

If the message has been offloaded to DB2 or shared message data sets, the cost may be higher.
For example, when 1KB messages are offloaded to shared message data sets, the cost to determine
whether the message can be expired is double that of a message stored solely in the coupling facility.

The time to browse a queue and delete any expired messages will be significantly less than using your
own equivalent application because this system process avoids the overheads involved in repeated
calls across the application / system boundary.

61

Queue manager security

How much storage is used?

When a IBM MQ queue manager on z/OS is started and the security switch profiles have been
defined such that user-ids need to be authenticated, there is a cost to the queue manager to use this
authentication information.

WebSphere MQ for z/0S version 7.0.1 introduced the use of 64-bit storage for holding security
information relating to IBM MQ. All storage used by the security manager is now held in 64-bit
storage, which means that the ECSA usage does not increase as more user IDs or IBM MQ resources
are used. As a result, the number of user IDs that can access IBM MQ resources is limited by the
amount of auxiliary storage.

The environment being measured
The measurements were run on a system configured as shown below:
e A 2097 with 8 CPUs available running z/0S 1.11
e A version 7.0.1 WebSphere MQ queue manager with security enabled.
e A CICS region running CTS 3.2
e A number of transactions have been created e.g.

o A transaction ran an application to put a 1K non-persistent message to a named queue
and then get the message from the same queue.

WebSphere Studio Workload Simulator for z/OS (formerly known as “TPNS”) was used to
drive a workload through the CICS environment.

o TPNS scripts were created to log onto CICS using security and then run a number of
transactions using between 1 and 50 MQ queues. This process was repeated for a range
of user-ids.

Issuing a “DISPLAY SECURITY” command against the queue manager shows:

CSQHO15I MQPZ Security timeout = 54 minutes

CSQHO16I MQPZ
CSQHO30I MQPZ
CSQHO34I MQPZ
CSQHO034I MQPZ
CSQHO034I MQPZ
CSQHO34I MQPZ
CSQHO34I MQPZ
CSQHO34I MQPZ
CSQHO34I MQPZ
CSQHO034I MQPZ
CSQHO34I MQPZ
CSQ9022I MQPZ

Security interval = 12 minutes

Security switches ...

SUBSYSTEM: ON, ’MQPZ.NO.SUBSYS.SECURITY’ not found
CONNECTION: ON, ’MQPZ.NO.CONNECT.CHECKS’ not found

COMMAND: ON, °MQPZ.NO.CMD.CHECKS’ not found

CONTEXT: ON, ’MQPZ.NO.CONTEXT.CHECKS’ not found

ALTERNATE USER: ON, ’MQPZ.NO.ALTERNATE.USER.CHECKS’ not found
PROCESS: ON, °MQPZ.NO.PROCESS.CHECKS’ not found

NAMELIST: ON, ’MQPZ.NO.NLIST.CHECKS’ not found

QUEUE: ON, ’MQPZ.NO.QUEUE.CHECKS’ not found

COMMAND RESOURCES: ON, ’MQPZ.NO.CMD.RESC.CHECKS’ not found
CSQHPDTC ’ DIS SEC’ NORMAL COMPLETION

The “security timeout” refers to the number of minutes from last use that the information about a
user ID is retained by IBM MQ.

The “security interval” is the time that passes between an MQ process checking the last use time
of all authenticated user IDs to determine whether the security timeout period has passed. If the
timeout period for a user is exceeded, the information is discarded by the queue manager.

62

The following time-line attempts to indicate when security-related timer processing will be invoked.

Time

{minutes) |

Securiy Interval () 12 24 36 48

(12 minutes)

Security Timeout 54
(54 minutes)

The chart shows that when the security interval is 12 minutes, there is a timer running every 12
minutes to determine whether there are any unused user IDs that are eligible for discarding.

It is not until 54 minutes after the user has signed on and completed their last IBM MQ transaction
that they are eligible for discarding.

Since the interval runs every 12 minutes, there is a period (in this example) of 6 minutes where the
user id is eligible for discarding but is not discarded.

At 60 minutes after completing their MQ transaction, the users’ information is discarded from MQ.

From version 7.0.1 of Websphere MQ for z/OS, the Security Manager uses a pooling principle so that
when the users’ information is discarded, the storage is returned to a pool for subsequent re-use.

63

The data

The following chart shows the amount of additional virtual storage required when security has been
enabled on the queue manager.

WebSphere MQ v7.01: Above the Bar Storage Usage
with Increasing Users

2000
1800

1600 4

1400

1200 el

1000

200 _‘/“f" __-'-’-”-!]

600

400

200
0

Above Bar Storage Used [MB)

T T T T T
0 10000 20000 30000 A0000 50000 60000
Number of Userlds

|+1Queue —— 10 Queues —&— 50 Queues |

Notes on chart:
1. The line titled “1 Queue” is where the TPNS script will run

e CICS Sign-on followed by 1 transaction putting and getting a non-persistent message for
each user id (up to 50,000 unique user ids).

2. The line titled “10 Queues” is where the TPNS script runs:

e CICS Sign-on followed by 10 serialised transactions putting and getting non-persistent
messages from separate queues for each user id (from 1 to 50,000 unique user ids).

3. The line titled “50 Queues” is where the TPNS script runs:

e CICS Sign-on followed by 50 serialised transactions putting and getting non-persistent
messages from separate queues for each user id (from 1 to 50,000 unique user ids).

What can we gather from the chart?

When the user is just issuing a sign-on to CICS followed by a single transaction involving MQ, there
is an associated cost of approximately 8.8KB per user of auxiliary storage which includes storage
for 1 queue. This is approximate since the 64-bit storage is allocated 1MB blocks.

When the user performs other MQ transactions that affect further queues, additional security in-
formation is cached so the storage usage increases. For example when the users workload affects 50
MQ queues, there is a cost of 28.2KB per user of auxiliary storage; an increase of 19.4KB per user.

This means that there is a base cost per user of 8.80KB (which includes accessing 1 queue) when
running with security enabled as per the display security command shown previously. Additionally
there is a 405 byte cost for each subsequent queue that the user hits as part of their work.

64

Virtual storage usage

When migrating IBM MQ on z/0S from version 7.x to version 9.3.0 the private storage usage is
similar. This section shows the usage and gives some actions that can be taken to reduce storage
usage.

From version 8.0.0, the following enhancements relate to storage:
e (4-bit storage used for:
o Buffer pools (optionally)

From version 7.1.0, the following enhancements relate to storage:
e (4-bit storage used for:
o Topic Manager

o

Security Manager

[¢]

Indexed Queues

@]

Intra-Group Queuing Buffer
CFLEVEL(5) shared message data set (SMDS) offload capability
CHLAUTH cache

o

[¢]

65

Object sizes

When defining objects the queue manager may store information about that object in pageset 0 and
may also require storage taken from the queue manager’s extended private storage allocation.

The data shown in the following 2 charts only includes the storage used when defining the objects.

Page set 0 usage

PageSet(0) usage within Queue Manager by object type

V910 onwards

(Bytes per object)

0 500 1000 1500 2000 2500

Shared Queues |0

Local Queves [3/
Aias Queues | 512
ndexed Queves |GG
xntouece [3
Model Quewe TEMPOYN | (-
Model Queve PERVOYN [0
Remote Queve (GGG <
Nameist [164
process | ¢:0
Storage Class [N 267
Sender Cranres |, <5
receiver Channels [N s
soveCrrves N -
requester Channels [NN s
SVRCONN Channels with SHARECNV() | 245
svRCONN channels with SHARECNV(!) [s

66

Virtual storage usage by object type

Extended Private Storage usage within Queue Manager by object type

V910 onwards

(KB per object)

0 5 10 15 20 2% Ki(] 3% 4 4

shared Queves [3
Local Queves I 26
Aias Queves [N 46
e Qs |
Xmit Queve [N 7
Model Queue TEMPDYN [N 59
Mode! Queue PERMOYN N 6
Remote Queue | 59
NameList [N 5.1
Process [l 1
Storage Class |GGG '/
Sender Channels [3.1
Receiver Channels [N 45
Server Chamnls [N 43
Requester Channels [N 44
SVRCONN Channeis wih SHARECNY(0) [N 43
SVRCONN Channels with SHARECNV(1) - 43

Sizein KB

NOTE: CHLAUTH objects are cached in 64-bit storage.

67

Initial CSA (and ECSA) usage

CSA usage is similar between V710 to V930 when similarly configured queue managers are started.
On our systems this is approximately 6MB per queue manager.

CSA usage per connection

CSA usage has seen little change in the following releases: V710 through to V930:

e For local connections, MCA channels and SVRCONN channels with SHARECNV(0), CSA
usage is 2.47KB per connection.

e For SVRCONN channels with SHARECNV(1), CSA usage is approximately 4.9KB per con-
nection.

e For SVRCONN channels with SHARECNV(5), CSA usage is approximately 3KB per connec-
tion (based on 5 clients sharing a channel instance).

e For SVRCONN channels with SHARECNV(10), CSA usage is approximately 2.7KB per con-
nection (based on 10 clients sharing a channel instance).

Buffer Pool Usage

Typically the buffer pools have used the most virtual storage in the queue manager. Version 8.0.0
allows the buffer pools to be defined using 64-bit storage. This means that there is more space
available in the queue manager’s 31-bit storage for other things that haven’t been moved above the
bar, e.g. more handles.

Version 8.0.0 also allows more buffer pools such that a 1:1 mapping with the page sets is possible,
allowing a more granular level of control of the sizing of buffer pools according to the usage.

Provided sufficient 64-bit storage is available, you may be able to define the buffer pools as large as
the associated pageset.

If storage is limited, you should have a large buffer pool for the short-lived messages, where short-
lived is typically a few minutes duration, and a small buffer pool for long-lived messages.

You may be able to reduce the size of buffer pools and maintain good performance, but your
performance may degrade if you have an unexpected spike in message throughput which causes your
buffer pool to fill up and have less than 15% free buffers. You can monitor the QPSTCBSL fields in
the QPST statistics for this.

Storage for security information

From version 7.0.1 Security Manager was changed to use 64-bit storage to hold the security infor-
mation. Additionally, the storage obtained is not released until queue manager termination, rather
the storage used following a user ID being discarded is returned to a storage pool for subsequent
re-use. When queue level security is enabled:

e Fach user-id which accesses the queue manager requires about 8.8KB of auxiliary storage.
Typically 4.66KB of the 8.8KB are “backed” in real storage.

e For each permanent queue that a user uses, then on average it uses 405 bytes per queue.

As all security storage is held in 64-bit storage, the queue manager should not be constrained for
storage due to the number of user IDs held.

It is still advisable to set the Queue Manager Security keywords Interval and Time-out to limit the
duration that user ID information is cached in the queue manager. The Time-out value specifies
how long an un-used user ID can remain in the queue manager. The default time is 54 minutes.

68

Reducing this time will cause unused information to be discarded, returning the storage to the pool.
The interval is the duration between checking to see if the time out value has expired.

Impact of number of objects defined

At startup all of the object information is loaded into buffer pool zero. If this buffer pool is large
enough to contain all of the objects, then the control blocks for the object stay resident. If buffer
pool zero is too small then unused objects will be removed from the buffer pool (but will still be
present on disk, and will be read into the buffer pool if the object is used).

The average storage used for local queues is about 2660 bytes per object. This was determined from
the storage increase when 10,000 local queues were defined, divided by 10,000. This figures included
wasted space in a 4K page when the objects do not fit perfectly.

If you are constrained for storage you can decrease the size of buffer pool to have enough space for
the active objects + 20%. Once the system has started and warmed up, then there should be few
pages read from the page set.

Use of indexed queues

When a queue is defined as being indexed then additional control blocks are created to define the
index. For each queue with indxtype specified, 47TKB of memory are required.

From WebSphere MQ version 7.0.1, the index data for an indexed queue is stored above the 2GB
bar. This removes the constraint within the queue manager relating to the depth of an indexed
queue over a non-indexed queue.

Object handles

When an application has a queue open, then a handle control block is allocated within the queue
manager. This uses about 4K of memory per handle. If there are many concurrent applications, or
applications have a large number of open queues then this can lead to a large number of handles.

For example if you have 10,000 client applications, and each client application gets from a queue and
puts to a reply queue, then there will be 20,000 handles using 80MB of virtual storage. An MCA
channel can have up to 30 queues open at a time, for example when messages from a remote queue
manager are being sent to different queues. With 1000 channels, this could be up to 30,000 handles
or 120MB, though typically a channel only puts to a few queues.

Number of pages in use for internal locks

Locks are taken by the queue manager to serialize usage of the data and resources. Large messages
or large number of messages in a unit of work can lead to a large number of locks being used.

You can reduce the storage required by ensuring that the applications are well behaved:

e Do not process large number of messages in a unit of work. You can use the queue manager
attribute MAXUMSGS to limit the number of messages processed in a unit of work.

e Process small numbers of large messages in a unit of work. When moving messages over
channels, you might consider using channel attribute BATCHLIM to restrict the size of the
unit of work for large messages without impacting the batch size when messages are smaller..
Fast (non-persistent) messages are processed out of syncpoint, so the locks are released when
the put has completed.

69

Shared queue

There is increased memory use when a queue manager is used in a QSG. When a queue manager
is configured to be part of a Queue Sharing Group, it uses an additional 27MB of storage in the
private region.

For each application structure that is used, the queue manager uses 800KB of virtual storage in the
private region, 2KB of ESQA and 4KB of ECSA.

Using BACKUP CFSTRUCT command

The BACKUP CFSTRUCT command allocates 66MB. This remains allocated until the system
detects that the queue manager is short of virtual storage, and releases any unused storage.

Clustering

If you are using clustering then information about the status of clustering is held both in the channel
initiator and the queue manager. The queue manager has two views of the cluster cache, one in key
7, for the queue manager, and one in key 8 for the cluster workload manager applications.

The minimum cache size is 2MB (or 4MB for both copies). The cache size will be calculated
dynamically from the configuration, rounded up to the nearest MB and have 1MB extra added.
If your configuration changes significantly then this cache can fill up. If using a static cache, the
queue manager must be restarted to extend the cache size. If using dynamic cache, the cache will
be extended automatically and dynamically (no queue manager restart is required).

70

Chapter 2

Coupling Facility

CF link type and shared queue performance

Shared queue performance is significantly influenced by the speed of Coupling Facility (CF) links
employed. There are several different types of CF links. These include (see the result of a ‘D CF’
operator command).

Link Maximum Operating|_ |

Type Rate Distance
Coupling Facility Peer Up to 20KM unrepeated.
Or Maximum 100KM.

CFP InterSystem Channel-3 | 200 MB/second. Not available on z13 on-
(ISC-3) wards.

Rate varies on hardware and
link type, e.g.

Parallel Sysplex coupling |5 GB/second on z13 using Up to 150 metres.

PSIFB || gver InfiniBand 12x IFB3 N;’t dévaﬂable on z15 on-
1 GB/second on z13 using waras.
12x IFB.
z13-216:
CS5 Coupling Short distance 5 | g GB/second. Maximum 150 metres..
Up to I0KM unrepeated.
Up to 100KM with qual-
CL5 Coupling Long distance 5 |z13-z16: 800 MB per second. | ified ~ DWDMs (Dense
Wavelength Division Mul-
tiplexer).
. ..., | Fastest connectivity using
Internal Coupling Facility Internal speeds, z14, zl5
ICP memory to memory data

Peer and z16.

transfers.

NOTE: Further information on coupling links can be found in section “Link Technologies” in doc-
ument “Coupling Facility Configuration Options”.

All link types can be present. The operating system generally selects the fastest currently available.

Some uses of the CF are normally synchronous in that they involve what is effectively a very long
instruction on the operating system image while a function request and its associated data are passed
over the link, processed in the CF, and a response returned. CPU time for synchronous CF calls is
thus to some extent dependent on the speed of the CF link. The slower the link the higher the CPU
cost. The faster the CPU the higher the equivalent instruction cost.

71

https://www.ibm.com/downloads/cas/JZB2E38Q

System z has heuristics which allow it to change potentially synchronous CF calls to asynchronous.
This limits potentially rising CPU costs but can affect throughput as more CF calls become asyn-
chronous.

CF processor time is also dependent on the speed of the CF link, but much less so than the operating
system.

All these factors can make prediction of shared queue performance on other systems based on results
in this document less accurate than for private queue.

Faster links will generally improve CPU cost and throughput.

How many CF structures should be defined?

A minimum of two CF structures are required. One is the CSQ_ADMIN structure used by IBM
MQ. All other structures are application structures used for storing shared queue messages.

Up to 512 shared queues can be defined in each application structure. We have seen no significant
performance effect when using a large number of queues in a single application structure.

We also have seen no significant performance effect when using multiple structures rather than fewer
larger structures.

If few large application structures are used, the queues would be able to be deeper, meaning there
is less likelihood of receiving an MQRC 2192 “storage medium full” message.

If using many smaller application structures, fewer queues and potentially less applications will be
affected should one of the queues gets to such a high depth that an MQRC 2192 is reported.

Typically we recommend using as few CF application structures as possible, but there may be
situations where it is advisable to put queues that may be deep into separate structures where an
MQRC 2192 will not affect mission-critical queues.

If all the MQGETS and MQPUTS in an application are out of syncpoint, the cost of using one or
more application structures remains the same.

If any MQPUTS and MQGETS are within syncpoint, a single CF application structure is recom-
mended. For the locally driven request/reply workload using a single queue manager but with the
server input queue in a different application structure to the common reply queue the unit CPU cost
per request /reply increased by 6% for non-persistent messages and 12% for persistent messages. This
also resulted in a decrease in throughput of 5% for non-persistent messages and 2% for persistent
messages.

What size CF structures should be defined?

What values for MINSIZE, INITSIZE, and SIZE (maximum size) should be used and should AL-
LOWAUTOALT(YES) be specified in the CFRM (Coupling Facility Resource Manager) policy def-
inition for IBM MQ CF structures?

e Consider making SIZE double INITSIZE.

e Consider making MINSIZE equal to INITSIZE, particularly if ALLOWAUTOALT(YES) is
specified.

e [t is recommended to define SIZE to be not more than double INITSIZE. The value of SIZE
is used by the system to pre-allocate certain control storage in case that size is ever attained.
A high SIZE to INITSIZE ratio could effectively waste a significant amount of CF storage.

72

If the entire CF reaches an installation-defined or defaulted-to percent full threshold as determined
by structure full monitoring, the system will consider reducing the size of any structures with unused
space that have been defined with ALLOWAUTOALT(YES).

For this reason we advise consideration of making MINSIZE equal to INITSIZE so that IBM MQ
structures will not be made too small. This is particularly important for the CSQ_ADMIN structure
which could cause failure of shared queue operations if it becomes too small.

CSQ_ADMIN

This CF structure does not contain messages and is not sensitive to the number or size of messages
but it is sensitive to the number of queue managers in the QSG.

Version 7.1 updated the supplied sample member SCSQPROC(CSQ4CFRM) to specify INITSIZE
of 20000KB for the example CSQ_ADMIN structure. This should be sufficiently large to allow
7 queue managers to connect to the QSG up to CFCC levels 24. For CFCC level 25, both the
INITSIZE and SIZE attributes will need to be increased by 10000KB to support the same number
of queue managers.

The IBM MQ command “DIS CFSTATUS(CSQ_ADMIN)” shows the maximum number of entries
in this structure, for instance ENTSMAX(20638) on a CF at CFCC level 24. This command also
shows the current number of entries used, for instance ENTSUSED(47). A queue manager in a
queue sharing group is only allowed to start if there are at least 1000 entries available per started
queue manager. So our example is adequate for at least 7 queue managers in a QSG using a CF at
CFCC level 24. Each successive CF level tends to need slightly more control storage for the CF’s
own purposes, so ENTSMAX is likely to decrease each time your CF level is upgraded.

CSQ _ADMIN usage is affected by the number of messages in each unit of work, but only for the
duration of the commit for each UOW. This only need be a concern for extremely large UOWs as
the minimum size structure is enough for a UOW of about 40,000 messages. This is larger than the
default maximum size UOW of 10,000, defined by MAXUMSGS.

The use of UOWs with very large numbers of messages is NOT recommended. Where large units
of work are being used in conjunction with shared queues, the CSQEO38E “Admin structure is full”
message may be logged when there is insufficient space in the structure for the unit of work. This
may be followed by the queue manager terminating with a 5C6-00C53002 abend.

73

How large does my admin structure need to be?

The size of the admin structure depends on the number of queue managers in your queue sharing

group. The following chart shows the required size of the admin structure by number of queue
managers in the QSG.

IBM MQ for z/OS: CF Admin Structure Size

CFCC 25 requires an additional 8MB over CFCC 24

—=— CFCCs 21-24 —+—CFCC 25

60000
50000
40000

30000

Size (KB)

20000

10000

0
12 3 45 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Queue Managers in QSG

74

Application structures

IBM MQ messages in shared queues occupy storage in one or more pre-defined CF list structures.
We refer to these as application structures to distinguish them from the CSQ ADMIN structure.
To estimate an application structure size:

Use the IBM CF Sizer for MQ tool or the following algorithm may be used:

e Estimate typical message sizes (including all headers except the MQMD)

e For each typical message size

o If <= 63KB (64512 bytes) then:

(¢]

e}

o

(¢]

Add the 372 bytes for implementation headers (including MQMD v1 header).
If using message grouping add an additional 72 bytes for the MQMDE.
Round up to 256 byte boundary (subject to a minimum of 1536 bytes).

Add 256 bytes for the CF Structure ENTRY (1 for each message)

Multiply by maximum number of messages.

Normally messages will reside in a IBM MQ application structure only long enough for
the exploiting application to retrieve them. However if the exploiting application suffers
an outage that prevents it from retrieving messages from the structure, the structure
must be large enough to retain any messages that might be written to it, for the duration
of the outage. You must therefore consider:

1. The number of queues that map to the structure,

2. The average put rate for each queue (i.e. the rate at which messages are written to
the structure),

3. The maximum outage duration to be tolerated.
Add to total for all typical message sizes

Add 32%*! for CFCC level 12 and above (for other implementation considerations, this
percentage can be much greater for application structures smaller than 16MB). Previous
CFCC levels required the addition of 25%.

Add 8MB for CFCC level 25.

e If typical message size > 63KB (64512 bytes) then

(¢]

For CF application structures with ALLOWAUTOALT(NO) allow about 2KB of CF
storage per message larger than 63KB.

CF application structures with ALLOWAUTOALT(YES) will eventually have an ENTRY
to ELEMENT ratio reflecting the average for all messages. This is difficult to estimate
but it is usually sensible to also use this 2KB per message estimate.

However, consider the special case of all messages being larger than 63KB. The CF stor-
age usage for shared queue messages larger than 63KB is 1 ENTRY and 2 ELEMENTS
per message. This means that the actual requirement is about 1KB per message. AL-
LOWAUTOALT(YES) structures will eventually adjust themselves such that 1 million
such messages (all larger than 63KB) would require about 1GB of CF storage.

Use this result for INITSIZE in the operating system CFRM policy definition. Consider using a
larger value for SIZE in the CFRM policy definition to allow for future expansion. See “Increasing
the maximum number of messages within a structure”.

1Some of this 32% is to maintain the 1:6 entry to element ratio and some is CF overhead.

75

https://www.ibm.com/support/pages/mqseries

The following CFRM policy definition of an approximately 0.5GB CF list structure is typical of
those used for our measurements.

STRUCTURE NAME (PRF2APPLICATION1) /* PRF2 is the QSG name */
SIZE(1000000)
INITSIZE(500000)
PREFLIST(SOCFO01)
See the IBM MQ Planning guide for details of MQ definitions.

How many messages fit in a particular CF application structure size?

To get some idea of how many messages you can get for a particular CF application structure size
consult the following chart where ‘message size’ includes the user data and all the headers except
the MQMD.

IBM MQ for z/OS: CF Application Structure Size

z/0S v2.5 CFCC level 25

T 1,000,000

3

(2]

g 100,000

)

=3

o 10,000

N

n

e

3

§ 1,000

7]

s 100

g —

g

< 10

o

e

=

8 1

100 1,000 10,000 100,000 1,000,000 10,000,000
Number of Messages (log scale)
——<1024 —e—2048 4096 —4—8192 —»— 16384 32768 ——64512

NOTE: The chart uses log scales. For instance the tick marks between 1000 and 10000 on the x
axis are the 2000, 3000, 4000 and so on up to 9000 messages. The tick marks between 1 and 10 on
the y axis are 2, 3 and so on up to 9 MB of required structure size.

For example, you can get about:
e 600 messages of 64512 bytes (63KB) in a 64MB structure,
e Or nearly 50000 16KB messages in a 1GB structure.

A CF at levels prior to CFCC level 12 will accommodate a few percent more messages than this
chart, but only up to a 4GB limit.

A CF at level CFCC 17-24 requires the structure to be approximately 5MB larger to store an
equivalent number of messages to a CF at level CFCC 14.

A CF at level CFCC 25 requires the structure to be approximately 8MB larger to store an equivalent
number of messages to a CF at level CFCC 15-24.

76

CF at CFCC levels 17 and later

The following table gives approximate message capacity of a IBM MQ CF application structure sized
at 0.5GB, assuming it is defined in the CFRM policy as ALLOWAUTOALT(NO).

Post-CFCC level 14, CFCC levels use more storage, reducing capacity somewhat, although this has
stabilised for CFCC 17 through 24 e.g.:

Approximate messages in 0.5GB Structure
Message size (excluding
only MQMD) CF at CFCC level 17-24 CF at CFCC level 25
All message sizes <= 1164 230,000 227,000
2,048 138,000 137,000
4,096 76,700 75,000
8,192 40,600 39,600
16,384 21,200 21,000
32,768 10,900 10,800
64,512 5,600 5,600
Messages to filla 512MB Coupling Facility Structure
300000
250000
. 200000
[ab]
&
oW
8
= 150000
kS
z
% 100000
=
- .
0 . - B
1024 8192 16384 32768 64512
Message Size (excluding MQMD)
B Messages to fill a CFCC15 structure with ALLOWAUTOALT(YES)
m Messages to filla CFCC14 / CFCC15 Siructure
m Messages to filla CFCC 17 structure

Sizing structures at CFLEVEL(5)

CFLEVEL(5) provides the ability to increase the capacity of the CF by implementing a 3-tiered
offload procedure.

7

Implementing tiered thresholds allows higher capacity whilst not penalising performance until the
CF resource becomes constrained.

By default, the CFLEVEL(5) structure will offload messages greater than 63KB to the shared
message data set.

In addition, there are 3 default thresholds:
1. Offload all messages larger than 32KB (including headers) when the structure is 70% full.
2. Offload all messages larger than 4KB (including headers) when the structure is 80% full
3. Offload all messages when the structure is 90% full.

Example: Consider a scenario where only 16KB messages are used with a 0.5GB structure.
CFLEVEL(4)

A 16KB message would require 1 entry and 66 elements.

A 0.5GB structure would support approximately 24,000 messages, with ALLOWAUTOALT=YES.
CFLEVEL(5)

16KB messages stored in the CF would still require 1 entry and 66 elements, whereas all ofloaded
messages use 1 entry and 2 elements.

For example, 16KB messages would not be offloaded until the structure reaches 80% full. This means
that 17,101 messages are stored in their entirety in the CF. Upon reaching the 80% threshold,
remaining messages are offloaded to the SMDS datasets. Provided the SMDS datasets are large
enough, the CF would then be able to store a total of 158,166 messages.

78

Increasing the maximum number of messages within a structure

The maximum number of messages can be increased dynamically either by:

1. Increasing the size of a structure within the currently defined CFRM policy limits. This can be
done by operator command or by the system for structures defined ALLOWAUTOALT(YES).

2. Using CFLEVEL(5) structures which implement tiered thresholds.

3. Changing the ENTRY to ELEMENT ratio, which can be done only by the system and only
to a structure which is defined in the CFRM policy with ALLOWAUTOALT(YES)

The ELEMENT to ENTRY ratio is initially fixed by IBM MQ at 6 to 1. The system then pre-
allocates ELEMENTS and ENTRIES in that ratio to fill the INITSIZE of that structure (having
reserved space for its own control information including being able to cope with this structure at its
maximum possible size (SIZE)).

NOTE: A structure is full if either all ENTRYs or all ELEMENTS are in use.

Every message requires an ENTRY and enough ELEMENTS to contain all message data and headers.
Each ELEMENT is of size 256 bytes. Now consider the ELEMENT and ENTRY requirement for
various message sizes, remembering to add the 372 bytes, that covers the implementation headers
(including the MQMD v1 header), to each message.

For example,
e 5000 byte message requires 21 ELEMENTS and 1 ENTRY
e 300 byte messages require 3 ELEMENTS and 1 ENTRY
e 10 byte messages require 2 ELEMENTS and 1 ENTRY

Taking the above sizing and applying them to a simple scenario can show how we achieve the 6 to
1 ratio.

No. of . Maintaining 6:1 ratio

Messages Size (bytes) |ELEMENTS |ENTRY means:

1 5000 21 1 Unused 3 ENTRIES

1 300 Unused 3 ELEMENTS

3 10 3 Unused 12 ELEMENTS
Unused:

Total (5) 30 5 15 ELEMENTS
3 ENTRIES

So for the above example, we have achieved the 6 to 1 ratio, although we have lost 15 ELEMENTS
and 3 ENTRIES.

If we continue to add only 5000 byte messages, we will run out of ELEMENTS long before the
ENTRIES are used.

Alternatively, if we add only 10 or 300 byte messages, we will run out of ENTRIES long before we
run out of ELEMENTS.

System initiated alter processing is the only way to adjust ENTRY to ELEMENT ratio for IBM
MQ CF structures. It can also change the size of a CF list structure up to the maximum (SIZE) or
down to the minimum defined (MINSIZE) as defined for that structure.

To see ENTRY and ELEMENT information use z/OS command “D XCF”, for example:
D XCF,STR,STRNAME=PRF2APPLICATIONI.

79

Use of system initiated alter processing

This facility allows the system to alter the size of a structure (both up and down) and to change
the ENTRY to ELEMENT ratio.

The following CF list structure definition is possible for application CFSTRUCT named APPLICA-
TIONT1 in queue sharing group PRF2:

STRUCTURE NAME (PRF2APPLICATION1)

SIZE(1000000) /* size can be increased by z/0S */
INITSIZE(500000) /* from 500000K to 1000000K by */
MINSIZE(500000) /* or decreased to 500000K by */
ALLOWAUTOALT (YES) /* system initiated ALTER processing */
FULLTHRESHOLD (80)
PREFLIST (SOCFO1)

When the FULLTHRESHOLD is crossed the operating system will take steps to make adjustments
to the list structure ENTRY to ELEMENT ratio to allow more messages to be held within the
current size, if possible. It will also, if necessary, increase the size towards the maximum (the value
of SIZE). This process is not disruptive to ongoing work provided there are sufficient processors
available in the Coupling Facility. However, it can take up to several minutes after the threshold is
crossed before any action is taken. This means that a structure full condition, IBM MQ return code
2192, could easily occur before any such action is taken.

For structures containing predominantly message sizes less than 908 bytes (5 * 256 - implementation
headers (372)) and greater than 63KB (64512 bytes) then it is likely that considerably more messages
can be accommodated in the same size structure after any such adjustment.

To reiterate, if the entire CF reaches an installation-defined or defaulted-to percent full threshold as

determined by structure full monitoring, the system will consider reducing the size of any structures
with unused space that have been defined with ALLOWAUTOALT(YES).

For this reason we advise consideration of making MINSIZE equal to INITSIZE so that IBM MQ
structures will not be made too small. This is particularly important for the CSQ_ADMIN structure
which could cause failure of shared queue operations if it becomes too small (queue manager failure
prior to V6).

User initiated alter processing
The following system command is an example of how to increase the size of a structure:
SETXCF START,ALTER,STRNAME=PRF2APPLICATION1,SIZE=750000

This command increases the size of the structure but does not change the ENTRY to ELEMENT
ratio within the structure. Increasing CF structure size is not noticeably disruptive to performance
in our experience.

Decreasing CF structure size is not advised with CFCC levels prior to level 12 as there are circum-
stances where it is very disruptive to performance for a considerable time.

How often should CF structures be backed up?

Highly available parallel sysplex systems often have stringent recovery time requirements. If you use
persistent messages in any particular application structure it will need to be backed up.

If backup is infrequent then recovery time could be very long and involve reading many active and
archive logs back to the time of last backup. Alternatively an application structure can be recovered

80

to empty with a “RECOVER CFSTRUCT(..) TYPE(PURGE)” command, but this does mean that
any messages on the queues defined to the structure being purged will be lost.

The time to achieve a recovery is highly dependent on workload characteristics and the DASD
performance for the log data sets of individual systems. However, you can probably aim to do
backups at intervals greater than or equal to the desired recovery time.

CF application structure fuzzy backups are written to the log of the queue manager on which the
BACKUP command is issued. The overhead to do a backup is often not significant as the number
of messages in an application structure is often not large. The overhead to do a backup of 200,000
1KB persistent messages is less than 0.5 CPU seconds on a 8561-703 system.

When the 1KB persistent messages were stored on SMDS, the backup costs did not increase but the
rate at which the backup completed dropped from 290MB /sec to 13MB/sec.

The recovery processing time is made up of the time to:
e Restore the fuzzy backup of the CF structure, which is typically seconds rather than minutes.

e Re-apply the net CF structure changes by replaying all log data, including non-shared queue
work, written since the last fuzzy backup.

The logs of each of the queue managers in the queue-sharing group are read backwards in parallel.
Thus the reading of the log containing the most data since fuzzy backup will normally determine
the replay time.

The data rate when reading the log backwards is typically less than the maximum write log data
rate. However, it is not usual to write to any log at the maximum rate it can sustain. It will
usually be possible and desirable to spread the persistent message activity and hence the log write
load reasonably evenly across the queue managers in a queue sharing group. If the actual log write
data rate to the busiest queue manager does not exceed the maximum data rate for reading the log
backwards then the backup interval required is greater than or equal to the desired recovery time.

Backup frequency example calculation

Consider a requirement to achieve a recovery processing time of say 30 minutes, excluding any
reaction to problem time. As an example, using DS8900F DASD with the queue manager doing
backup and restore on a 8561-703 system running z/OS V2R5, we can restore 200,000 1KB persistent
messages from a fuzzy backup on an active log in 2 seconds. To meet the recovery processing target
time of 30 minutes, we have more than 29 minutes to replay the log with the most data written since
the last fuzzy backup. The maximum rate at which we can read an active log data set backwards is
about 450MB/sec on this system, so we can read about 760GB of the longest log in 29 minutes.

When data needed to be read from archive logs, the read rate dropped to approximately 60MB /second,
so it is worth re-iterating that for best performance, there are sufficient active logs to be able to
recover from backups.

The following table shows the estimated backup interval required on this example system for a range
of message rates:

81

Backup interval
1KB persistent | 1IKB persistent MB /sec to longest in hours. (based
msgs/sec to longest | msgs/sec to 3 1 on reading logs
log evenly loaded logs o8 backwards at

450MB/Sec)

1000 3000 2.27 95

2000 6000 4.61 46

38000 114000 112 1.9
(38,000 is the maximum for this DASD with 1KB messages)

A crude estimate for the amount of log data per message processed (put and then got) by queue
managers in a QSG is message length plus 1.33KB.

Backup CFSTRUCT limit

When calculating how frequently to back up your CF structures, it is important to consider how
much data is to be backed up.

With the capacity of SMDS, it is possible to exceed MQ recovery limits, and as such it is worth
considering the following variables:

Variable Values Description
Maximum number of archive logs that can be recorded in
MAXARCH 10-1000 the BSDS. When the number is exceeded, recording begins

again at the start of the BSDS.

This means the maximum recoverable backup can be
4000GB (3.9TB). The most recent data may be recovered
from active logs.

For example if the queue manager is defined with 310 active

Max1mum log 4GB logs there could be:-
size .

e 1 current active log

e 309 active logs with data that is also in the most

recent 309 archive logs
e (691 archive logs with data not in active logs.
MQ supports 63 application structures and 32 queue man-

Maximum size of agers in the QSG. This means that each structure could
single SMDS 16TB have 512TB in SMDS and the QSG could contain 30 PB of

SMDS data.

Even when the volume of data being backed by the BACKUP CFSTRUCT command exceeds
the maximum configured storage available for backup ((MAXARCH * log size) + (log size *
number of active logs)), the backup will appear to work.

It is only when attempting to recover the data that problems may occur due to the size of the
backup. You may see the following messages when structure recovery is attempted and fails:

e CSQE1321I Structure recovery started, using log range from LRSN=xxxx to LRSN=yyyy
e CSQJ113E RBA zzzz NOT IN ANY ACTIVE OR ARCHIVE LOG DATA SET..
e CSQE112E Unable to recover structure APPLICATIONI, failed to read required logs

82

Administration only queue manager

If there ever might be a lot of persistent messages or a lot of persistent message data to be backed up
then the normal persistent message workload could be impacted while the log of the queue manager
doing the backup is extra busy.

If this is a serious potential concern then consider defining an extra queue manager in the QSG and
use it only for administration purposes such as BACKUP CFSTRUCT(..).

83

When should CF list structure duplexing be used?

CF list structure duplexing gives increased availability at a performance cost.

Any version of MQ that supports shared queues can be used with duplexed CF structures without
change to either the code or the MQ definitions.
Availability within a given QSG may be summarised as follows:

SIMPLEX CF Structure defini-
tion

Action on single failure

Queue managers stay up and rebuild this structure
from their logs.

Only serialised applications need to wait for rebuild
completion.

Rebuild only completes when every queue manager
CSQ_ADMIN defined in the QSG has done its work. This means that
V6 (or later) queue managers ||if a queue manager was down at the time of failure it
must be restarted before any new serialised applications
can start unless the queue managers are V7.0.1 or later.
Note: Shared channels are serialised applications.

V7.0.1 saw the introduction of peer admin rebuild.
Entire QSG fails.
The structure is rebuilt from logs at restart. All queue

CSQ_ADMIN managers in the QSG need to restart to complete the
V5 queue managers rebuild.
Only serialised applications need to wait for rebuild
completion.

ALL currently connected queue managers fail.

On restart the structure is reallocated, all messages are
lost

No queue manager fails.

Applications using queues in that structure fail.

On restart persistent messages can be recovered by any
queue manager in the QSG provided that any queue
manager in the QSG has done a backup and all subse-
quent logs are available.

Alternatively the structure can be ‘recovered’ to empty.

Application structure
CFLEVEL(1)

Application structure
CFLEVEL(3 or higher)

84

DUPLEX CF Structure defini-

tion Action on single failure

CSQ_ADMIN Entire QSG remains available, z/OS recovers to duplex.
Application structure ALL currently connected queue managers remain avail-
CFLEVEL(1) able, z/0S recovers to duplex.

Application structure ALL currently connected queue managers remain avail-
CFLEVEL(3 or higher) able, z/0S recovers to duplex.

How does use of duplexed CF structures affect performance of MQ?

MQ operations on CF structures are typically nearly all update operations. Duplexed CF structure
updates incur significant extra CF CPU and link usage. The following guidelines assume that there
will be adequate total resources available. An overloaded CF is likely to cause significant performance
problems for the entire sysplex.

Estimating performance for duplexed versus simplexed CF structures is complex and even more than
usually workload and system configuration dependent for the following reasons.

CPU costs

The CPU cost impact of duplexed CF structure compared to simplex CF structure usage depends
on the link types used both between the z/0OS image and the two CF’s being used as well as the link
between the two CF’s that are being used for duplexing.

Note that one of these two CF’s might have changed after a structure failure and recovery back to
duplex and thus performance characteristics might also change after recovery.

Operations that update the contents of a CF structure have more impact on extra CPU cost than
those that do not. MQPUTs and destructive MQGET’s clearly have to update the CF structure
containing the message and MQCMITs have to update the CSQ_ADMIN structure. An MQGET
for browse causes no updates.

Throughput

Throughput for shared queue non-persistent messages, even when kept on duplexed CF structures,
is always going to be much better than for any sort of persistent message because of the elapsed
time required for DASD logging I/O necessary to provide media recovery for persistent messages.

Throughput for messages on a duplexed CF structure compared to a simplex CF structure is im-
pacted by the type of links used between the z/OS image and the two CF’s and by the type of links
between the two CF’s.

Any throughput impacts of duplexing CF structures are because:

e Update operations are asynchronous for duplexed CF’s. They may be synchronous or asyn-
chronous between z/OS and the CF for simplex CF structures, depending on operating system
heuristic decisions.

e The operation can only complete at the speed of the slowest link.

e The second CF may be physically much more distant (possibly many kilometres and even light
takes time to travel). 10KM distance will add something of the order of 200 - 250 microseconds
to the service time for each request.

CF Utilization (CF CPU)

The CF utilization cost will increase significantly for MQ update operations when using duplex
rather than simplex CF list structures.

85

e Each of the duplexed CF’s must process the operation
e Plus there is synchronization between the CF’s.

The CF utilization for MQ update operations on the CF of the primary copy structure will approx-
imately double. The secondary copy CF utilization will be nearly as much as the primary.

Environment used for comparing Simplex versus Duplex CF structures

1 LPAR on a 2084 with 3 dedicated processors, rated as a 2084-303, with ICP and CFP links to
local coupling facility. ICP link (fastest) will be used when available.

Coupling facility has 3 engines available.

Physically the duplexed structures are located locally but only CFP (ISC-3) links between the 2
coupling facilities.
Multiple Queue Sharing Groups defined:

e One with duplexed CSQ_ADMIN structure and 3 application structures of which one is du-
plexed.

e All other QSGs have simplexed CSQ__ADMIN structure and 3 application structures of which
one is duplexed.

Locally driven request / reply workload with multiple requester applications putting to a common
input queue and getting a reply message by CORRELID from a separate common indexed queue.
Multiple server applications getting from the common input queue and putting to the reply-to queue.

Duplexing the CSQ ADMIN structure

From observations on our system when running our locally driven request / reply workload we have
derived the following general guidance.

Note: The test system has a multiple links from the LPAR to the primary CF, including a fast
ICP link which will be used when available, and a slow link from the primary CF to the secondary
(duplexed) CF.

e CPU cost between 0% and 30% greater.

e For non-persistent messages processed in-syncpoint, throughput decreases by 30% for 1KB and
20% for 32KB messages.

e For persistent messages processed in-syncpoint, throughput decreases by 25% for 1KB and
12% for 32KB messages.

e The contribution of CSQ _ADMIN structure usage to CF utilization is usually much less than
that for the application structures. Duplexing the CSQ_ADMIN structure might typically
increase the MQ caused load by 10% for 63KB non-persistent messages to 33% for 1KB non-
persistent messages.

e The use of messages contained in more than one application structure within a unit of work
increases the activity to the CSQ__ADMIN structure and so would further increase CPU and
CF utilization and decrease throughput.

Using a slower CFP link from the LPAR to the primary CF and another CFP link from the primary
CF to the duplexed CF:

e CPU cost between 3 and 8% greater

e For non-persistent messages processed in-syncpoint, throughput decreases by 18% for messages
between 1 and 63KB.

86

When using the faster ICP link between the LPAR and the primary CF with a slower CFP link
from the primary CF to the secondary CF, the additional cost of duplexing the admin structure is
significantly more than when running with a CFP link from the LPAR to the CF. Despite this, the
faster ICP link does allow up to 40% more throughput for 1 to 63KB non-persistent messages that
are processed in-syncpoint.

Duplexing an application structure

It really only makes sense to duplex an application structure if the CSQ__ADMIN structure is also
duplexed. From our observations on our system with our locally driven request /reply workload we
have derived the following general guidance for duplexing of both CSQ_ADMIN and the application
structure.

NOTE: The test system has a multiple links from the LPAR to the primary CF, including a fast
ICP link which will be used when available, and a slow link from the primary CF to the secondary
(duplexed) CF.

e CPU cost about 15% greater for 1KB persistent messages and 30% greater for 1KB non-
persistent messages.

e CPU cost about 12% greater for 32KB persistent messages and 25% greater for 32KB non-
persistent messages.

e Throughput decrease by 40% for 1KB non-persistent messages and 50% for 10KB non-persistent
messages. For persistent messages throughput decrease is negligible for 1 KB messages and rises
to less than 10% for 32KB messages. The use of messages contained in more than one applica-
tion structure within a unit of work increases the activity to the CSQ_ADMIN structure and
so would further decrease throughput.

e The contribution of MQ CF structure usage to CF utilization will double for the primary
structures. The secondary structures will use almost as much as the primary.

Non persistent shared queue message availability

Non-persistent messages are not logged whether in private or shared queues. Therefore they can-
not be recovered if lost. Nevertheless, shared queue non-persistent messages have much greater
availability than private queue non-persistent messages.

Private queue non-persistent messages are lost when the queue manager fails or shuts down normally.
Even with simplex CF structure usage shared queue non-persistent messages are not easily lost. They
are only lost if the CF application structure containing them fails or is deleted by the operator. In
particular, they are NOT lost when any or even all queue managers in a queue sharing group fail or
shut down normally (except failure caused by loss of that application structure).

Users may consider using non persistent shared queue messages, with all the advantages of pull
workload balancing which come with use of shared queue, where they might previously have required
persistent messages in a non-shared queue environment. In this case there is generally a CPU cost
saving and potentially a significant increase in throughput compared to use of non-shared queue
persistent messages.

Existing users of private queue persistent messages moving to shared queue non-persistent messages
on CF structures may see a CPU cost saving and potentially a significant increase in throughput
even when using duplexed CF structures.

87

Coupling Facility

What is the impact of having insufficient CPU in the Coupling Facility?

As the coupling facility becomes more utilized, the system will convert synchronous requests to
asynchronous requests. The system has heuristic algorithms which decide that the system will be
more efficient if it issues an asynchronous request with the cost of a re-dispatch, rather than have the
processor wait for a synchronous request to complete. With the asynchronous request, the processor
can process other work.

With a highly utilized coupling facility, a small increase in utilization can result in significant in-
crease in coupling facility response time when the CF requests are changed from synchronous to
asynchronous.

By example:

e When the CF was 20% utilized, the majority of the CF requests were synchronous taking 4.4
microseconds.

e When the CF was 70% utilized, the majority of the CF requests were synchronous taking ap-
proximately 9.9 microseconds, but those asynchronous requests were taking 600 microseconds.

When do I need to add more engines to my Coupling Facility?

On a coupling facility with 1 engine, it is advised that when the %busy value exceeds 30% for any
period of time, an additional engine should be added. On a coupling facility with multiple engines,
it is advised that when the %busy value (as can be seen from an RMF III ‘‘CF Activity’’ report)
exceeds 60%, an additional engine should be added.

What type of engine should be used in my Coupling Facility?

The CF can use general CP’s that can also be used by the operating system LPAR or an ICF, which
can only run CFCC. For performance reasons, the ICF engines do not share L3 and L4 caches with
7/OS processors.

IBM recommends that dedicated engines should always be used for a CF whose response times are
critical.

If dedicated processors are not available, review “Coupling Facility Configuration Options” which
recommends the use of the dynamic dispatch “DYNDISP” configuration option when using shared
CPs.

CF Level 19 - Thin Interrupts

With the introduction of CFCC level 19, the options for sharing CF processors increased such that
the Dynamic CF dispatching (DYNDISP) option now supports ON, OFF and THIN.

The performance of THIN interrupts is discussed in detail in the white paper “Coupling Thin Inter-
rupts and CF Performance in Shared Processor Environments”.

CF Level 25 - Thin Interrupts

CFCC level 25 deprecates the DYNDISP=ON | OFF options . As of CFCC level 25, shared engine
CF dispatching uses DYNDISP=THIN.

88

https://www.ibm.com/downloads/cas/JZB2E38Q
https://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102400
https://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102400

Why do I see many re-drives in the statistics report?

What is a re-drive?

The Coupling Facility manager data records (QEST) hold data about re-drives in 2 fields.
1. QESTRSEC - number of IXLLSTE redrives
2. QESTRMEC - number of IXLLSTM redrives

When IBM MQ attempts to get data from the coupling facility but has not specified a large enough
buffer for the requested data, XCF returns theIXLRSNCODEBADBUFSIZE return code. As a result,
IBM MQ redrives the request to get the data using a larger buffer.

You may also see re-drives if you have many messages on a shared queue with a common value in
the index type and subsequently use MQGET whilst specifying the common value. This is discussed
in more detail the “Common MSGID or CORRELID with deep shared queues” section.

Why do I see many re-drives in the statistics report?

For performance reasons, it is better to use a buffer that is close to the size of the data (including
headers) to be gotten - as a result, the initial buffer size used by MQ is 4KB and this will be increased
or decreased as necessary.

IBM MQ uses a range of buffer sizes i.e. 256 bytes, 512 bytes, 1024 bytes, 2048 bytes and then the
size of the buffers increase in 4KB blocks up to 63KB.

IBM MQ stores the size of the last message and uses this size for the buffer on the next get, as
typically it is expected that all the messages on the queue are the same size. If the message size
increases above the size of the current buffer, a redrive will occur. For example, consider a shared
queue has 5 messages of varying size (including MQ headers).

Message Size of Message (KB)
5 Redrive occurs
6
8
10 Redrive occurs
1

Uk | Wi N

In this example, you would see 2 re-drives — associated with message 1 (as it is larger than the initial
4KB buffer size) and message 4 (as it is larger than the next boundary (8KB)).

In version 6.0.0, MQ may resize the buffer immediately if the buffer is deemed too large, so consider
the following example:

Message Size of Message (KB)
1
2 0.5
3 Redrive occurs
4 4 Redrive occurs

NOTE:

e Message 1 does not require a re-drive but the 4KB initial buffer was inefficient, so the buffer
is resized to 1KB for subsequent attempts.

89

e Message 2 can be gotten into a 1KB buffer, so is also successful without a re-drive, but the
buffer is inefficient, so the buffer is resized to 512 bytes for subsequent attempts.

e Message 3 does not fit into a 512 byte buffer, so we get a re-drive and the buffer is set to 1KB
for subsequent attempts.

e Message 4 does not fit into the 1KB buffer, so again there is a re-drive and the buffer is set to
4KB.

WebSphere MQ version 7.0 changed the behaviour of the sizing down process — it only sizes the
buffer down if the buffer was too large for 10 consecutive messages. In the previous example, there
would have been no redrives.

Effect of re-drives on performance

If there are a high number of re-drives, it would indicate that the messages being retrieved by
MQGET are of varying size — it may be that the messages are not varying in size by much but they
are near to one of the boundaries — e.g. some messages are 4080 bytes and some are 4100 bytes.

When there are a large number of re-drives, the cost per transaction may be higher and the trans-
action rate lower than when the messages do not cause re-drives.

To show how the cost of re-drives can affect the cost and rate of transactions, the following scenario
was run:

e A version 6.0 queue manager in a queue sharing group is started

5 requester tasks each put non-persistent messages to a single shared queue and then wait for
a reply message on a shared reply-to queue that is indexed by MSGID. Each requester will
then repeat until told to stop.

4 server tasks that get messages from the shared input queue and MQPUT a reply message to
the shared reply-to queue

Measurements were run on a single LPAR using z/OS 1.9 with 3 dedicated processors on a
z10 EC64.

e Message sizes specified exclude headers

There are 3 test cases measured:
1. All messages are 2KB
2. All messages are 4KB

3. 3 in 5 messages are 2KB, 2 in 5 messages are 4KB

. Transaction Rate Cost / Transaction Single Retries on
Message Size Second (microseconds) Application Structure
2KB 9758 291 0
4KB 9405 302 1
Mixed 9117 313 457,825

As can be clearly seen from the above measurements, using mixed size messages that cross re-drive
boundaries on the queue results in a high re-drive count.

It also shows that the transaction rate and cost per transaction is worse than when using larger fixed
sizes messages.

It should be noted that if these measurements were repeated using WebSphere MQ v7.0 or later, it
is likely there would be minimal re-drives.

90

Batch delete of messages with small structures - CFLEVEL(4) and lower

When shared queue messages are gotten destructively, the queue manager saves the pointer (PLEID)
to the storage used to hold the message in the coupling facility in a batch delete table. When this
table is full, MQ initiates an SRB to request that the data pointed to in the coupling facility is
deleted.

There is a batch delete table held in each queue manager for each structure that the queue manager
is attached to. Each table can store 341 entries before the batch delete process will be initiated.

This means that when putting and getting messages to an application structure, there may be up
to 340 messages in the structure per queue manager in the QSG that are waiting to be deleted.

If the messages are 63KB, this means that there could be 340 messages — or 21.25MB of messages
waiting to be deleted — per queue manager.

This means that if there were 30 queue managers in a QSG and messages of 63KB were being used,
there could potentially be (30 x 21.25MB) 637.5MB of messages waiting to be deleted.

If the application structure is not large enough to hold these “dead” messages as well as any “live”
messages, an application putting to a queue on the structure may get an MQRC 2192 “Storage
Medium Full”.

Constraint relief may be gained by:

e Enabling ALLOWAUTOALT(YES) — This may change the ratio of elements to entries which
may give an increased capacity.

e Increasing the size of the structure

e Using CFSTRUCT’s at CFLEVEL(5)

Shared Message Data Sets - CFLEVEL(5)

WebSphere MQ for z/OS version 7.1.0 introduced CFLEVEL(5) to store large messages in shared
message data sets (SMDS), instead of DB2 for messages larger than 63KB.

This can offer a reduction in management costs for storing large shared queue messages as well as
improving the throughput rates achievable.

In addition, a 3-tiered message size offload threshold is introduced to increase the capacity of the

CF.

Tuning SMDS

When running messaging workloads using shared message datasets, there are 2 levels of optimisations
that can be achieved by adjusting the DSBUFS and DSBLOCK attributes.

The amount of above bar queue manager storage used by the SMDS buffer is DSBUFS x DSBLOCK.
This means that by default, 100 x 256KB (25MB) is used for each CFLEVEL(5) structure in the
queue manager.

DSBUFS

The DSBUF'S attribute specifies the number of buffers, taken from above bar storage, that is used
to hold a cached copy of the messages. This enables faster access when reading the message from
the queue, when performed by the putting (local) queue manager.

Level 1 optimisation: Avoid put time I/O waits

91

If there are insufficient buffers to handle the maximum concurrent number of I/O requests, then
requests will have to wait for buffers, causing a significant performance impact. This can be seen in
the CSQE285I message (issued as a response to the “DISPLAY USAGE TYPE(SMDS)” command)
when the “lowest free” is zero or negative and the “wait rate” is non-zero. If the “lowest free” is
negative, increasing the DSBUFS parameter by that number of buffers should avoid waits in similar
situations.

When the message data exceeds one SMDS block, a request to start overlapping I/O operations
to transfer multiple blocks concurrently is initiated but this is limited to a maximum of 10 active
buffers per request.

If the message is 100KB and DSBLOCK(8K) is set, each message would require 13 buffers but
would only be able to use 10 buffers. In this example, it would be more appropriate to use a
larger DSBLOCK size to ensure that the I/O operations were completed in an optimum manner,
for example if the message were 100KB and DSBLOCK(64K) is set, each message would use only 2
buffers.

Level 2 optimisation: Cache of recently put messages

Once there are sufficient buffers to avoid waits, the next level of optimisation occurs when enough
data can be buffered so that when recently written data is read back from the same queue manager,
it is possible to find the data in a buffer rather than having to read it from disk. This can save
significant elapsed time in the reading transaction.

The following example shows the benefits of tuning the DSBUFS attribute:

e A single queue manager in a QSG with a single CFLEVEL(5) application structure, with
DSBLOCK(64K)

e All messages are offloaded to the SMDS dataset.
e A request/reply workload is run.
e There are 12 requester tasks which each put a 63KB message to a single shared queue.

e These messages are got by 1 of 4 server tasks that get and put a reply message in-syncpoint
to a second shared queue which is indexed by CORRELID.

e These reply messages are got by the requester tasks using CORRELID.
e This is repeated multiple times until the requester tasks are stopped.

e Command DIS USAGE TYPE(SMDS) is used to determine the status of the SMDS buffer.

e The DSBUFS value is altered using ALT SMDS(*) CFSTRUCT(APPLICATION1) DSBUFS(value).

e The test is repeated using DSBUFS values ranging from 1 to 32.

The following 2 charts show the two levels of optimisation. There is a distinct increase in transaction
rate when there are sufficient buffers such that the tasks are not waiting for a buffer, i.e. when “wait
rate” is 0%. In these examples, a significant increase in throughput is seen (from 600 to 4200
transactions per second).

The second increase occurs when the queue manager is able to get the message data from the buffer
rather than having to perform disk I/O operations. In this example, an additional 24% increase in
transaction rate is seen (from 4200 to 5300 transactions per second)

Chart: Effect of DSBUFS on transaction rate

92

Transaction Rate for 63B messages with DSBLOCK(256K)

Varying DSBUFS, 12 Requesters, 4 Servers

6000
=]

5000
2 Data read from
§ 4000 buffer not disk
(2]
- Avoiding waits
g 3000 for buffers
£
& 2000
8
=

1000

Insufficient DSBUFS
0
0 5 10 15 20 25 30 35

DSBUFS

Chart: Using output from CSQE285I message to determine best DSBUF'S value

63KB Messages with DSBLOCK(256KB)

Vary DSBUFS, 12 Requesters, 4 Servers

—— Reads saved —&— % Waits

100 i
90
All reads are
o0 from buffer
70
g 60 67% of reads
S are from disk
c 50
]
5 40
o
30
20 Enough DSBUFS
such that not waitin;
10 —
0 = ®
0 5 10 15 20 25 30 35

DSBUFS

The value of DSBUFS is evident in the preceding charts, however this benefit is only realised when
the message is being got from the same queue manager that the message was put on, i.e. the get is
from the local queue manager.

Consider the following configuration:

93

Queue Queue
ManagerA QSG -~ | Manager B
A g

When messages are put to a shared queue by an application connected to queue manager A, the
queue manager updates the CF with key information and writes the message to its SMDS. The
message will be kept in queue manager A’s DSBUFS buffers, as well as the CF and SMDS, until
more messages are put to queues in that structure on that queue manager.

Once the buffers are full, they become re-used, so older messages are only stored in the SMDS and
CF.

Once the entire message is lost from the buffers and held only in the SMDS, the rate at which the
message can be retrieved is comparable, whether the get is from queue manager A (a local get) or
from queue manager B (a remote get)

NOTE: Transaction cost is comparable too, however when the get is from a remote queue manager,
the queue manager that held the message in its SMDS will perform the delete of the message from
the SMDS. This incurs a minor cost to that local queue manager.

DSBLOCK

DSBLOCK is the logical block size in kilobytes in which the SMDS space is allocated for individual
queues.

The DSBLOCK attribute divides the SMDS and buffer into blocks for holding the M(Q messages.

e By selecting the DSBLOCK size that is larger than the message, storage usage in the buffer is
less efficient.

e By selecting a DSBLOCK size that is smaller than the message means that multiple 1/0
requests are required to store the message on SMDS.

To aid performance, SMDS attempts to overlap I/O requests, but each task is limited to 10 buffers
OR where the total size of the buffer is less than or equal to 4MB.

So, maximum overlapped I/0 requests is currently 10, but if DSBLOCK(512K) is set, the maximum
overlapped I/O requests is 8 (4MB / 512KB).

Understanding how messages are stored in SMDS

Each message is written, starting at the next page within the current block and is allocated further
blocks are needed.

Using the default setting of DSBLOCK(256K), each logical block with be 256K (64 pages).
Consider messages that use 100KB:
e Message 1 will be written to block 1 (page 0, using 25 pages).

94

e Message 2 will be written to block 1 (page 25, using 25 pages).

e Message 3 will be cause 2 I/O requests because part of the message will be in block 1 and the

remainder will be in block 2.

A larger DSBLOCK decreases space management overheads and reduces I/O for very large messages
but increases buffer space requirements and disk space requirements for small messages.

How should I size my DSBLOCKS?
The combination of DSBLOCK and DSBUFS affects how much above bar storage is used by SMDS.

The following lists the order, in preference, for performance sizing the DSBLOCK attribute:

1.
2.

3.

Message fits into a single DSBLOCK (i.e. a single I/O request).

Message fits into maximum overlapped I/0 requests, so that all writes can be requested con-
currently.

Message is too large and is split into separate I/O requests which cannot be overlapped.

An example of how these configurations affect transaction rate and cost is shown below.

A single queue manager in a QSG with 1 structure at CFLEVEL(5).

The SMDS under test has DSBUFS(200) - which has been determined to be sufficient buffers
for this work.

Request/Reply workload is run against a pair of queues using 100KB non-persistent messages.

The 12 requesters put a message to a request queue and wait for a reply message with a known
CORRELID on the reply queue. All requester work is performed out-of-syncpoint.

The 4 server applications get-with-wait on the request queue and put a corresponding reply
message. These gets and puts are performed in syncpoint.

Measurements are performed on a single z/OS v2r3 LPAR with 3 dedicated processors on z14
(3906-799). CF is internal with 4 dedicated processors.

DSBLOCK is set to the following 3 values:
o 8K - Message does not fit into 10 buffers, so will require multiple overlapped I/O requests.

o 16K - Message fits into 7 buffers, so will be written to disk in 1 set of overlapped I/0O
requests.

o 128K - Message fits into a single buffer. One I/O request would typically be required to
write to disk, unless message spills over from a previously part-used DSBLOCK.

The following table shows the achieved transaction rate and cost per transaction for these tests.

DSBLOCK 8K 16K 128K
Transaction rate/second 1103 2713 3439
Cost / Transaction (CPU microseconds) 544 377 240
RMF “Channel path report” % busy (aver-

age for 4 channel paths in use) 34.2 47.34 3L.5
Maximum used blocks (CSQE2801) 151 51 7

95

What does this tell us?

It is more space efficient to use 8K buffers to store 128K messages than either 16K or 128K. However
the system allows a higher transaction rate with the larger DSBLOCK size and at less load to the
I/O subsystem.

CFLEVEL(5) and small messages

Using the offload thresholds and sizes it is possible to specify that all messages are offloaded, which
will increase the capacity of the Coupling Facility.

Because of the way the message header is stored in the Coupling Facility, there is space in the
required elements for a message of 122 bytes or less to be stored. MQ is optimised to store these
small messages in the CF structure as it does not impact the CF. This means that messages of 122
bytes or less are not offloaded into the shared message data sets.

Who pays for messages stored on Shared Message Data Sets?

Large shared queue messages offloaded to shared message data sets show different cost characteristics
compared to large shared queue messages that are offloaded to Db2.

Consider an application that performs an MQPUT and MQGET of a 100KB message to a shared
queue, where the message payload is stored in Db2:

e The costs are accumulated to the applications’ address space until the queue manager needs to
insert the binary large object (or blob) to the Db2 table. At this point the queue manager looks
at the Db2 blob threads (as specified in the CSQ6SYSP macro under parameter QSGDATA) to
choose and / or wait for an available thread. The queue manager then performs a task switch
to that chosen thread and waits for the thread to complete before resuming the applications’
thread.

e The select blob thread performs the SQL INSERT to the Db2 table and the cost of the work
performed by this thread is attributed to the queue managers’ address space.

e With regards to the MQGET, the application is again charged for the work until the queue
manager performs a task switch to one of the blob threads to perform the SQL SELECT of
the data from the table. If the data is available in the Db2 buffer, the cost of this task may
be relatively small.

Compare this to an application that performs an MQPUT and MQGET of a 100KB message to a
shared queue, where the message is stored in shared message data sets:

e When a message is put to a queue defined in a CFLEVEL(5) OFFLOAD(SMDS) structure,
the queue manager does not need to perform a task switch when writing the message to the
shared message data set.

e Similarly when getting a message from a queue defined on a shared message data set, no task
switch is required.

e This lack of task switching performed when accessing a message stored on shared message data
sets means that:

o The cost of the put and get is attributed to the application.
o There is no need to wait for a Db2 blob thread in the queue manager address space.

As a result the application may see an increased cost, but this should be more than offset by a
decreasing cost in the queue manager.

There is still some queue manager cost associated with messaging that is not affected by using
CFLEVEL(5) OFFLOAD(SMDS), in particular (but not limited to):

96

e Issuing MQCMIT - this causes the queue manager to task switch to an SRB to ensure the
commit is completed.

e Persistent messages - the logging of persistent messages is performed by a single queue manager
task.

Db2

IBM MQ uses Db2 with shared queues for a number of reasons, including storing information
about queue managers configuration, group objects, channel status and large (greater than 63KB)
messages.

The Db2 LOB tablespace supplied definitions specify 32KB buffer pool usage. The Db2 table space
requirement is therefore of order:

1. Number of 32KB’s required for typical message (including all headers) * maximum number of
messages

2. For example, ten thousand shared queue messages of size typically 100KB would require 4 such
32KB’s per message and therefore of order 1280MB LOB table space.

There is no queue manager requirement for a particular LOB table space buffer pool size. Other
sizes may be used although no performance advantage has been observed using different sizes.

The Db2 supplied definitions specify NUMPARTS 4 to improve maximum throughput. This num-
ber can be changed to suit particular workload requirements. We did not find significant benefit
from using a greater number of partitions. Each message is stored within a single partition. The
partitioning is pseudo-random based on the time the message is MQPUT.

If the partition to which a message is to be MQPUT is full then a 2192 (media full) reason code will
be returned even if there is still space in other partitions. Thus it is sensible to add another 10% to
LOB tablespace requirements to allow for any uneven usage of partitions. For example, the above
calculation of 1280MB split across 4 partitions could sensibly be spread across four partitions each
of (1280/4 + 10%) 352MB.

Db2 universal table space support

MQ version 9.1 provides sample jobs for defining the Db2 tablespaces, tables and indexes. Two sets
of samples are provided:

e One for compatibility with earlier versions of IBM MQ), although support for traditional con-
figurations was deprecated in M(Q version 9.1.

e One for use with Db2 v12 or later, which exploit Universal Table Spaces (UTS)

Universal Table Space (UTS) support is not specifically a performance feature in terms of MQ’s use
of Db2, but with Db2 v12 announcing that partitioned non-UTS table spaces are being deprecated,
such that they are supported but may be removed in the future, it was necessary to provide the
support for when the user is ready to implement UTS.

It should be noted that there is not a direct migration path from the traditional Db2 configuration to
DDb2 universal table space support, with the suggested path of using the UTS samples when moving
to later DB2 versions.

In terms of MQ performance, the preferred option for large shared queue message support is still
via Shared Message Data Sets (SMDS), but if there are reasons for using Db2 for large shared
message support, then UTS may offer some performance benefits for LOB usage over traditional
configurations.

97

To further complicate performance considerations, the supplied samples for the LOB table spaces
use the option “GBPCACHE SYSTEM”. This is optimised for configuration where messages are
potentially processed anywhere in the sysplex.

“GBPCACHE SYSTEM” means that at commit after the insert, the changed LOB page is written to
DASD instead of the group buffer pool (CF). Only changed system pages (e.g. space map pages) are
written to the group buffer pool (CF). When another member comes to delete the message, it will
need to read the page from DASD. In those configurations where data sharing is highly prevalent
the “GBPCACHE CHANGED?” option may be a more suitable option. For more information on
this option, please refer to the Db2 Knowledge Center section “How the GBPCACHE option affects
write operations”.

Is Db2 tuning important?

Yes, because Db2 is used as a shared repository for both definitional data and shared channel status
information. In particular BUFFERPOOL and GROUPBUFFERPOOL sizes need to be sufficiently
large to avoid unnecessary I/O to Db2 data and indexes at such times as queue open and close and
channel start and stop.

The Db2 RUNSTATS utility should be run after significant QSGDISP(SHARED) or QSGDISP(GROUP)
definitional activity, for instance, when first moving into production. The plans should then be re-
bound using SCSQPROC(CSQ45BPL). This will enable Db2 to optimize the SQL calls made on it

by the queue manager.

1. For shared queue messages > 63KB
2. Isolate the IBM MQ used Db2 LOB table space into a 32K buffer pool of its own.

3. A group buffer pool definition corresponding to the chosen buffer pool will need to be defined.
We used a group buffer pool CF structure definition with POLICY SIZE: 10240 K.

Why does IBM MQ produce more Db2 rollbacks than I expect?

When running a Db2 log print you may see an unexpectedly high number of rollbacks for the IBM
MQ plans that are prefixed CSQ5. The reason for these unexpected rollbacks is that the occurrence
of any non-zero return code (including +100 — “not found”) at the end of the Db2 activity will result
in a rollback being issued. In particular there may be a high number of CSQ5L prefixed plans that
have rollbacks associated with them. The CSQ5L prefixed plan is used when IBM MQ periodically
checks for new objects being created.

Shared queue messages > 63KB

Throughput and response time for shared queue messages <=63KB has been and remains most
dependent on:

e For persistent messages, 1/0 rate and total data rate achievable by individual IBM MQ logs in
the queue sharing group for all persistent messages processed by individual queue managers.

e For all messages, CF link type and CF power

Throughput and response time for all shared queue messages > 63KB is additionally dependent on:
e 1/0 rate and total data rate achievable by Db2 LOB table DASD.
e I/0 rate and total data rate achievable by individual Db2 logs across the data sharing group.
e The percentage of cross Db2 data sharing, which also impacts CPU costs.

98

https://www.ibm.com/docs/en/db2-for-zos/13?topic=operations-how-gbpcache-option-affects-write
https://www.ibm.com/docs/en/db2-for-zos/13?topic=operations-how-gbpcache-option-affects-write

e Persistent messages are logged to the IBM MQ log. Db2 LOB table control information is
logged to the Db2 log for persistent and non persistent messages. LOB data (the message) is
not logged by Db2.

e The queue manager issues all Db2 calls on behalf of any application using >63KB shared queue
messages. For virtual storage reasons the messages are segmented, if necessary, into multiple
512KB LOB table entries containing 511KB of message data. This has the following effects:

o CPU costs for shared queue messages > 63KB are mostly incurred by the queue manager
and Db2 address spaces rather than the application.

o Maximum throughput and response time can be impacted across 511KB boundaries.
o CPU costs are increased across 511KB boundaries.

100% data sharing is most expensive, that is, where the putter and getter are always in different
z/08S’s. An example of 100% data sharing is where a shared queue has replaced a channel between
queue managers.

100% data sharing

LPAR1 LPAR 2

Server Queue

__Reply Queue

Requester: MQPUT to server queue, MQCMIT, MQGET-specific-wait from reply queue, MQCMIT
Server MQGET-wait on server queue, MQPUT to reply queue, MQCMIT

Where there is effectively a set of cloned systems in a sysplex then data sharing is reduced. For
example, consider a set of IBM MQ applications which do all the puts and gets to a set of shared
queues. If this set of applications runs on each of 2 queue managers that are connected to separate
Db2’s in a data-sharing group then there is theoretically 50% data sharing. That is there is a 50%
chance that the getter of any particular message will be using a different Db2 to the putter. As
more possible destinations are added, the likelihood of the server using a different Db2 to the putter
increases, e.g. 66.6% for 3 clones. In reality with cloned systems it is very difficult to ensure an even
distribution of workload across the clones.

99

50% data sharing - Cloned systems
LPAR 1 LPAR 2

Server

Requester Server Queue

_ Reply Queue
Requester

There is also the case where no actual data sharing occurs. This could be because the shared queues
requiring messages > 63KB are used only by queue manager(s) each connected to the same Db2.
This is most likely to occur in test system setups. Db2 only starts using data sharing locks and
group buffers on first LOB table usage by a second Db2.

Finally, out-of-syncpoint non-persistent messages can be MQPUT directly to a waiting out-of-
syncpoint MQGETter for shared queues where the waiting getter is connected to the same queue
manager as the putter. When this happens there is no interaction with the CF application structure
or Db2. Thus the response time and CPU cost is very much reduced when this happens.

NPMSPEED(FAST) receiving channels use out-of-syncpoint MQPUTs for non persistent messages.
Thus applications using out-of-syncpoint MQGET on shared queues fed by such channels can benefit.
NPMSPEED(FAST) sending channels use MQGET with sync-if-persistent. Thus such channels fed
by applications using out-of-syncpoint MQPUTs of non-persistent messages can benefit.

100

Shared queue persistent message throughput after 63KB transition

The following chart shows the significant discontinuity in throughput at the 63KB transition point.
In particular shared queue persistent message throughput drops from 2617 transactions/second to
1012 transactions/second as message size passes 64512 bytes (63KB).

Shared queue persistent message requestireply

Maximum Throughput
2 OMs using DB2 V13 UTS on 2 /0S5 v2r5 images, each with 3 processors
using DSBO00F DASD with ICP links to 4-way CF.
Machine is 3931-TKD

25000

20000

15000

10000

Transactions | sacond

5000

o | BE3
a 10 20 30 40 a0 S0 TO 80 a0 100

Mes=zape Size (KE)

This shared queue scenario is an example of 50% data sharing. There are 2 Db2’s with a cloned set
of applications using each Db2.

The queue manager issues all Db2 calls on behalf of any application using >63KB shared queue
messages. For virtual storage reasons the messages are segmented, if necessary, into multiple 512KB
LOB table entries containing 511KB of message data. This has the following effects:

e CPU costs for shared queue messages > 63KB are mostly incurred by the queue manager and
Db2 address spaces rather than the application.

CPU costs are increased across 511KB boundaries — as can be seen in tables following.

With traditional Db2 configurations, as message size doubles the transaction rate typically
halves.

When Db2 Universal Table Spaces are used, the cost of transitioning to storing M(Q message
payload in Db2 is reduced, compared to Db2 traditional configurations.

101

Shared queue persistent message requestireply

Maximum Throughput,
2 QMs using DBE2 w13 UTS on 2 2/0S v2rS images each with 3 processors
using DS8900F DASD with ICP links (o 4-way CF
Machine is 3931-TKD

1200
1000 853
BE3
BOD
GO0

400
335 295

Tranzactions / second

200

—il 83
a 500 1000 1500 2000 2500
Message Size (KB)

For comparison purposes, the preceding measurements have been repeated using CFLEVEL(5) using
shared message data sets to store the message payload with the default tiering options used. This
means that in a coupling facility structure that is not running close to capacity, messages of 63KB
or less are stored in the coupling facility.

102

The following chart shows how using CFLEVEL(5) in conjunction with offloading to shared message
data sets with the default offload tiers, the transition from storing the message in the CF to storing
the message in the SMDS is significantly smoother than storing the message payload in Db2.

Tranzactions / sacond

3000

2500

2000

Transactons / Sacond

Shared queue persistent message requestreply
CFLEVEL(S) offload to SMDS at greater than 63KB

Maximum throughput
2 OMs using DB2 w13 UTS on 2 2/05 v2r5 images, aach with 3 processors
using DS8900F DASD with ICP links to 4-way CF

Machine is 3931-THKD

1862
2483 —
o 10 20 30 40 50 50 TO B0 a0 100
Meszsags Size (KB)
Shared queue persistent message requestireply
CFLEVEL(5) offload to SMDS at greater than 63KB
Maximum throughput
2 OMs using DB2 w13 UTS on 2 2/05 v2r5 images, each with 3 processors
using DSB200F DASD with ICP links to 4=way CF
Machine is 3931-TKD
2419
16TE
358 i 175
—l BB
500 1000 1500 2000 2800

Meszage Size (HB)

NOTE: As the messages get larger, the benefits of offloading persistent shared queue messages are
not obvious from the transaction rate, as the primary factor restricting transaction rate is the queue
managers log rate.

103

Shared queue persistent message request/reply CPU costs

The preceding throughput measurements show the following CPU cost per message (put and gotten)

for estimating purposes.

3931-7KO0 (partitioned as two 3-way LPARs) CPU microseconds / message
Message size (Bytes) || CEU microseconds / mes-| L 0 VBT (5) of

£e usme @) |fload to SMDS

2048 91 91
8192 102 103
32768 149 143
64512 277 174
65536 862 176
102400 1012 210
523264 1618 657
524000 2914 662
1048576 3123 1217

Shared queue persistent message request/reply CF costs

The following table shows the CF CPU cost per message as obtained in the persistent messages in a
shared queue environment measurements described previously. The costs are provided for estimating

purposes.
3931-7KO0 (partitioned as 4-way internal CF) CF microseconds / message

. CF CPU microseconds |/ CPU nilicroseconds mes-

Message size message using CFLEVEL(4) Isiigae()i :erégl\/[%FéLEVEL(E;) of-
2048 24 29
8192 31 25
32768 45 50
64512 96 32
65536 246 31
102400 264 25
523264 331 34
524000 518 35
1048576 739 34

NOTE: The CFLEVEL(5) costs for messages of 32KB and larger are lower in part due to messages
being offloaded to SMDS as the offload thresholds were achieved, resulting in the message payload
being stored outside of the CF.

104

The following chart shows the breakdown of cost by component for a variety of shared message sizes.

Shared Queue Persistent Messages Request/Reply
Breakdown of CF costs

2 OMs (V9.3) with DB2 V13 UTS on 2 2/05 v2r5 images
using DS8900F DASD with ICP links to 4-way CF
Machine is 3831-TKD

DBE2 GBPIZK1 (used for MQ)

B DB? lacking

511 _ B ISGLOCK {global serialisation)
g u [XCDEF
g B APPLICATION structure
@ oo [ADMIN structura
o« E BN
=

o

0 200 410 600 800 1000 1200

Cost in CPU microseconds

NOTE: Messages of size less than 63KB see costs incurred by the primarily by the application
structure and also the admin structure. As the message size exceeds 63KB, the messages are stored
on Db2 tables — resulting in the Db2 lock structures being used more as well as the IXCDEF coupling
facility structure that is used to ensure the separate MVS’ are synchronized. As the messages reach
the size of a Db2 BLOB, the usage of the Db2 buffer pool created specifically for MQ messages
increases too.

For comparison purposes, the following chart shows the breakdown of the cost by component for a
variety of shared message sizes when offloading messages larger than 63KB to shared message data
sets.

Shared Queue Persistent Messages Request/Reply
Breakdown of CF costs

CFLEVEL(5) OFFLOAD(DEFAULT)

2 QM= (V9.3) with DB2 V13 UTS on 2 /0S8 v2r5 images
using DSBI00F DASD with ICP links to 4-way CF
Machine is 3931-7K0

e | D82 G8P92K1 (usefor Q)

DBZ GBPOM2
1 I = SGLOCK
® |3GLOCK (global serialisation)
u [XCDEF
ADMIN structure
o I —
ﬁﬂ (s e

20 30 40 50 &0 T0 B0

Messzage Size (KB)
2

=
=
(=]

Cost in CPU microseconds

NOTE: Using shared message data sets to store messages larger than 63KB is significantly less
expensive in CF costs than using Db2 as there is less requirement on the Db2 structures including
locking.

105

Storage Class Memory (SCM)

Storage Class Memory (SCM), also known as CF Flash, is a new feature added on the zEC12 and
zBC12 machines, which can be used to provide a high total storage capacity for a CF structure
without needing to define excessively large amount of real memory.

On z14, SCM has been moved from Flash Express (SSD on PCle cards) to Virtual Flash Memory,
which allows for simpler management and better performance by eliminating the I/O adapters
located in the PCle drawers.

Example uses of SCM on z/0S:

e Improved paging performance

Improved dump capture times

e Pageable 1IMB memory objects

Coupling facility (CF) list structures used by MQ shared queues.

Using SCM with IBM MQ

The use of MQ with SCM is discussed in detail in redbook “IBM MQ V8 Features and En-
hancements” available “http://www.redbooks.ibm.com/abstracts/sg248218.html”, which also
suggests possible use cases.

It is suggested that the CF Sizing tool available at CF Sizer for MQ is used to determine the sizing
and impact of SCM on new or existing structures.

Impact of SCM on Coupling Facility capacity

Configuring a structure to be able to use SCM does have an impact on the capacity of the Coupling
Facility and existing structure.

e Structure control storage. When a structure is configured to use SCM, the amount of control
storage used by that structure increases. This means that a list structure configured with SCM
will be able to contain fewer entries and elements than a structure of the same size without
SCM configured.

e Augmented storage.

o Fixed. This storage is allocated when a structure is configured with SCM. This is a small
amount and will be allocated even if the structure never uses any SCM.

o Dynamic. As data from the structure is stored in SCM, augmented space will be allocated
from the free real storage in the CF.

106

http://www.redbooks.ibm.com/abstracts/sg248218.html
https://www.ibm.com/support/pages/mqseries

Consider the following diagram of a Coupling Facility that has been configured for use by IBM MQ:

In the example, there are 3 application structures defined.
" Coupling Facility

XXXXCSQ ADMIN

XOXAPPL1 e

XXXXAPPL2

XXXXAPPL3 SCM

related

CF Free Space

Notes:

e APPL1 and APPL3 have SCM available for additional capacity, and this additional structure
control space is denoted by “SCM related”.

e APPL1 and APPL2 have been defined so that they have the same number of entries and
elements. This has been achieved by making APPL1 larger to contain the addition SCM
related storage.

o APPL2 and APPL3 are the same size but APPL3 has less entries and elements due to SCM
related allocations, therefore less capacity in real storage.

e As the SCM storage is used, additional augmented space will be allocated from the CF free
space.

107

How much SCM is available?
The amount of SCM available is ultimately limited by:
e The capacity of CF Flash.
e How much SCM is allocated to the CF.
e How much is actually being used by other structures in the CF.

e How much free space there is in your coupling facility as some may be used for dynamic
augmented space. A lack of free space in the CF can limit the amount of space used in SCM.

How do I know I am using SCM and how much?

Using the D XCF,STR, STRNAME=<. .> command, which will give output like:

SCMMAXSIZE : 1048576 M

STORAGE CONFIGURATION ALLOCATED MAXIMUM yA
ACTUAL SIZE: 4114 M 4114 M 100
AUGMENTED SPACE: 3 M 77455 M 0

This shows that the structure can use up to 1TB of storage and with no data having been written
to SCM, there was 3MB of augmented space used from the CF’s available free space.

It has been calculated that to use the entire 1TB of available SCM space, 77,455MB of augmented
space would be required — therefore the CF needs to have sufficient capacity available.

ALLOWAUTOALT(YES) usage with SCM

When ALLOWAUTOALT(YES) is defined, the threshold for altering the ratios of entries to elements
is specified using the FULLTHRESHOLD keyword and is typically reached (80% full as configured
by the FULLTHRESHOLD keyword) before the SCM pre-staging algorithm is invoked (90% full).

The altering of the entry to element ratio by the ALLOWAUTOALT process can take time and
if the structure usage continues to increase whilst the process is continuing, the SCM pre-staging
algorithm may start.

Once the SCM pre-staging algorithm starts, the ALLOWAUTOALT entry to element ratio is frozen
until the structure no longer has data residing in SCM. If the auto-altering has not completed or
even started, the entry to element ratio used by SCM might be inefficient.

Useful guidelines:

e Never over-commit SCM. If you do, then the applications that are relying on it will not get
the behaviour that they expect. For example, MQ applications using shared queues might get
unexpected MQRC STORAGE_MEDIUM FULL reason codes.

e Be aware of the augmented space usage as this can affect the CF usage. If your CF is con-
strained for space, you may run out of free space before either the structure or SCM is con-
strained. This will still result in MQRC STORAGE MEDIUM FULL reason codes.

108

Impact of SCM on Application performance

The following chart shows the maximum rate in MB per second that we were able to write to SCM
and read from SCM for a range of message sizes.

These measurements involved accessing messages in priority order using separate putting and getting
applications using a single task.

Message Size Write to SCM Read from SCM
2KB 228 MB/sec 177 MB/sec
8KB 463 MB/sec 382 MB/sec
16KB 460 MB/sec 357 MB/sec

868 MB /sec
62KB (seeing 3% of requests delayed) 608 MB/sec

When the MQPUT and MQGET rate is below the peak rates shown in the table, pre-staging and
pre-fetching is typically asynchronous and as a result, no significant difference in performance was
observed whether messages were stored in CF only or CF and SCM.

109

Non-Sequential gets from deep shared queue

SCM uses the KEYPRIORITY1 algorithm with MQ shared queues to determine the order that
messages are written to SCM (pre-staging) and the order messages are migrated back into the CF
(pre-fetching).

Both the pre-staging and pre-fetching are typically performed asynchronously to reduce the chance
of the the application being blocked whilst synchronous I/0 to/from SCM occurs.

Pre-fetching using the KEYPRIORITY1 algorithm works on the assumption that messages will be
gotten in MQ message priority order. Multiple messages are pre-fetched, the number dependent
upon the message size.

When processing messages out of priority order, the pre-staging and pre-fetching function controlled
by the KEYPRIORITY1 algorithm is unable to accurately predict which messages can be pre-staged
and which messages need to be pre-fetched next. This can result in significantly more expensive
MQPUTs and MQGETs.

Consider the following scenarios:

e There are a number of 2KB messages on a shared queue such that all of the messages remain
in CF real storage. These messages are randomly got and put by a single application

e There are a number of 2KB messages on a shared queue that has been configured with SCM
such that the majority of messages are stored on SCM. These messages are randomly got and
put by a single application.

MQPUT MQGET
Elapsed CPU Elapsed CPU
(microseconds) | (microseconds) | (microseconds) | (microseconds)
All messages in CF
real 8 8 19 19
Most messages in
SCM (213) 1700 25 3600 80
Most messages in
SCM (z14) 8 8 1210 53

In the scenario where messages are randomly got and put primarily from SCM, the difference between
the elapsed and CPU time is due to additional time spent processing the migration of the messages
to and from SCM, also known as pre-staging and pre-fetching. In these measurements, the CF cost
per message is approximately the difference between the elapsed time minus the CPU time.

This means that this type of workload would result in a significantly lower throughput rate as well
as an increase in cost to both the MVS and CF LPARs.

The moving of SCM on z14 from PCle card to Virtual Flash Memory does reduce the response time
when accessing messages that the KEYPRIORITY1 algorithm was unable to correctly predict and
pre-fetch into CF memory. Even with this improved performance, it is not advisable to use SCM
when messages are gotten in a random sequence.

RMF data

The z/OS RMF Coupling Facility report, requested by “SYSRPTS(CF)” has been updated in z/OS
v2rl to include an “SCM Structure Summary” report. An example of this is shown below:

110

This example shows:

List structure PRF1APPLICATIONT is defined with up to 1TB of SCM storage using algo-
rithm KEYPRIORITY1. This algorithm determines which messages are least likely to be got
next based initially on the MQ message priority and pre-stages those first to SCM.

The maximum amount of augmented storage (estimated) required should all of the SCM
storage be used is 77,455MB. This means that if the Coupling Facility does not have this
much free space, it will be possible to run out of space in the CF before the SCM storage is
exhausted. Currently only 0.6% of the maximum augmented space is being used.

It is estimated that the SCM can support 613,417K entries and 3,681M of elements (a ratio
of 1:6) at capacity. Currently there are 4,034K of entries and 40,343K of elements (a ratio
of 1:10), which means that SCM (and the CF) will run out of elements before entries if the
current message size is continued.

In this interval there were 32,339 SCM read operations initialised transferring 33,910MB from
storage class memory to CF and each read operation takes 1583 microseconds.

In this interval there were 32,336 SCM write operations initialised transferring 33,907MB from
CF to storage class memory and each took 1396 microseconds.

o We might assume that the total amount of data is relatively flat over the interval as the
amount of data read and written is similar, and indeed this is as expected as the data is
taken from an interval from the “non-sequential gets from deep shared queue” section.

The delayed faults count is the number of list item references that were delayed due to a fault
condition resulting in required access to storage class memory. In this example the value is
particularly high as the KeyPriorityl algorithm was unable to predict which messages would
be needed. As a result there are multiple faults per request, as indicated by the %ALL value
being greater than 100.

o If the messages are being put or gotten in priority order and the number of delayed faults
is high then KeyPriorityl algorithm’s performance may be impacting your application(s)
however there is no system tuning available to improve the performance.

Example use cases for IBM MQ with SCM

The section in redbook “IBM MQ V8 Features and Enhancements” discusses 2 use cases for MQ
with SCM:

Improved performance. This uses SCM to increase the number of messages that can be stored
on a shared queue without incurring the performance cost of using SMDS.

Emergency storage. This uses SMDS with message offloading, in conjunction with SCM to
reduce the likelihood of an MQRC _STORAGE MEDIUM FULL reason code being returned

111

to an MQ application during an extended outage.

Capacity — CFLEVEL(4 and less) — no offload available - “Improved Performance”

Using SCM in conjunction with a structure defined at less than CFLEVEL(5) will ensure that when
the structure reaches 90% full, messages will be pre-staged to SCM. Provided there is sufficient free
space in the Coupling Facility, it will be possible to continue to put messages until either the SCM
entry or element values reach 100%.

This means that for a 1'TB SCM structure with sufficient CF storage for augmented space and the
optimal entry to element ratio, it would be possible to store 16.7 million messages of 62KB in the
CF Flash storage.

Capacity — CFLEVEL(5) Offload - “Emergency Storage”

When an MQ structure is defined at CFLEVEL(5) and the offload threshold for a particular message
size has been exceeded, MQ will store 1 entry and 2 elements in the CF, which is the M(Q imple-
mentation header plus approximately 130 bytes of message data, as well as writing the remaining
message data to the offload media e.g. SMDS.

Given the maximum capacity of a Shared Message Data Set associated to a queue manager is 16TB
and up to 32 queue managers may be connected to the structure, the combined SMDS for a single
structure may hold 512TB of messages.

This means that for a 1TB SCM structure with sufficient CF storage for augmented space where all
messages are offloaded to SMDS and the optimal entry to element ratio (1:2), it would be possible
to store 14,310 million messages of 62KB in a combination of CF, SCM and SMDS storage.

Capacity — CFLEVEL(5) — no offload - “Improved Performance”

In order to configure the structure for improved performance when using CFLEVEL(5), it is necessary
to set the OFFLDnSZ attributes to 64K e.g.:

OFFLD3SZ(64K) OFFLD3TH(90)

This disables offload threshold 3, so would never offload messages less than 4KB to SMDS. This
means that using the default rules only messages of 4KB or larger will be offloaded to SMDS. due
to the first 2 offload rules. Messages smaller than 4KB will be written in their entirety to CF (for
pre-staging to SCM).

112

Performance / Scalability

Does the CF Structure attribute “CFLEVEL” affect performance?
From version 7.1.0, IBM MQ supports 5 values for CFLEVEL for an application structure.
1. CFLEVEL(1) — Non-Persistent messages less than 63KB.
2. CFLEVEL(2) — Non-Persistent messages less than 63KB.
3. CFLEVEL(3) — Persistent and non-persistent messages less than 63KB.
4. CFLEVEL(4) — Persistent and non-persistent messages up to 100MB.
)

. CFLEVEL(5) — As CFLEVEL(4) but allows tiered offloading when coupling facility fills and
offload choice of DB2 or SMDS.

Persistent messages can only be used with shared queues when the CFLEVEL attribute is set to 3
or higher and in conjunction with the RECOVER(YES) attribute.

Using CFLEVEL 3 or higher and RECOVER(YES) means that in the event of the Coupling Facility
failing, the CF structures can be recovered from the last backup point to just prior to the point of
failure.

Using CFLEVEL 3 or higher with RECOVER(NO) means that in the event of the Coupling Facility
failing, the messages will be lost. Since these can only be non-persistent messages, and recovery of
these messages is not paramount, it is not an unacceptable occurrence.

Measurements using non-persistent messages both in and out-of-syncpoint have shown no significant
degradation on throughput nor increase on cost per transaction when using higher CFLEVEL values
over a structure that has been defined with CFLEVEL(2).

Using CFLEVEL(5) offers multiple benefits including increased capacity in the CF for messages less
than 63KB and significantly improved performance for messages greater than 63KB than the DB2
alternative.

The impact on MQ requests of the CURDEPTH 0 to 1 transition

The 0 to 1 transition in the current depth of a shared queue can affect the cost and throughput of
MQ messages.

When an application opens a shared queue for input, the queue manager registers an interest in the
queue. This tells XCF to notify the queue manager when certain events occur with this queue. One
of these events is when the depth of the queue goes from zero to one —i.e. a message is available on a
previously empty queue. When this happens, XCF signals each queue manager that has previously
expressed an interest in the queue that there is now a message available. When the signal occurs an
SRB task is run within the queue manager that checks to see if additional work needs to be done.
By contrast, when the depth of the queue goes from one to two (or more), XCF does not signal all
interested queue managers.

Consider the case of a server application processing messages — when there is a low throughput,
there are insufficient messages to keep the server application busy. This means that the queue’s
depth may frequently change from zero to non-zero. This will result in additional CPU being used
when XCF signals the zero to one transition.

For example, if there are 10 requester applications connected to 10 queue managers that put messages
and get reply messages from a common reply-to queue, when the server application puts a reply
message and the queue depth changes from zero, then each of the 10 queue managers will be signalled.
One will process the message and the other nine will be signalled, check the request and do nothing
further. If the message rate is high enough to ensure this zero to one transition does not occur, XCF
does not signal all queue managers that have registered an interest.

113

When would I need to use more than one structure?

There is no significant performance benefit to using more than one structure within one CF.

There is an impact if you use structures in multiple CFs when processing messages within syncpoint.

You might want to use different structures for administration and transaction isolation. For example:
e If you need to have more than 512 queues defined, you will need multiple structures

e If you have unrelated applications, you may want them to use different structures in case one
application has problems and the structure fills up. If the applications are using the same
structure then all the applications using the structure will be impacted. If the applications
use different structures, a problem with one structure will not impact applications using other
structures.

e Your structures may have different requirements, such as duplexing or recovery.

e You may want to limit the space used in the CF by different applications. You could restrict
the number of messages on a queue by using queue maxdepth.

e You may want to have your business critical applications using structures on the fastest Cou-
pling Facility, and non-business critical applications using another Coupling Facility

When do I need to add more Queue Managers to my QSG?
There are several reasons that you may need to add extra queue managers to your QSG:
1. Logging - you are being constrained by the rate at which the logs can be written to disk.

2. Channels - you are unable to start any further channels to support workload.

What is the impact of having Queue Managers active in a QSG but doing
no work?

There is no significant impact of running with multiple queue managers in a QSG when only a
subset of those are actually doing any work compared to running only the queue managers that are
processing any work.

As an example, we compared running workload on 2 queue managers in a QSG when:
e These were the only 2 queue managers active
e When there were 12 queue managers in the QSG, and 10 were “idle”.

The CPU cost per transaction were the same in each case and the throughput dropped by less
than 1% when there were 12 queue managers available (the throughput dropped from 1536 to 1526
transactions per second when using 1KB non-persistent messages).

Note: If shared queues have been defined to the IMS Bridge storage class, the “idle” queue managers
will process IMS Bridge messages. For further details, see the section titled “Putting messages from
MQ into IMS”.

What is a good configuration for my shared queues?

In this section, many shared queue considerations have been discussed. For the simplest case, we
would advise that there are a minimum of 2 application structures:

e One application structure can be used for non-persistent messages and can be configured with
CFLEVEL(3)? or the highest supported CFLEVEL as this structure does not need to be

2 CF level 3 onwards is specified as in the event of a coupling facility failure, the queue manager will remain
available.

114

backed up. This will reduce recovery times.

(¢]

e The

Since these are non-persistent messages (i.e. not critical to the business) is there really
any need to duplex this structure? Duplexing a structure will reduce the through-put
and increase the cost of the transaction.

Using CFLEVEL(3) or higher with RECOVER(NO) means that only non-persistent mes-
sages up to 63KB can be put to queues defined in this structure.

If large (i.e. greater than 63KB) non-persistent messages need to be stored in shared
queues, the structure will need to be defined with CFLEVEL(4). Again by setting the
RECOVER(NO) attribute, only non-persistent messages can be put to queues defined on
this application structure.

If there is a requirement for a large capacity, use CFLEVEL(5) with offload to SMDS as
this will allow the system to offload messages to the shared message data sets when the
CF usage reaches the tiered offload thresholds.

If large messages are being used, CFLEVEL(5) offers a significantly less expensive offload
option than DB2.

other application structure can be used for persistent messages and set to a higher

CFLEVEL (or RECOVER(YES) if already using CF level 3 or higher) such that it may be
backed up in the event of a failure. If desired it may be duplexed, either to a local secondary
CF or to a physically remote coupling facility.

e Do you really need to cross application structures when running in-syncpoint? Bear in mind
that there is an associated cost when crossing structures.

e If more than 2 application structures are required, consider the use of them — do they need to
be duplexed? Do they need to be backed up in case of a failure of the CF?

e If running with a duplexed application structure it is advisable to have the CSQ_ADMIN
structure duplexed too.

Shared queue persistent messages

Throughput for persistent messages in shared queues is ultimately dependent on the MQ log band-
width of each queue manager in the queue sharing group. Additionally it depends on general shared
queue considerations as follows

Shared queue performance affecting factors

e For messages up to 63KB (64512 bytes)

(¢]

o

e}

z/08 heuristics which can change CF calls from synchronous to asynchronous
The type of link(s) between individual z/OS’s and the CF(s).
B This affects the elapsed time to complete CF calls and so influences the heuristics.

The CF machine type and CF CPU %BUSY

e For messages larger than 63KB

o

As above for up to 63KB messages plus the throughput performance of the DB2 data
sharing group tablespace used to store these messages.

The performance affect of these factors can vary significantly from one machine range to another.

115

Coupling Facility Resource Management (CFRM) attributes

z/0S v2r3 introduced 2 new CFRM policy attributes, LISTNOTIFYDELAY and KEYRNOTIFY-
DELAY, to complement the existing SUBNOTIFYDELAY attribute.

In our tests, we found that only KEYRNOTIFYDELAY offered benefits to MQ shared queue work-
loads.

The CFRM policy attribute KEYRNOTIFYDELAY allows the user to specify in their policy defi-
nitions the amount of time between notification of a system-selected keyrange monitoring exploiter
instance and the notification of the other exploiter instances. The exploiter instance that receives
the initial notification is selected in a round-robin fashion.

KEYRNOTIFYDELAY may be applied to one or more CF structures that queue managers in a
queue sharing group connect to. It is important to recognise that this means that the KEYRNOTI-
FYDELAY will apply to all queues in those structures.

Applying KEYRNOTIFYDELAY will result in the CF selecting a single queue manager to notify
that the shared queue has seen a zero to non-zero transition, i.e. messages arriving on the queue.

Note:

e If the selected queue manager empties the queue within the delay time, i.e. returning to zero
state, then notification of the other registered queue managers will be bypassed.

e If the queue is not empty when the delay expires, all other queue managers in the QSG that
have registered an interest in the queue will be notified.

Subsequent zero to non-zero transitions will result in the CF selecting a different queue manager as
the first to be notified.

There are several instances where KEYRNOTIFYDELAY may be beneficial to a workload:
e When the workload is skewed to particular LPARs.

e When there is a low messaging rate with large numbers of server tasks waiting for messages -
resulting in many unsuccessful (empty) gets for each successful get.

For more information on this attribute, refer to blog: z/0S v2r3 new CFRM policy attributes and
impact to MQ.

116

https://developer.ibm.com/messaging/2018/06/22/z-os-v2r3-new-cfrm-policy-attributes-impact-mq/
https://developer.ibm.com/messaging/2018/06/22/z-os-v2r3-new-cfrm-policy-attributes-impact-mq/

Chapter 3

Channel Initiator

What is the capacity of my channel initiator task?

The channel initiator address space is largely limited to 2GB of 31-bit storage and this storage is
used for tasks and memory usage. The exceptions to 31-bit storage usage are channel accounting
and statistics data collection which was added in MQ version 8.0, and 64-bit storage for SVRCONN
channels which was introduced in MQ for z/0S 9.4.

The diagram below shows how the 31-bit storage within the address space can be used:

Channel initiator storage usage

2GB limit
1.5GB
L ".750/0 of channel
free initiator storage
1GB
0.5GB
Cluster Cache
Task Storage
Notes:

e This above diagram is not an address space map. The coloured blocks indicate approximate
relative sizes only. In addition the “z/OS overhead” includes fixed ECSA allocation.

e Task storage consists of adapters, dispatchers, SSL tasks, DNS task and pub/sub tasks.

e The cluster cache stores data about cluster subscriptions. If the queue manager does not have
any cluster channels defined, this storage will not be allocated. The storage usage may vary

117

— if the CLCACHE is set to STATIC, 2MB will be used but if CLCACHE is DYNAMIC, the
storage usage is 2MB but may grow.

e The buffer pool usage is explained in the following section but does not relate to the queue
manager buffer pool usage and the size may change depending on a number of factors including
message sizes. Since MQ 9.4. these 31-bit buffer pools are primarily used by non-SVRCONN
channels.

e Storage usage can be tracked by the CSQX004I message that appears in the channel initiator
on an hourly basis unless the storage is used more rapidly.

As mentioned above, MQ version 8.0 introduced channel accounting and statistics, which uses storage
from above the 2GB bar, i.e. 64-bit storage, so MQ versions prior to MQ 9.4 does not impact the
number of channels that the channel initiator is able to support.

With 64-bit support for SVRCONN channels introduced in MQ 9.4, additional 64-bit storage may
need to be made available in order to support at least the same number of SVRCONN channels
whilst using channel accounting and statistics trace options.

Rule of Thumb for channel initiator storage usage

Typically we would advise that both local (31-bit) and above bar (64-bit) storage usage in the
channel initiator does not exceed 80% of the available.

Storage usage can be monitored using the CSQX004I message and reviewing MQ TRACE(STATS)
CLASS(4) data.

Exceeding the 80% guideline may result in additional cost from the channel initiator having to run
the scavenger process more frequently and potentially not having storage available for unexpected
workloads.

Channel initiator task storage usage

Since version 9.3, the storage used by each task type can be estimated as:
e Adapter 150KB
e Dispatcher 102KB
e SSL Task 1.45MB

What limits the maximum number of channels?

The maximum number of channels is limited by:

e Channel initiator virtual storage in the extended private region (EPVT) which applies to all
channel types including CHLTYPE (SVRCONN) channels (thin clients)

o In MQ 9.4, SVRCONN-type channels are able to use 64-bit private storage, but there
remains some requirement for 31-bit storage.

e The value of MAXCHLS, which is still limited to 9,999.

e Possibly, by achievable channel start (or restart after failure) and stop rates and costs. These
increase with the number of channels represented in the SYSTEM.CHANNEL . SYNCQ.

118

WebSphere MQ for z/0S version 7.0.0 introduced the concept of channel initiator buffer pools
where a pool of storage is maintained per dispatcher task. The size of the message being processed
by the channel initiator directly affects the size of the memory footprint. When the channel initiator
determines that there is a shortage of storage available, the channel initiator will attempt to release
some of the allocated storage pools.

The upper limit is likely to be around 9000 non-SSL or 9000 SSL channels on many systems as
EPVT size is unlikely to exceed 1.6GB.

How many channels can a channel initiator support?

This depends on the size of the messages flowing through the channel.

A channel will hold onto a certain amount of storage for its lifetime. This footprint depends on the
size of the messages.

Message Size 1KB 32KB 64KB 4MB
Footprint (KB) per channel
(channel initiator)
Overhead of message size
increase on 1KB messages

90 100 109 1127

+10 +19 +1037

If the message size over a channel varies significantly, the effect of channel initiator buffer pools can
play a more significant effect.

For example, running 1000 channels with 1KB messages and 50 channels with 64KB messages would
use:

e 90KB * 1000
e 109KB * 50
e Which gives a total of 95,450KB, out of the “free storage”

119

How many SVRCONN channels can a channel initiator sup-
port?
From MQ 9.4, SVRCONN-type channels use some 64-bit storage for message buffers. There is still

a requirement for 31-bit storage for SVRCONN channels but for messages of 32KB or larger, the
31-bit storage usage is reduced.

The following table shows the 31-bit footprint of both pre-MQ 9.4 and MQ 9.4 SVRCONN channels
being run. This is shown in KB per channel.

: KB 32KB 64KB

MQ version SHARECNV Messages Messages Messages
pre-9.4 0 86 159 193
9.4 86 93 93
pre-9.4 1 168 245 277
9.4 164 201 203

10
where each channel
pre-9.4 instance has 10 shared 223 312 346
conversations
9.4 219 265 267
Notes:

Comparing the size of the 31-bit footprint for the 9.4 channel initiator shows that for a 1KB message,
regardless of SHARECNYV value, the SVRCONN storage usage is similar to earlier MQ releases. For
messages of 32KB and larger, the reduction in 31-bit usage is at least the size of the message.

As the message size exceeds 32KB for a SVRCONN channel instance running on MQ 9.4 , the 31-bit
storage usage generally remains flat, so for a 1MB message flowing over a SHARECNV(0) channel,
the 31-bit usage would be similar to that of a 32KB message, i.e. 93KB.

This means that limitations imposed by 31-bit storage on how many SVRCONN channels can be
supported concurrently is less of a factor than in previous releases.

With 1KB messages, a SVRCONN channel defined with SHARECNV 10 (or greater) will use ap-
proximately 22KB per shared conversation (CURSHCNYV). This means that if a SVRCONN channel
is defined with SHARECNV(1000) but has only 10 shared conversations (as reported by DIS CHS (%)
CURSHRCNV), the footprint would be approximately 220KB for the channel (or 22KB per conversa-
tion).

On a system that has an EPVT size of 1.6GB, this means that running server-connection type
channels with SHARECNV(0) with 1KB messages, the maximum number of clients that can be
connected should be able to reach the IBM MQ defined limit for MAXCHL of 9,999.

For a server-connection channel with a SHARECNYV value of 1, it would require 1640MB of storage
to start 9,999 channels, so again the maximum number of channels would be 9,999. This would
exceed the 80% local storage usage guidelines mentioned earlier in this section.

However, if shared conversations are being used on a server-connection channel with SHARECNV
value of 10, it is possible to have 7,523 channels running — with 75,230 conversations.

These calculations do not include the storage required for the channel initiator tasks and other uses
of 31-bit storage in the channel initiator. Typically we would suggest keeping storage usage to a
maximum of 80% of the available 31-bit storage in the channel initiator.

120

If the greater memory usage of using a non-zero SHARECNYV channel outweighs the benefits such
as client heartbeating, read ahead (as allowed using the queue attribute “DEFREADA”) and client
asynchronous consume, it is advised to alter the default SVRCONN channel definition to specify
SHARECNV(0).

For multi-threaded clients running at version 7.0 or later, e.g. Java applications, define an additional
SVRCONN channel with SHARECNV(10) and ensure that these multi-threaded clients use the new
channel.

MQ 9.4: 64-bit private storage usage for SVRCONN channels

The IBM MQ for z/OS 9.4 report discusses the changes to storage usage for SVRCONN channels,
which can be summarized in the following ways:

e 31-bit storage requirements - As mentioned previously, 31-bit storage is still used for SVR-
CONN channels but for message sizes larger than 32KB, the usage does not increase with
message size.

e (4-bit storage requirements. For SVRCONN channels operating on an MQ for z/OS 9.4 queue
manager, there is additional 64-bit storage usage. It is important to ensure sufficient 64-bit
storage is available to both the z/OS LPAR and the channel initiator address space to support
the number of thin clients with the expected message sizes.

121

https://ibm-messaging.github.io/mqperf/MQ for zOS 9.4 Performance.pdf

MQ 9.4: 64-bit storage usage for SVRCONN channels

The 64-bit private storage in the channel initiator is assigned in a range of pool sizes from 4KB
doubling in size up to 1MB. For messages larger than 1MB, storage is assigned on a per MB
requirement.

The following chart provides an indication of how much 64-bit private storage might be required for
SHARECNYV values of 0, 1 and 10.

Chart: 64-bit storage usage for MQ 9.4 SVRCONN channels

MQ for 2/OS 9.4: Channel Initiator footprint for SYRCONM connections
= 64-bit
=
6000 2
b
5000
4000
- F
= o
] @
5 3000 &
=
Q
&
2 2000 2
o
2] g
3 2
. w
e o = 3 9 g
= @ L] -t @ w
g 3 = B g o 8 3 =
ol & 2 o W o & e W € 8
o o o o o o o o o o o o o o o o o o
a2 o :(:(:(1(= e n e » 1(= p p :(:(o
— =] o™ =t o w -— =] o™ =T - w -— =] o =T = w
= 8 & | & B = 8 |3 & B =8 & & B
SHARECNW(0} SHARECNWV(1) SHARECNW(10})

Notes on chart:
e In the above chart, we see relatively high 64-bit storage requirements. For example
o SHARECNV(0): Approximately 2 times the message size.
o SHARECNV(1): Approximately 4 times the message size.

o SHARECNV(10): Approximately 22 times the message size per channel, or 2.2 times the
message size per conversation.

e It is worth noting that the message sizes used in the chart are not optimised for the 64-bit
pool sizes used in the channel initiator, such that for each of the messages used of 32KB or
more, storage was used from the next sized-buffer pool, i.e. a 32KB message required a 64KB
buffer. This is simply because the storage requirements includes message headers, which takes
the message size over the lower pool-size threshold.

o With a SHARECNV(0) channel using a 31KB message, we would use a single 32KB
buffer, reducing the 64-bit private storage usage by half.

e Additional storage is required for channels with non-zero SHARECNYV values, and the storage
requirements for channels with SHARECNV(1) are relatively high compared to SVRCONN
channels with SHARECNYV of greater than 1 and matching CURSHCNV.

122

Rule of Thumb for sizing MQ 9.4 64-bit private storage for SVRCONN channels

For all SVRCONN channel conversations, allow space for the message header(s), approximately 500
bytes, and round-up to the nearest buffer pool size (using a power of 2) e.g. 4KB, 8KB, 16KB, etc.

e For SVRCONN channels with SHARECNV(0), this gives an approximate 64-bit storage re-
quirement per channel.

e For SVRCONN channels with a non-zero SHARECNYV value but only a single conversation
i.e. CURSHCNV(1), double the calculated space to determine an approximate 64-bit storage
requirement.

e For SVRCONN channels where multiple conversations are sharing a single SVRCONN channel,
i.e. SHARECNYV of greater than 1, and CURSHCNYV of greater than 1, multiply the size by
the number of conversations and then again by 1.1 to determine an approximate 64-bit storage
requirement.

MQ 9.4: Limiting 64-bit memory usage

The IBM Documentation Channel Initiator storage configuration from IBM MQ 9.4.0 suggests that
the MEMLIMIT parameter may be used in the channel initiator JCL to define the maximum amount
of 64-bit storage available, where 2 GB of storage, i.e. MEMLIMIT=2G is the minimum value you should
use. Depending on your configuration, significantly more may be required.

There are alternatives for limiting the amount of 64-bit storage is available to the channel initiator
address space and these include:

e IEFUSI - Step initiation exit, can be used to set default limits for region and 64-bit storage.

e SMFPRMxx parameters - System Management Facilities (SMF) parameters, allows the setting
of MEMLIMIT system-wide.

e SMFLIMxx (specifying region and memlimit values) - System Management Facilities (SMF)
specifying region and MEMLIMIT values, allowing these values to be set for a specific job or
set of jobs, steps or program names.

MQ 9.4: How many SVRCONN channels can be run with unlimited 64-bit storage?

In IBM MQ for z/0S 9.4, the factors affecting the number of SVRCONN channels that can be run
concurrently now include the amount of 64-bit private storage allowed by the channel initiator, i.e.
the value of MEMLIMIT.

Provided a system has sufficient 64-bit storage available, the limit to the number of SVRCONN
channels may still be limited by following factors:

e The amount of extended private region (EPVT) 31-bit storage available.
e The value of MAXCHLS, which is still limited to 9,999.

The following example, that was measured in our controlled system, uses MEMLIMIT=NOLIMIT but
this is generally not recommended as there is the potential to use up all available z/OS virtual
storage, leading to paging in your system.

In this environment, the maximum number of clients supported primarily depends on the amount
of 31-bit storage available.

The CSQX004I message reports how much storage is available, for example:

CSQX004I CSQXSPRM Channel initiator storage usage: 1local storage: wused 56MB, free
1445MB: above bar: used 1MB, free 1023MB

Typically we would advise that storage usage should not exceed 80% of the available local storage.

123

https://www.ibm.com/docs/en/ibm-mq/9.4?topic=configuration-channel-initiator-storage-from-mq-940
https://www.ibm.com/docs/en/zos/3.1.0?topic=sys1parmlib-smfprmxx-system-management-facilities-smf-parameters
https://www.ibm.com/docs/en/zos/3.1.0?topic=sys1parmlib-smflimxx-specifying-region-memlimit-values
https://ibm-messaging.github.io/mqperf/MQ for zOS 9.4 Performance.pdf

In the above example this equates to 80% of 1501MB, or 1200MB.

Chart: Maximum clients connected without exceeding 80% of 31-bit storage

Maximum Clients connected
Based on using 80% of 31-bit storage in channel initiator
@ V930 * V940 - ' SCRLELH % Change (9.4 v 9.3)
10000 ———sk——dk—k 300

9000 >
>
8000 & 250 g
s [=}
o R S—
w - w
£ 5000 il ¥ Dl B 4 150 2
£ : A ¥ §
L 3 - <
> 4000 s e < 5

= ~ -
8 3000 & . *; * - 100 2
o A A o & £
= 2000 £ * >
o & & o~ 50 0n
1000 & & i =

el
8 g."‘ [aaiaa] ; m oM l:% - [aa i aa] 9 é
S2L2eLE S2L22LL 2L L 2
- 28 3 N g - 28 3 N g - 28 3 S g =
SHARECNV(0) SHARECNV(1) SHARECNV(10)

Notes on chart:

e SHARECNV/(0):

o Both MQ 9.3 and MQ 9.4 were able to support the maximum number of channels (9,999)

for messages up to 10KB.

For 32KB messages, MQ 9.3 could support 7,000 SVRCONN channels but MQ 9.4 now
can support the maximum number of channels.

For 256KB messages, MQ 9.3 could support less than 3,000 SVRCONN channels but MQ
9.4 can support the maximum number of channels. This equates to a 250% increase in
capacity in IBM MQ for z/OS 9.4’s channel initiator capacity.

As has been discussed earlier, MQ 9.4’s 31-bit usage does not significantly increase with
message size, and as a result a channel initiator with 1375MB or more local storage
available, with sufficient 64-bit storage, could support 9,999 SVRCONN channels with
100MB messages.

e SHARECNV(1):

o For messages less than 32KB, there is little difference in the capacity of MQ 9.3 and MQ

9.4.

MQ 9.3: For messages of 32KB or larger, the number of channels that can be run decreases
with message size, such that for a 32KB message 4,500 SVRCONNSs could be running but
with a 256 KB message the limit drops to 2,275 SVRCONN channels.

MQ 9.4: For messages of 32KB or larger, the number of channels that can be run remains
relatively flat such that for a 32KB message 5,600 SVRCONNSs could be running and with
a 256KB message the limit is 5,570 SVRCONN channels.

For a 256KB message, this equates to MQ 9.4 having 145% more capacity than the
equivalent MQ 9.3 channel initiator.

o SHARECNV/(10):

124

https://ibm-messaging.github.io/mqperf/MQ for zOS 9.4 Performance.pdf

o For messages less than 32KB, there is little difference in the capacity of MQ 9.3 and MQ
9.4.

o MQ 9.3: For messages of 32KB or larger, the number of channels that can be run decreases
with message size, such that for a 32KB message 3,530 SVRCONNSs could be running but
with a 256 KB message the limit drops to 2,010 SVRCONN channels.

o MQ 9.4: For messages of 32KB or larger, the number of channels that can be run remains
relatively flat such that regardless of message size 4,270 SVRCONNSs could be running
concurrently.

o For a 256KB message, this equates to MQ 9.4 having 113% more capacity than the
equivalent MQ 9.3 channel initiator.

It is also worth noting that these workloads were running with 1 message per conversation per
second. With a slower messaging rate, more buffer pool reuse may occur, and more clients may be
connectable. Monitor your channel initiator usage patterns.

125

Does SSL make a difference to the number of channels I can
run?

Yes. Typically SSL uses an additional 30KB for each channel but for messages larger than 32KB
can be higher.

126

Channel initiator buffer pools

In WebSphere MQ version 7, the concept of channel initiator buffer pools were introduced. These
are typically used when the size of the messages flowing across the channels varies significantly.

Each dispatcher has a pool of storage buffers available to handle requests.
In addition, there is a global pool for large storage requests which are shared across all dispatchers.

Prior to MQ 9.4, these buffer pools were used for all channel types but with the support for 64-bit
storage in MQ 9.4, these buffer pools are largely used by non-SVRCONN channels.

The dispatcher buffer pools handle requests up to 36KB which allows a full 32KB buffer to be held
(which is a common size at the dispatcher level). The dispatcher buffers work with a range of sizes:

o 4KB
e 8KB
e 16KB
e 32KB
e 36KB

The size selected is based upon the required size and the channel initiator searches the available
buffers. If no buffer is available of the appropriate size, the next size up is checked. If no buffers are
available, a new buffer will be allocated.

The global pool has a set of buffer pools with sizes:
e 64KB
o 128KB
e 256KB
e 512KB
e 1IMB
Larger than 1MB

Each buffer pool, whether a dispatcher or global buffer pool, except the “larger than 1MB” buffer
may have up to 50 free buffers in addition to in-use buffers and the usage will depend on how many
buffers are actually busy. The “larger than 1MB” buffer pool may only have up to 5 free buffers, so
the “larger than 1MB” free buffer pool may vary in size up to 500MB!, but the “in-use” pool may
be as large as the channel initiator can support.

Q-+A: What uses a buffer pool buffer?

Typically a SVRCONN channel may have 3 buffers and an MCA channel may have 2 buffers — one
for getting / putting the message and a second buffer for sending/receiving the message from the
communications protocol.

As previously mentioned a started channel will hold onto storage for its life-time so unless the
message sizes significantly change, the buffer pool usage will not vary greatly.

Q-+A: What happens when my channel stops?

When a channel stops, the associated buffers are released back to the buffer pools. This can make
the storage footprint appear higher than expected as the storage is not released until the channel
initiator determines that it has reached 75% utilised and drives its scavenger task. For example, if a
channel is started to send 100MB messages, upon ending, the storage will be returned to the global

1Based on a maximum message size of 100MB

127

buffer pool and will not be freed immediately. This will mean that the CSQX004I message will still
include the 100MB buffers in its calculation even though the 100MB buffers may not be in use at
the time.

What happens when the channel initiator runs out of storage?

The messages logged by the channel initiator reporting storage usage should mean that storage
becoming constrained is not a surprise.

Given the nature of the buffer pools, some variation in storage usage should be expected if a widely
varying message size is seen through-out a period of time. It may be that typical day-time workload
involves smaller messages and over night, there is a time where a set of large messages are flowed.
In this case, it may be observed that the scavenger task is started to release storage that is allocated
but not in use.

If a dispatcher attempts to process a message requiring a large buffer and there is insufficient space
available and the scavenger hasn’t been given time to run, the dispatcher task will fail, resulting
in the CSQX112E message being logged, e.g. “CSQX112E @QVTS1 CSQXDISP Dispatcher process
error, TCB=xxxxxxxx reason=0C4000-00000004”. Manually restarting the channel should resolve
this problem provided sufficient storage is available.

If the scavenger message (CSQXO068I) is appearing occasionally, this suggests that the channel initia-
tor is running with its optimum working set of buffer pool sizes which changes when larger messages
are flowed.

If the scavenger message is occurring frequently, this suggests that the channel initiator address space
does not have sufficient capacity for the workload being run and an additional channel initiator (and
associated queue manager) may be required.

Channel Initiator Scavenger Task

As previously mentioned, the channel initiator reports the memory usage on an hourly basis and
more often when the storage usage increases significantly.

As part of this storage monitoring, the channel initiator will start a scavenger process if the total
memory usage reaches or exceeds 75% of the available storage to release the free buffers from the
channel initiator buffer pools.

If the channel initiator only uses long-running channels, the scavenger task may not be started for
up to 1 hour after detecting the storage change.

NOTE: The X004I message is logged on an hourly interval or when the storage usage changes by
more than 2%. The scavenger task is initiated following the storage usage exceeding 75% and the
subsequent logging of the X004I message. If the buffers are still in use when the scavenger tasks is
started, it will be unable to free any storage and so will only be able free those buffers when the
workload is complete. Typically this is driven by a message on the SYSTEM.CHANNEL.INITQ (e.g.
start channel) or a subsequent change in storage usage. If no channel state changes occur, it may
be an hour before the channel initiator attempts to free available buffers. This can be circumvented
by stopping and restarting a channel.

The scavenger task will release all buffer pool storage marked as free except for 1 buffer of 4KB and
1 buffer of 36KB per dispatcher.

128

Defining channel initiator - CHINIT parameters

The ALTER QMGR parameters CHIADAPS and CHIDISPS define the number of TCBS used by the
channel initiator. CHIADAPS (adapter) TCBs are used to make MQI calls to the queue manager.
CHIDISPS (dispatcher) TCBs are used to make calls to the communications network. The ALTER
QMGR parameter MAXCHL can influence the distribution of channels over the dispatcher TCBs.

CHIADAPS

Each MQI call to the queue manager is independent of any other and can be made on any adapter
TCB. Calls using persistent messages can take much longer than those for non-persistent because
of log I/O. Thus a channel initiator processing a large number of persistent messages across many
channels may need more than the default 8 adapter TCBs for optimum performance. This is partic-
ularly so where achieved batchsize is small, because end of batch processing also requires log 1/0,
and where thin client channels are used.

For heavy persistent workloads we recommend CHIADAPS(30) for systems with up to 4 proces-
sors and then increase CHIADAPS by 8 for each additional processor up to a maximum of CHI-
ADAPS(120). We have seen no significant disadvantage in having CHIADAPS(120) where this is
more adapter TCBs than necessary.

IBM MQ version 8 introduced channel statistics via the use of TRACE(S) CLASS(4). These can be
used to determine whether there are sufficient adapter tasks defined to a channel initiator.

The channel initiator uses a pool of adapter tasks and when a request is made, the next available
adapter task is used. This results in adapter 0 typically being the most used adapter.

For example the following chart is generated from the adapter reports resulting from workloads using
2KB messages in a request/reply model with 10 outbound and 10 inbound sender-receiver channel
pairs where the message persistence is varied.

a

Adapter usage 2KB request/reply workload across 10 pairs of SD-RC channels

— Parsistent ——— Non-Persistent

100

80

YWbusy

88883

20
10
0

01 2 3 4 5 6 7 8 9 1011 1213141516 17 18 19 20 21 22 23 24 25
ADAPTER task

The preceding chart shows how busy each adapter task is over a 60 second interval.

The non-persistent workload shows that only 8 adapters (0-7) are used and only adapter 0 is more
than 50% utilised. For non-persistent messages, the tasks are primarily using CPU.

The persistent workload shows adapters 0 through 9 are greater than 50% busy with the usage
tailing off until adapter 18 is less than 5% busy. In this case, the adapter tasks are primarily waiting

129

for log 1/0O to complete and whilst this occurs, the tasks are blocked.

A client task that selects messages using message properties can also result in CPU intensive work
on an adapter task and there may be benefit in additional adapter tasks in that environment.

Generally, if all the adapter tasks are being used, there may be requests queued waiting for an
adapter, so more adapters may offer some benefit to throughput.

CHIDISPS and MAXCHL

Each channel is associated with a particular dispatcher TCB at channel start and remains associated
with that TCB until the channel stops. Many channels can share each TCB. MAXCHL is used to
spread channels across the available dispatcher TCBs.

The first(MIN((MAXCHL / CHIDISPS) , 10) channels to start are associated with the first
dispatcher TCB and so on until all dispatcher TCBs are in use. The effect of this for small numbers
of channels and a large MAXCHL is that channels are NOT evenly distributed across dispatchers.

We suggest setting MAXCHL to the number of channels actually to be used where this is a small
fixed number.

IBM MQ version 8 introduced channel statistics via the use of TRACE(S) CLASS(4). These can be
used to determine whether there are sufficient dispatcher tasks defined to a channel initiator.

Performance report MP1B “Interpreting accounting and statistics data” provides an application,
MQSMF, that generates a dispatcher report which can show the usage of each dispatcher. If the
report shows dispatchers that have little or no usage co-existing with dispatchers that are showing
high usage, the MAXCHL to CHIDISPS ratio may be too high.

For best performance from dispatchers, the system should use as few dispatcher tasks as possible
provided they are not being used at capacity. Where larger numbers of channels are being used,
we suggest reviewing the dispatcher report but where this is not available, setting CHIDISP(20)
where there are more than 1000 channels in use. We have seen no significant disadvantage in having
CHIDISPS(20) where this is more dispatcher TCBs than necessary.

The load on each dispatcher can make a difference to the total throughput of the channel initiator.
For example the following chart shows the achieved transaction rate with a request/reply workload
using 2KB messages as more channels are used. In both cases, there were 3 dispatcher tasks defined.

In these tests, MAXCHL(150) and CHIDISPS(3) were defined.

130

http://www-01.ibm.com/support/docview.wss?uid=swg24005907

Achieved transaction rate using 2KB non-persistent messages
while increasing chanrnels in use

busy channels loaded onto fewer dispatchers
busy channels spread across dispatchers

T0000.00

&0000.00 el

50000.00

A40000.00

30000.00

20000.00

Trans actons (s econd

10000.00

0.00
1 2 3 4 5 5] 7 8 9 10

Channel pairs in use

This means that if all 150 channels were started, there would be 50 channels per dispatcher.

In this test there were 100 channels started but only a subset of channels were actively sending
messages as indicated by the x-axis on the chart.

When the busy channels were all on the same dispatcher, the throughput peaked at 40,000 transac-
tions per second even though the dispatcher was 58% busy at its peak.

When the busy channels were shared across all 3 dispatchers, the peak throughput was 50% higher
and two of the three dispatchers achieved a higher percent busy than the single dispatcher in the
original measurement.

The use of channel compression can affect how many dispatcher tasks are required.

For example the following table shows the report cost of processing a 32KB message that is approx-
imately 40% compressible in the dispatcher task report for MQ running on z15:

. CPU microseconds per dispatcher
Compression type request
None 5
ZLIBFAST (hardware compression?) 12
ZLIBHIGH (software compression) 105

Checking the OMVS Environment

Each channel initiator task uses a number of OMVS threads. Within the channel initiator address
space there will be 3% plus “CHIDISPS” plus “SSL Tasks” OMVS threads.

Use command “D OMVS,LIMITS” and review the value of MAXPROCSYS. If the act of adding a
new channel initiator or amending an existing one causes the number of MAXPROCSYS to be close
to the maximum value, then MAXPROCSYS should be increased.

The SETOMVS command can be used to dynamically change the value, or the value can be updated
in the BPXPRMxx parameter values.

2IBM MQ version 8.0 added support for zEDC hardware compression for the ZLIBFAST channel compression
option. This is detailed further in performance report Channel compression on MQ for z/OS.

3 This is based on an OMVS thread for CSQXJST, and 2 for CSQXRCTL — one of which is a listener thread for
incoming requests directed at the queue manager.

131

https://ibm-messaging.github.io/mqperf/MQforZOS_ChannelCompression.pdf

Effect of Changing CHIDISPS

By increasing the CHIDISPS attribute, the number of dispatcher processes is increased. This can
be seen in SDSF(C) using the “PS” option.

If the change is significant or affects a large number of queue managers, these additional processes
may cause the system-wide limits set for MAXPROCSYS and MAXPROCUSER to be exceeded. This
can be seen when the following messages are logged:

BPXI039I SYSTEM LIMIT MAXPROCSYS HAS REACHED 100% OF ITS CURRENT CAPACITY
BPXI040I PROCESS LIMIT MAXPROCUSER HAS REACHED 100% OF ITS CURRENT CAPACITY

Both MAXPROCSYS and MAXPROCUSER are controlled by the BPXPRMxx parameter.
MAXPROCSYS specifies the maximum number of processes that can be active at the same time.

MAXPROCUSER specifies the maximum number of OMVS threads that a single user (i.e. the same
UID) can have concurrently active. The channel initiators threads count towards this value, i.e. if
there are 10 channel initiators with the same started task userid, and each one has 10 dispatchers,
there will be 130 threads for the userid.

When increasing the CHIDISPS value, we recommend amending both the MAXPROCSYS and
MAXPROCUSER values by:

MAXPROCxxx = MAXPROCxxx + (Increase in CHIDISPS x Queue managers being amended)

Where xxx is SYS and USER

132

Tuning Channels

There are a number of options that can be applied to channels that can reduce cost or help identify
problems in the appropriate environment.

Channel option BATCHHB

This attribute specifies whether batch heartbeats are to be used. These allow the sending channel
to verify that the receiving channel is still active just before committing a batch of messages. If
the receiving channel is not active the batch can be backed out rather than becoming in-doubt. By
backing out the batch, the message remain available for processing so they could, for example, be
redirected to another channel.

Channel option BATCHINT

The minimum time in milliseconds that a channel keeps a batch open. The batch is terminated
when one of the following conditions is met:

e BATCHSZ messages are sent
e BATCHLIM kilobytes are sent
e The transmission queue is empty and BATCHINT is exceeded.

Channel option BATCHLIM

The limit in kilobytes of the amount of data that can be sent through a channel before taking a sync
point. A sync point is taken after the messages that caused the limit to be reached flows across the
channel.

The default is 5000KB, so if large messages are flowing across the channels, a sync point may be
taken after only a small number of messages — possibly after every message.

Channel option BATCHSZ

This attribute is the maximum number of messages that can be sent through a channel before taking
a sync point.

The maximum batch size used is the lowest of the following values:
e The BATCHSZ of the sending channel.
e The BATCHSZ of the receiving channel.

e On z/08S, three less than the maximum number of uncommitted messages allowed at the
sending queue manager (or one if this value is zero or less). On platforms other than z/OS, the
maximum number of uncommitted messages allowed at the sending queue manager, or one if
this value is zero or less.

e On z/08S, three less than the maximum number of uncommitted messages allowed at the
receiving queue manager (or one if this value is zero or less). On platforms other than z/0OS,
the maximum number of uncommitted messages allowed at the receiving queue manager, or
one if this value is zero or less.

Channel option COMPHDR

The header data sent over a channel can be compressed using this value.

The most noticeable effect of compressing the header will be observed with small messages, for
example:

133

e sending a 4MB message and only compressing the header, will reduce the total data sent by
approximately 300 bytes.

e Sending a message of 100 bytes with a 480 byte header and compressing the header will result
in reducing the data sent by approximately 300 bytes — down by 50%.

Channel option COMPMSG

This is the list of message data compression techniques supported by the channel.

Typically channel compression is used on high-latency networks or low-bandwidth networks as there
is a cost associated with compressing and decompressing the message being sent.

As the compression is performed by a channel dispatcher task, this can add extra workload on the
dispatcher task and it would be advisable to re-evaluate the optimal setting of channels to dispatchers
ratio.

The zEC12 and zBC12 classes of System z hardware introduced hardware compression using zEn-
terprise Data Compression (zEDC) Express feature on PCle.

IBM MQ version 8.0 added support for hardware compression via the channel compression option
“ZLIBFAST”. Compressing messages using zEDC hardware compression can reduce the message
costs by 80% compared to compression performed in software.

For further information on the changes for channel compression enhancements both from using
software compression, when zEDC is not available, and hardware compression refer to performance
report ‘Channel compression on MQ for z/0OS.

Most recently with the IBM z15, the compression feature is re-located from PCle to the processor
nest. This can significantly reduce the dispatcher wait time when attempting to compress or inflate
message data using compression option “ZLIBFAST”. For further information on the benefits of IBM
z15 with MQ, refer to “MQ for z/OS on z15”. In particular review the information in the section
titled “Channel compression use of on-chip compression accelerator”.

Prior to the IBM z15, the zEDC compression was only available as an optional feature. If the
feature was not available, any MQ channels configured with COMPMSG(ZLIBFAST) would revert
to compression using software, which is effectively the same as COMPMSG(ZLIBHIGH).

If moving from hardware that did not have the zZEDC compression feature available to an IBM z15
where the feature is available on the processor nest and the MQ messages are compressible, then it
may be worth re-assessing whether the channel compression may bring benefits to the MQ channel
performance.

Binary data such as images or video are often not compressible, but data such as XML or fixed format
data may be highly compressible. If the data flowing over the MQ channels is text or tagged-data,
then compression of 50% or higher may be achievable.

Example: The following scenario demonstrates when a workload on z14 where zEDC compression
is not available, is moved to z15 where zEDC compression is available, there may be a reduction in
transaction cost as well as an improvement in channel throughput.

In this example, the workload runs a request/reply model using 32KB non-persistent messages
between 2 z/0S queue managers. The queue managers are located on separate LPARs on the same
physical machine, linked by a dedicated low-latency 10Gb network.

In this request/reply model, the message is compressed and inflated twice - once for the request
message and again for the reply message.

The following chart compares the transaction cost when the message payload increases in compress-
ibility for both z14 and z15.

134

https://ibm-messaging.github.io/mqperf/MQforZOS_ChannelCompression.pdf
http://ibm-messaging.github.io/mqperf/MQ_for_zOS_on_z15.pdf

Transaction Cost - 32ZKB Non-persistent messages

1 inbound and 1 outbound channel - Request/Reply workload

mZLIBHIGH - z14 m NOME - z14 ZLIBFAST -z15 m NOMNE -z15

1800

1600

1400
1200
1000
600
400

", l O i O
o]

o 20 40 60

% Comprassible

CPU Microseconds / Transaction
g

Notes on chart:

e Compression is not free. The cost of compressing, even on z15 where the majority of the
processing is run in the internal zEDC processor, is still higher than not compressing the
message data.

e Relying on software for MQ channel compression is expensive - whether directly from ZLIB-
HIGH or by falling back due to unavailable compression hardware with ZLIBFAST. The high
cost may be offset by other benefits including improved throughput over high latency networks
or savings on the frequency of secret key negotiations when using TLS protected channels.

e For more compressible messages, even without TLS protected channels, the transaction cost
was lower on z15 with COMPMSG(ZLIBFAST) than the equivalent configuration on z14 with
COMPMSG(NONE).

135

The following chart compares the transaction rate when the message payload increases in compress-
ibility for both z14 and z15.

Transaction Rate - 32ZKB MNon-persistent messages

1 inbound and 1 outbound channel - Request/Reply workload
= ZLIBHIGH - z14 = NOME - z14 ZLIBFAST - z15 m MNOMNE - z15

10000
2000
8000
Fooo

600

o

500

400
300
200
1000
o
o 20 40 80 a0

% Comprassible

Transactions / Second
o o o

o

Notes on chart:

e When moving from z14 to z15 with COMPMSG(NONE), gave a 37% improvement to through-
put for this workload.

e Implementing COMPMSG(ZLIBFAST) on z15 gave between 20-83% improvement in through-
put over COMPMSG(NONE) on z14, even on a low latency network.

e For this workload, when the 32KB message was 40% compressible, the COMPMSG (ZLIBFAST)
measurement exceeded the throughput of the COMPMSG(NONE) measurement.

Channel option DISCINT

The minimum time in seconds the channel waits for a message to arrive on the transmission queue.
The waiting period starts after a batch ends. After the end of the waiting period, if there are no
more messages, the channel is ended.

A value of 0 causes the message channel agent to wait indefinitely. See the section on channel
start /stop rates and costs to see the effect of channels changing state.

Channel option HBINT

This specifies the approximate time between heartbeat flows sent by a message channel agent (MCA).
These flows are sent when there are no messages on the transmission queue with the purpose of
unblocking the receiving MCA, which is waiting for messages to arrive or for the disconnect interval
to expire. When the receiving MCA is unblocked, it can disconnect the channel without waiting for
the disconnect interval to expire. Heartbeat flows also free any storage blocks that are allocated for
large messages and close any queues that are left open at the receiving end of the channel. To be
most useful, the value needs to be less than the DISCINT value.

Channel option KAINT

The value passed to the communications stack for keepalive timing for this channel.

136

Channel option MONCHL

This attribute controls the collection of online monitoring data for channels. Changes to this pa-
rameter take effect only on channels started after the change occurs.

Channel option NPMSPEED

This attribute specifies the speed at which non-persistent messages are to be sent.

e FAST means than non-persistent messages are not transferred within transactions. Messages
might be lost if there is a transmission failure or the channel stops whilst the messages are in
transit.

e NORMAL means normal delivery for non-persistent messages.

If the value of NPMSPEED differs between the sender and receiver or either one does not support
it, NORMAL is used.

SVRCONN channel option SHARECNV

Specifies the maximum number of conversations that can be sharing each TCP/IP channel instance.
High SHARECNYV limits have the advantage of reducing queue manager thread usage. If many
conversations sharing a socket are all busy, there is a possibility of delays. The conversations
contend with one another to use the receiving thread. In this situation, a lower SHARECNYV value
is better.

137

Tuning channels - BATCHSZ, BATCHINT, and NPMSPEED

To get the best from your system you need to understand the channel attributes BATCHSZ,
BATCHINT and NPMSPEED, and the difference between the batch size specified in the BATCHSZ
attribute, and the achieved batch size. The following settings give good defaults for several scenarios:

1. For a synchronous request /reply model with a low message rate per channel (tens of messages
per second or less), where there might be persistent messages, and a fast response is needed
specify BATCHSZ(1) BATCHINT(0) NPMSPEED (FAST).

2. For a synchronous request/reply model with a low message rate per channel (tens of mes-
sages per second or less), where there are only non-persistent messages, specify BATCHSZ(50)
BATCHINT(10000) NPMSPEED(FAST).

3. For a synchronous request /reply model with a low message rate per channel (tens of messages
per second or less), where there might be persistent messages and a short delay of up to 100
milliseconds can be tolerated specify BATCHSZ(50) BATCHINT(100) NPMSPEED(FAST).

4. For bulk transfer of a pre-loaded queue specify BATCHSZ(50) BATCHINT(0) NPMSPEED (FAST).

5. If you have trickle transfer for deferred processing and the messages are typically persistent,
specify BATCHSZ(50) BATCHINT(5000) NPMSPEED(FAST).

6. If you are using large messages, over 100000 bytes you should use a smaller batch size such as
10, and if you are processing very large messages such as 1 MB, you should use a BATCHSZ(1).

7. For messages under 5000 bytes, if you can achieve a batch size of 4 messages per batch then
the throughput can be twice, and the cost per message half that of a batch size of 1.

If there are only non-persistent messages flowing over the NPMSPEED(FAST) channel, there
may be benefits in setting both BATCHSZ and BATCHINT to a high value. Since an NPM-
SPEED(FAST) channel does not transfer messages within transactions, the messages can be trans-
ferred and made available to the getting application before the end of batch occurs. Furthermore
since there is no transaction, there is no recovery point, so there is no need to complete the end of
batch processing on a timely basis.

However, if there is the possibility of persistent messages flowing over the channel, a high BATCHSZ
and BATCHLIM may result in a long time before that message is committed by the end of batch
flow.

How batching is implemented
The text below describes the processing to send one batch of messages:
DO until BATCHSZ messages sent OR (xmitq empty AND BATCHINT expired)
OR BATCHLIM kilobytes sent
e Local channel gets a message from the transmission queue
o If message is non-persistent and channel is NPMSPEED(FAST):
B Outside of syncpoint
o Otherwise:
B Within syncpoint
o Adds a header to the message and sends using TCP/IP, APPC, etc.
e Remote channel receives each message and puts it

o If message is non-persistent and channel is NPMSPEED(FAST):

138

END

B Outside of syncpoint
o Otherwise:

B Within syncpoint

COMPLETE channel synchronisation logic.

Thus,

e A batch will contain at most BATCHSZ messages.

e If the transmission queue is emptied before BATCHSZ is reached and the BATCHINT (milliseconds)
time has expired since the batch was first started, the batch will be terminated.

e The achieved batch size is the number of messages actually transmitted per batch. Typically
for a single channel the achieved batch size will be small, often with just a single message
in a batch, unless BATCHINT is used. If the channel is busy or the transmission queue is
pre-loaded with messages, then a higher achieved batch size might be achieved.

e Each non-persistent message on an NPMSPEED(FAST) channel is available immediately it is
put to a queue at the receiver, it does not have to wait until end-of-batch. Such messages are
known as ’fast messages’.

e All other messages only become available at the end-of-batch syncpoint.

NOTES:

e Fast messages can be lost in certain error situations, but never duplicated.
e All other message delivery remains assured once and once only.
e If batch is reaches BATCHSZ then an end-of-batch indicator flows with last message.

e If the batch is terminated because the transmission queue is empty, or the BATCHINT interval
expires, then a separate end-of-batch flow is generated.

e Channel synchronisation logic is expensive. It includes log forces where there are persistent
messages or NPMSPEED(NORMAL) channels and an end-of-batch acknowledgement flow
from the receiver back to the sender. A low achieved batch size results in much higher CPU
cost and lower throughput than a high achieved batch size, as these overheads are spread over
fewer messages.

Setting NPMSPEED

For

non-persistent messages choosing NPMSPEED (FAST) gains efficiency, throughput and response

time but messages can be lost (but never duplicated) in certain error situations. Of course non-
persistent messages are always lost in any case if a queue manager is normally stopped (or fails) and
then restarted. Thus any business process using non-persistent messages must be able to cope with

the

possibility of lost messages. For persistent messages NPMSPEED has no effect.

If you have applications with both persistent and non-persistent messages which rely on message

arri
will

val sequence then you must use NPMSPEED(NORMAL). Otherwise a non-persistent message
become available out of sequence.

NPMSPEED(FAST) is the default and is usually the appropriate choice, but do not forget that the
other end of the channel must also support and choose NPMSPEED(FAST) for this choice to be
effective.

139

Determine achieved batch size using MONCHL attribute
The channel attribute “MONCHL” controls the collection of online monitoring data for channels.

By default, a channel is defined with MONCHL(QMGR). This means that monitoring data is col-
lected for a channel based on the setting of the queue managers MONCHL attribute.

Changes to the value of the channel attribute MONCHL only take effect on channels started after
the change is applied.

By altering the queue managers MONCHL attribute to one of the following values LOW, MEDIUM
or HIGH, the “DISPLAY CHSTATUS(channel) XBATCHSZ” command can be used to display the
size of batches achieved over the running channel.

NOTE: Do not use DISPLAY CHSTATUS (*) when you have many channels unless necessary, as
this is an expensive command. It might require many hundreds, or thousands, of pages in buffer
pool 0. Buffer pool 0 is used extensively by the queue manager itself and thus overall performance
can be impacted if pages have to be written to and read from the page data sets as a result of a
shortage of free buffers.

140

Setting

BATCHSZ and BATCHINT

Consider the following 3 types of application scenario when choosing BATCHSZ and BATCHINT.

1. Synchronous Request/Reply, where a request comes from a remote queue manager, the
message is processed by a server application, and a reply sent back to the end user.

This usually implies a short response time requirement.

Response time requirements often preclude use of a non-zero BATCHINT for channels
moving persistent messages.

Volumes on each channel might be so small that end-of-batch will occur after nearly every
message even at peak loads.

For persistent messages, absolute best efficiency might then be achieved with BATCHSZ
of 1 as there is then no separate end-of-batch flow from sender to receiver. Savings of up
to 20% of the CPU cost of receiving a message and sending a reply message are typical
for small messages.

If your volumes and response time requirements permit then set BATCHSZ to x and
BATCHINT to y where you typically expect x or more messages in y milliseconds and
you can afford the up to y milliseconds delay in response time on that channel.

Conclusion, for channels moving any persistent messages is:- Use the defaults unless you
really know better!

Non-persistent messages on an NPMSPEED(FAST) channel are available immediately
they are received regardless of BATCHINT or BATCHSZ. So a non-zero BATCHINT
is appropriate for any NPMSPEED(FAST) channel carrying ONLY non-persistent mes-
sages.

o For example, if you expect 30 non-persistent messages per second, set BATCHINT
to 2000 (2 seconds) then you will almost always achieve a batch size of 50 (assuming
BATCHSZ of 50).

o The CPU cost saving per message moved is likely to be of order 50% versus that for
achieved batch size of 1 compared to achieved batch size of 50.

o If you can guarantee that only non-persistent messages flow over the channel, it may
be beneficial to specify a larger value for BATCHSZ and BATCHINT, such as 100000.
This will have the effect of minimising any impact from the end of batch flow, which
have an impact to throughput on a high-latency network.

o If you cannot guarantee that only non-persistent messages flow over the channel, you
should consider setting BATCHSZ and BATCHINT such that the maximum time
the batch remains active is sufficiently small to ensure your SLA’s can be attained.

2. Bulk transfer of a pre-loaded transmission queue.

Usually implies high volumes, a high throughput requirement but a relaxed response time
requirement (e.g. many minutes is acceptable). Thus a large BATCHSZ is desirable.

The default BATCHSZ of 50 will give relatively high throughput.

Higher BATCHSZs can improve throughput, particularly for persistent messages (and
non-persistent messages on NPMSPEED(NORMAL) channels). But might be inappro-
priate for very large messages sizes, where a failure in mid batch could cause significant
reprocessing time.

141

e Do not use BATCHSZ > 100 even for messages up to 5KB.

e Do use BATCHSZ =1 for 1MB or larger messages as anything larger tends to increase
the CPU costs, and can have an impact on other applications.

e BATCHINT should be left to the default of 0.
3. Trickle transfer for deferred processing

e You want to transfer the messages as they are generated as cheaply and efficiently as
possible. These messages are then either stored for processing in a batch window or are
processed as they arrive but it is acceptable that several seconds or minutes elapse from
the time the messages were first generated.

e If possible wait until a batch size of 50 is completed. This would require that you set
BATCHINT to xxxx milliseconds, where more than 50 messages are generated within
xxxx milliseconds (assuming BATCHSZ greater than or equal to 50).

o If you left BATCHINT at 0 then you would probably achieve an average batch size
of less than 2 whatever the setting for BATCHSZ. In fact, it is typical that nearly all
the batches would consist of just 1 message.

o This would cost significantly more CPU and logging and some more network traffic
than 1 batch of 50 messages.

e Or, consider the case where you expect an average of 20 or more messages per minute
and you can accept up to 1 minute delay before these messages are processed. Then:

o If you set BATCHINT to 60000 (i.e. 1 minute) then you will achieve a batch size of
20 (on average, provided BATCHSZ greater or equal to 20)

o If you left BATCHINT at 0 then you would probably get 20 batches of 1 message
each whatever the setting for BATCHSZ.

o 20 batches of 1 message would cost significantly more CPU and logging and some
more network traffic than 1 batch of 20 messages.

e However, a very long BATCHINT is probably not appropriate as this could mean a very
long unit-of-work and consequent elongated recovery time in the event of a failure. You
should usually use a BATCHINT value of less than 300000 (5 minutes)

142

Channel Initiator Trace

TRACE(C) costs can be significant when running a high workload.

Comparing high workload over a single pair of Sender-Receiver channels, we saw between a 25% and
55% increase in the cost of the transaction.

On an idle queue manager/channel initiator, we found that TRACE(CHINIT) added 3% to the cost
of running the channel initiator.

IBM MQ version 8.0 for z/0S introduced channel initiator accounting and statistics data. Enabling
both of the class(4) trace options typically increases channel initiator CPU costs by 1 to 2%.

143

Why would I use channels with shared conversations?

When it comes to the V7 clients connecting, using a SVRCONN channel with a SHARECNYV of
greater than 0 allows the channel to run in V7 mode - which gives several benefits:

Read-ahead - this allows the queue manager to effectively push messages out to the client when
they are available - and the MQ client code maintains its own buffer to hold these messages
until the client application is ready for them. This can reduce the line turn-around time giving
better performance.

Client Asynchronous Consume - allows the client to register an interest in multiple queues and
receive a message when it arrives on any of those queues.

Heart-beating over a SVRCONN channel - which allows the queue manager to detect when
the client has gone away

By sharing conversations from a multi-threaded client application, it is possible to decrease
the footprint on the channel initiator, allowing more clients to connect.

In V6, a single SVRCONN channel used around 140KB.

In V7, a SVRCONN channel with SHARECNV (10) uses around 514K — which equates to each
conversation using only 51KB - which allows for significantly more client conversations to be
running on a single channel initiator.

There are instances where the customer may choose to run a SVRCONN channel with a SHARECNV
value less than 10 for example:

If the clients are performing persistent workload (or a mixture), they may want to run with a
lower SHARECNYV setting as the single channel instance will use a single adapter task. This
adapter task will be blocked whilst any logging of the persistent message occurs, which can
then have a direct impact on the other (non-persistent) conversations in this shared channel.

If the clients are doing a high-volume of workload - A single channel can only flow a certain
amount of data over it and this is similar to the total amount of data that can be flowed
over a channel with multiple shared conversation. So if the customer was driving 50MB
/ second through a SVRCONN and moved to a SHARECNV(10) channel, they would not
get 500MB/second through that shared channel. As a result they may want to lower the
SHARECNYV attribute.

There is an increase in connection cost when using non-zero SHARECNV SVRCONN channels
of approximately 20% when compared to SHARECNV(0) channels. However when running with
SHARECNYV greater than 1 and it is more likely that at least one of the conversations from the client
is already active, meaning the existing channel can be shared, the connection overhead decreases.

With regards to workload, in a like for like workload, e.g. not exploiting read-ahead, the costs are
typically similar. If the user is able to use long-running connections and asynchronous puts and get,
there may be a reduced transaction cost when using a non-zero SHARECNYV value.

144

Performance / Scalability

Channel start/stop rates and costs

The rate and CPU cost at which channels can be started and stopped varies with the number of
channels represented in SYSTEM.CHANNEL.SYNCQ.

A channel is represented in SYSTEM.CHANNEL.SYNCQ if it has ever been started. It will remain
represented until its definition is deleted. For this reason we recommend that redundant channel
definitions be deleted.

While many users do not start and stop channels with any great frequency, there may still be
significant sender channel restart activity after a channel initiator failure.

The following table demonstrates the effect of the number of channels represented in SYSTEM. CHANNEL . SYNCQ
on a IBM MQ 9.3 Queue Manager.

Channels in
SYNCQ Sender Channel START Sender Channel STOP
3931-703 CPU 3931-703 CPU
Channels per e Channels per il
d milliseconds per d millisecs per
secon START secon STOP
1,000 649 0.22 699 0.22
2,000 552 0.27 800 0.25
4,000 428 0.38 630 0.33

NOTE: For the purposes of this measurement, only the sender-side costs are recorded.

145

TLS channel start costs

Whenever an TLS-enabled channel pair is started a cryptographic handshake is performed which
establishes the authenticity of the channel partners and dynamically generates a secret cryptographic
encryption key. This cryptographic handshake increases both the CPU consumption and the elapsed
time for the channel start.

On our 3931-703 system we have found the additional TLS costs to be somewhat dependent of the
SSL/TLS cipherspec used. With 4000 sender-type channels in SYSTEM.CHANNEL.SYNCQ:

3931-703 Channels
TLS CipherName . (?PU per second
milliseconds

TLS_CHACHA20 POLY1305 SHA256 0.89 168.6

TLS 1.3 |TLS AES 256 GCM_SHA384 0.81 177.2
TLS_AES 128 GCM_SHA256 0.81 177.1

TLS_RSA_ WITH AES 256 GCM _SHA384 0.73 179.4

TLS _ECDHE_ RSA_ WITH AES 256 _GCM _SHA384 1.47 108.5

TLS_RSA_ WITH AES 256 CBC_SHA256 0.72 187.3

TLS ECDHE ECDSA_ WITH AES 256 CBC_SHA384 1.46 101.2
TLS_ECDHE RSA WITH_ AES 256 CBC_SHA384 1.47 109.7

TLS 1.2 TLS_RSA WITH AES 128 GCM_SHA256 0.73 184.3
TLS_ECDHE_RSA_ WITH AES 128 GCM_SHA256 1.48 108.8

TLS_RSA_ WITH AES 128 CBC_SHA256 0.72 177.1

TLS _ECDHE ECDSA WITH_ AES 128 CBC_SHA256 1.47 102.3
TLS_ECDHE RSA_ WITH_ AES_ 128 CBC_SHA256 1.46 109.6

TLS RSA_ WITH NULL SHA256 0.72 1774

These measurements used the optional Crypto Express 85 Coprocessor.
Note that support for TLS 1.3 ciphers was introduced in MQ for V9.2.0.

TLS 1.3 ciphers are both more expensive and slower to start than some TLS 1.2 ciphers. This is
in part due to the TLS 1.3 requirement to support key shares. For the table above, ICSF FMID
HCR77D1 has been applied to the performance test environment, and this results in comparable
performance between TLS 1.2 and TLS 1.3 ciphers at channel start.

As discussed in the blog “Impact of certificate key-size on TLS-protected MQ channels”, these chan-
nel start costs were derived using certificates with key-sizes of 2048 bits. Provided cryptographic
hardware is available to assist the channel start process, the certificate key-size, whether 2048 bits
or not, should have minimal impact on the cost of starting TLS-protected channels.

This is discussed further in the SSL and TLS section.

146

https://ibm-messaging.github.io/mqperf/MQ for zOS V920 Performance.pdf
https://community.ibm.com/community/user/integration/blogs/anthony-sharkey1/2024/02/09/mq-for-zos-impact-of-key-size-on-tls-channels

Factors affecting channel throughput and cost
e Message persistence, especially for NPMSPEED(FAST) channels
e Message size
e Achieved batch size is very significant for both throughput and cost
o And is often much smaller than the defined BATCHSZ channel parameter

o You need to understand what batch size your configuration will typically achieve before
using the following charts to estimate possible throughput and CPU cost.

o See “Determine Achieved Batch Size using MONCHL attribute” which discusses how the
MONCHL attribute can be used in conjunction with “DISPLAY CHSTATUS (channelName)
XBATCHSZ” to determine the size of the batches achieved over the running channel.

With a pre-loaded transmission queue you can probably achieve a batch size equal to the
BATCHSZ parameter setting.

e Otherwise you can probably only achieve an average batch size < 2 with most batches consisting
of just 1 message, unless you can take advantage of the BATCHINT parameter.

Message throughput is highly dependent on the configuration used:
o Speed and utilisation of the network
o Response time of the IBM MQ log devices
o CPU speeds, at both ends

o Whether messages on the transmission queue have to be retrieved from page set

For heavy persistent workloads we recommend CHIADAPS(30) for systems with up to 4 pro-
cessors and then increase CHIADAPS by 8 for each additional processor up to a maximum of
CHIADAPS(120). We have seen no significant disadvantage in having CHIADAPS(120) where
this is more adapter TCBs than necessary.

147

SSL and TLS

The use of SSL and TLS protection on MQ channels increases the CPU cost of transmitting messages
at both the sender and receiving end of the the channel. The increased cost varies depending upon
a number of factors and these costs are discussed in the following section.

By default, IBM MQ now supports a minimum requirement of TLS 1.2 ciphers, but for historic
reasons the MQ attributes associated with encrypting messages over MQ channels are named with
“SSL” in the attribute name, e.g. SSLCIPH. As such we will use terms SSL and TLS interchangeably.

When do you pay for encryption?
SSL encryption costs are incurred in the channel initiator address space at several points:

e Starting and stopping of the channel. If this occurs frequently, the cost may be a factor in
choosing the cipher. Note that the key-size in the certificate may affect the rate at which
channels are started - the blog “Impact of certificate key-size on TLS-protected MQ channels”
discusses this impact.

e Re-negotiate secret key - the impact of this is dependent upon the value of SSLRKEYC and
the volume of data flowing over the MQ channel. If small volumes of data flow over the MQ
channel, or the SSLRKEYC is configured such that there are few key re-negotiations, the
negotiation cost may not be a factor.

o Note: Since TLS 1.3 has key re-negotiation as part of the protocol, reaching the SSLRKEY C-
threshold does not have the same effect when using a TLS 1.3 cipher compared to a TLS
1.2 cipher. There is cost associated with SSLRKEYC(non-zero) even with TLS 1.3 ci-
phers, and those are reported in the key (re-)negotiation section. For best performance
with TLS 1.3 ciphers, specify SSLRKEYC(0).

e Cost of encryption and decryption of data - there are ciphers that do not have hardware
support for encryption and decryption of data, which can impact the cost and the time to
encrypt the message data.

The cost of TLS protection can be reduced by varying the frequency of the channel start and
amount of data that flows between secret key negotiations and to a certain extent by the level of
data encryption but these costs should be considered against the importance of the integrity of the
data flowing over the channels.

148

https://community.ibm.com/community/user/integration/blogs/anthony-sharkey1/2024/02/09/mq-for-zos-impact-of-key-size-on-tls-channels

How can I reduce the cost?

Change re-negotiation frequency.

By increasing the re-negotiation frequency, the keys will be changed less often, however this
means that more data will flow using the same key which in turn can give potentially more
opportunity to crack the secret key.

Encryption level via CipherSpec
Not all cipher specifications cost the same! Is it really necessary to use a high level of encryption
with low-value data? If not, then a lower level of encryption may be appropriate.

Channel start/stop versus long running channels

At channel start, the channels have to perform a handshake which includes a negotiation of
secret key. If the channel is short lived and only sends a small amount of data before stopping,
the secret key negotiation may be more frequent than desired.

Cost versus data security
It should be determined by the company or companies using the channels whether data security
is more important than the cost of encrypting the data.

Consider the use of channel compression

Using COMPMSG(ZLIBFAST) when running on IBM z15 or on earlier hardware where there
are zEDC features available can increase the number of messages flowing between secret key
negotiations and can in certain circumstances reduce the overall MQ costs.

Running on the latest possible hardware

The level of IBM processor model can make a significant difference to the cost of the MQ
workload both for protected and unprotected workloads. Newer ciphers, such as TLS 1.2 have
been optimised on later hardware and the cost of encryption of more secure ciphers on the
latest hardware can be lower than less secure ciphers on older hardware.

Offloading work onto Crypto Express cards

o The use of System SSL by IBM MQ for z/OS means that only secret key negotiations
can be offloaded onto cryptographic coprocessor or accelerators.

o The data encryption and hashing is not eligible for offloading. Where possible,* this is
performed by CPACF’s (Central Processor Assist Cryptographic Function). Data encryp-
tion and hashing will see additional CPU usage in the channel initiator address space.

4Some cipher specs are not supported by the CPACF. See “Overview of hardware cryptographic features and
System SSL”.

149

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.gska100/gsk2aa00_Overview_of_hardware_cryptographic_features_and_System_SSL.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.gska100/gsk2aa00_Overview_of_hardware_cryptographic_features_and_System_SSL.htm

Will using cryptographic co-processors reduce cost?

When cryptographic co-processors are available, they will be used for offloading the part of the TLS
key processing which occurs at channel start or when the amount of data flowed over the channel
reaches the SSLRKEYC setting.

TLS ciphers are able to significantly reduce key negotiation costs by offloading work onto Crypto-
graphic co-processors and to some extent CPACF. There is still some cost impact to the MQ channel
initiator address space. For example using TLS RSA WITH AES 256 GCM_ SHA384 costs
are typically 2-7 milliseconds per negotiation but when negotiation is entirely in software, the cost
increases to 70-133 milliseconds on IBM z15 using Crypto Express 7S.

Since our systems have both CPACF and Crypto Express available, in order to determine the
cost without hardware cryptographic support we force System SSL to use software by specifying
the CEEOPTS DD statement in the M(Q channel initiator JCL with ENVAR("GSK_HW_CRYPT0=0")
specified.

For best performance with MQ channels using TLS cipher protection, it is advised to ensure that
sufficient Cryptographic co-processors and accelerators are available.

TLS 1.3 cipher support

MQ for V9.2.0 introduces support for Transport Layer Security (TLS) 1.3 protocols as well as support
for aliases.

The ability to specify a TLS alias allows the queue manager and its remote partner, whether another
queue manager or a client, to negotiate the most secure cipher that both partners support.

The determination of the most secure cipher is decided by System SSL on z/OS and GSKit on
distributed, and by default the order is the same. The order may be different if the user sets the
allowed list on at least one of the sides, in which case this can affect the cipher chosen in the
determination process.

The available aliases at MQ 9.2 are as follows (in most to least secure order):
e ANY TLS13 OR_HIGHER
e ANY TLSI13
e ANY TLS12 OR_HIGHER
e ANY TLS12
o ANY - This potentially allows SSL 3 ciphers to be selected and should be used with caution.

In order to use an alias, the MQ channel attribute “SSLCIPH” would be set to the value of the
preferred alias.

150

https://ibm-messaging.github.io/mqperf/MQ for zOS V920 Performance.pdf

Why use TLS 1.37

The report Enabling TLS 1.3 in System SSL Applications explains in detail the benefits of the TLS
1.3 protocol and what follows is an extract of that report:

The Transport Layer Security (TLS) 1.3 protocol is a magjor rewrite of prior TLS protocol standards.
After being in the works for many years in the Internet Engineering Task Force (IETF) TLS working
group, TLS 1.3 became a formal standard in August 2018 when RFC 8446 was published. In z/08
2.4, System SSL added support for the TLS 1.3 protocol in order for z/0S applications to take
advantage of the security updates.

TLS 1.3 includes the following updates:

e All handshake messages after the initial client and server handshake messages are now en-
crypted. In prior protocols, messages were not encrypted until after the final handshake mes-
sages were exchanged between the client and server.

o FEncrypted handshake messages are presented as payload messages and must be decrypted in
order to determine whether the message is a handshake, payload or alert message.

e The RSA key exchange is no longer supported. It was replaced with Elliptic Curve Diffie-
Hellman Ephemeral (ECDHE), which provides forward secrecy.

e Prior to TLS 1.3, the negotiated key exchange was part of the cipher suite. In TLS 1.3, the
negotiated key exchange is no longer part of the cipher suite and is negotiated separately.

TLS 1.8 requires key sharing and MQ uses the GSK_CLIENT TLS KEY SHARES option, which
will generate public/private key pairs for each key share group, which can be computationally expen-
sive and might impact performance.

MQ’s current implementation of TLS 1.3 protocol support means that all of the key share groups are
supported, so whether a TLS 1.3 protocol is explicitly specified, or an alias is specified that allows
a TLS 1.3 cipher to be negotiated, the channel start costs may be significantly higher than if TLS
1.2 protocols are specified. On IBM z15, ICSF FMID HCR77D1 reduces the cost of the key share
handshake to the extent that TLS 1.3 ciphers are no longer significantly more expensive than TLS
1.2 ciphers.

Using an alias in the channel definition will only affect the channel start rate and cost, i.e. the rate
and cost of the channel stop, secret key negotiation and encryption/decryption of data will depend
on the performance of the negotiated cipher.

The impact of the alias on channel start performance can be viewed in section “Starting TLS channels
using Aliases”.
Deprecated CipherSpecs

MQ version 8 saw the number of supported CipherSpecs reduced. The IBM Knowledge Center
section Enabling CipherSpecs details the currently supported ciphers.

The section also details how you may re-enable deprecated ciphers on z/OS with the use of particular
DD statements in the channel initiator JCL.

By default, MQ on z/OS supports TLS 1.2 ciphers.

151

https://www.ibmsystemsmag.com/IBM-Z/11/2019/enabling-tls-system-ssl-applications
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.3.0/com.ibm.mq.sec.doc/q014260_.htm

Starting TLS channels using aliases

In the earlier section “Starting TLS channels” | it was demonstrated that the cipher used can impact
the rate the channels could start as well as affect the cost of starting the channel.

By specifying an alias, such as ANY TLS13, MQ is able to negotiate the most secure common
cipher supported by both ends of the channel.

Using an alias that allows TLS 1.3 protocols to be included in the negotiation phase of channel start
means that MQ must generate public/private key pairs for each potential key share group.

The following table demonstrates how the specified alias can impact the channel start rate and cost.
Table: Impact of alias on channel start

Cost Channels

Alias Nec’}gi(;:ﬁlllaelied started
CPU ms |/ second
ANY_ TLS13_OR_HIGHER TLS_CHACHA20_POLY1305_SHA256 0.89 168
ANY TLS13 TLS_CHACHA20 POLY1305 SHA256 0.88 166
ANY TLS12 OR_HIGHER TLS_CHACHA20_POLY1305_SHA256 0.89 164
ANY_ TLS12 TLS RSA WITH AES 256 GCM SHA384| 0.74 184
ANY TLS_CHACHA20_POLY1305_SHA256 0.89 169

Note: Where a TLS 1.3 cipher may be negotiated, there is is additional cost due to the need to
generate key pairs for all key share groups. This has an impact on the rate at which the M(Q channels
may start.

Stopping TLS channels

In terms of stopping MQ channels, we saw TLS 1.2 and TLS 1.3 ciphers typically cost between 440
and 450 CPU microseconds per channel on IBM z16.

Note: Stopping a channel where the SSLCIPH used an alias does not affect the cost or rate at
which the channel is stopped.

152

Secret key (re-)negotiation costs

The cost of re-negotiating the secret key can vary significantly depending on the cipher used.

TLS 1.3 ciphers have key re-negotiation as part of the protocol, so the processing triggered by
reaching the threshold as defined by the SSLRKEYC attribute does not perform key re-negotiation.
However, even though MQ does not attempt to re-negotiate the key, there will be cost associated
with a non-zero SSLRKEYC for TLS 1.3 ciphers.

Ideally, for queue managers using TLS 1.3 ciphers, the SSLRKEYC attribute would be set to 0, but
as the attribute is defined at the queue manager level, this may affect any TLS channels that run
using TLS 1.2 ciphers.

The following chart shows the cost of each key negotiation on IBM z15 for all of the TLS 1.3 and
TLS 1.2 ciphers currently supported.

Chart: TLS Cost of secret key re-negotiation

TLS 1.2/ TLS 1.3 Ciphers: Secret key re-negotiation costs

With CryptoExpress 7S available for offload

1303 TLS_CHACHA20_POLY1305_SHA256
TLS 1.3 1302 TLS_AES_256_GCM_SHA384
1301 TLS_AES_128_GCM_SHA256
009d TLS_RSA_WITH_AES_256_GCM_SHA384
€030 TLS_ECDHE_RSA WITH_AES_256_GCM_SHA384

003d TLS_RSA_WITH_AES_256_CBC_SHA256
024 TLS_ECDHE_ECDSA_ WITH_AES_256_CBC_SHA384
028 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
TLS 1.2 009c TLS_RSA_WITH_AES_128_GCM_SHA256
c02f TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
003c TLS_RSA_WITH_AES_128_CBC_SHA256
023 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
027 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
003b TLS_RSA_WITH_NULL_SHA256

Cipher

o

500 1000 1500 2000 2500 3000 3500 4000 4500

Cost/ Negotiate (CPU microseconds)

How did we calculate the key re-negotiation costs?
The key re-negotiation costs were calculated as follows:

e Workload run with SSLRKEYC(0) configured and the average transaction cost was deter-
mined.

e Workload run with SSLRKEYC(1MB) configured and the average transaction cost was deter-
mined.

e As we knew the message size was constant, we could determine how many messages would flow
between key negotiations, taking into account that the workload is a request / reply workload.

e The difference between the 2 transaction costs multiplied by the number of messages per
negotiation is the cost of re-negotiating the secret key.

153

Cost of Encryption / Decryption of data using TLS ciphers

The cost of encrypting and decrypting data flowing over MQ channels is typically reduced with the
use of CPACF (Central Processor Assist for Cryptographic Functions) and is relatively consistent,
however cipher TLS_CHACHA20_POLY1305_SHA256 is not supported by hardware encryption and must
be processed using software.

Chart: TLS Transaction cost when streaming 32KB non-persistent messages

Streaming - no secret key re-negotation

1303 TLS_CHACHA20_POLY1305_SHA256 I 4267
TLS 1.3 1302 TLS_AES_256_GCM_SHA384 [l 204
1301 TLS_AES_128_GCM_SHA256 [l 204
009d TLS_RSA_WITH_AES_256_GCM_SHA384 [l 200
€030 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 [l 201
003d TLS_RSA_WITH_AES_256_CBC_SHA256 [218
. 024 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 [l 207
é €028 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 [l 207
© TLs12 o09c TLS_RSA_WITH_AES_128_GCM_SHA256 [l 201
c02f TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 [l 201
003c TLS_RSA_WITH_AES_128_CBC_SHA256 [l 215

023 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 [l 215
€027 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 [l 215
003b TLS_RSA_WITH_NULL_SHA256 [l 206

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

CPU microseconds / transaction

This workload represents the transaction cost including the putting application, sending MQ sub-
system, receiving MQ subsystem and getting application and includes the cost of encrypting and
decrypting the messages once per transaction.

As a guide, the equivalent workload without TLS-protected MQ channels cost 115 microseconds.

154

Can I influence which ciphers are chosen?

Yes, from MQ for V9.2.0. When using an alias to allow MQ to negotiate from a set of supported
TLS ciphers, it is possible to restrict the choice of cipher to a subset of specific ciphers.

For example, whilst TLS_CHACHA20_POLY1305_SHA256 is regarded as the most secure cipher currently
available and supported on z/0S, the cost of the encryption may mean that particular cipher is less
palatable from a performance perspective.

To configure the queue manager to use only a subset of the available ciphers, code the CSQMINI
DD card in the MSTR JCL, i.e. the following sample will limit the selection of TLS 1.3 ciphers to
TLS_AES_256_GCM_SHA384 and TLS_AES_128_GCM_SHA256.

\\CSQMINI DD *

TransportSecurity:

A11owTLSV13=TRUE
AllowedCipherSpecs=TLS_AES_256_GCM_SHA384,TLS_AES_128_GCM_SHA256

\ *

The “AllowedCipherSpecs” keyword is not limited to TLS 1.3 ciphers, for example to limit the ciphers
to TLS_RSA_WITH_AES_256_CBC_SHA256 specify the contents of the CSQMINI DD card as:

\\CSQMINI DD *
TransportSecurity:
AllowedCipherSpecs=TLS_RSA_WITH_AES_256_CBC_SHA256

\ *

155

https://ibm-messaging.github.io/mqperf/MQ for zOS V920 Performance.pdf

SSLTASKS

The number of SSLTASKS required depends primarily on the number of channel initiator dispatchers
in use. Typically once an SSL server task processes work for a particular dispatcher and all of its
channels, there will remain an affinity until restart.

There is also some benefit in ensuring that the number of SSLTASKS is greater than the number of
processors in the system.

How many do I need?

This will depend on the number of dispatcher tasks specified in the channel initiator address space,
but typically best performance can be achieved with CHIDISPS + 1

Why not have too many?

When a channel starts that requires SSL, the channel initiator will choose the first available SSL
task for the initial handshake. For the lifetime of the channel, this same SSL task will be used.

This means that if the channels start at periods when there is no SSL work occurring, it is possible
that all of the channels will be using the same small set of SSL tasks. As a result there may be idle
SSL tasks in the channel initiator address space.

Each SSL server task uses 1.3MB of storage from the channel initiators available storage, which can
impact the number of channels able to be started.

Why not have too few?

If too few SSL server tasks are available, then channel throughput can be constrained as the channels
wait for an SSL task to become available.

SSLTASK statistics

With the introduction of Channel Initiator Accounting and Statistics in IBM MQ version 8.0.0, the
usage of the SSLTASKS can be reported. This can be used as a guide to whether there are sufficient
SSL tasks defined in the channel initiator.

Currently there is no simple mechanism to determine which channel is using a particular SSL task,
however the report from program MQSMF ° as shown below, does indicate how busy the available
SSL tasks are.

If a channel using SSL encryption appears to be performing worse than previously and the SSLTASK
report indicates that the SSLTASKS in use are busier than 90%, restarting the channel may move
which dispatcher and SSLTASK is used by that channel and result in less waiting for the SSLTASK.

MVAA,VTS1,2014/12/20,05:40:27,VRM: 900,
From 2014/12/20,05:39:26.341866 to 2014/12/20,05:40:27.159296 duration 60.817430
Task,Type,Requests,Busy %, CPU used, CPU %, avg CPU , avg ET

s s s , Seconds, , uSeconds, uSeconds
0,SSL , 78284, 26.4, 3.943509, 6.6, 50, 202
1,8SL , 37, 0.0, 0.000213, 0.0, 6, 6
2,...
8,SSL , 37, 0.0, 0.000210, 0.0, 6, 5
9,SSL , 367304, 27.0, 4.429724, 7.4, 12, 44

Note: In the example MQSMF report, there are 10 SSLTASKS available, of which task 0 and 9 are
in use and both of these tasks have capacity to support more channels.

5Program MQSMEF is available as part of supportPac MP1B “Interpreting accounting and statistics data”

156

http://www-01.ibm.com/support/docview.wss?uid=swg24005907

SSL channel footprint

Typically SSL uses an additional 30KB for each channel but for messages larger than 32KB can be
higher.

SSL over cluster channels
Using SSL over cluster channels should be no more expensive than SSL over non-cluster channels.

Note: Repository information being shared will flow over channels and will contribute to the amount
of data flowing over a channel and may cause the secret key renegotiation to occur earlier than
expected.

Similarly this repository information will be encrypted across the network and will be subject to
additional encryption and decryption costs.

SSL over shared channels

Shared channels will update a DB2 table when their state changes. This can result in shared channels
taking longer to start than non-shared channels. No SSL-state information like SSLRKEYS is held
in DB2 so using SSL over shared channels will not affect the performance of the channels once the
channel is started.

Note: When using shared channels, the channel initiator will check for a certificate named
ibmWebSphereMQ<QSG> and then ibmWebSphereMQ<QueueManager>. This allows the user
to use a single certificate for their entire queue sharing group. IBM MQ version 8.0 allows these
certificates to be overridden by the certificate named in the CERTLABL channel parameter.

157

Using AT-TLS to encrypt data flowing over IBM MQ channels

Application Transparent Transport Layer Security (AT-TLS) is based on z/0S System SSL, and
transparently implements the TLS protocol (defined in RFC 2246) in the TCP layer of the stack.

When running channels between queue managers hosted on z/0S, AT-TLS can be used to encrypt
messages transported over MQ channels rather than relying on IBM MQ channels performing the
encryption function. The use of AT-TLS can result in reduced costs within MQ.

It should be noted that whilst AT-TLS can offer reduced costs, these are not always reflected in
improvements in the rate that message data is transferred, particularly when using encryption ciphers
that are unable to exploit hardware acceleration, such as TLS 1.3 cipher TLS_CHACHA20_P0OLY1305_SHA256.

Who pays for AT-TLS

MQ channels with SSLCIPH configured will see the encryption/decryption cost associated with the
channel initiator address space.

When transporting messages using channels encrypted using AT-TLS, the cost of encryption is
charged to the callers unit of work (i.e. the channel initiator) and decryption is incurred by the
TCPIP address space as the decryption is performed by an SRB running in the TCPIP address
space.

Limitations
IBM MQ allows the user to specify different SSL cipher specifications for each channel.

To run with different cipher specifications using AT-TLS can involve defining additional rules plus
either specifying the LOCLADDR attribute on the channel to restrict the port being used or by
running with multiple listeners defined on the channel initiator.

IBM MQ allows the secret key negotiation to be performed when the number of bytes sent and
received within an SSL conversation exceeds the SSLRKEYC value, whereas AT-TLS allows the
renegotiation to take place after a period of time has been exceeded.

When the AT-TLS encryption is performed, the TCP socket is blocked — this can have a noticeable
effect on throughput rate with large messages unless dynamic right sizing is enabled on the TCPIP
stack.

Channels protected with CHLAUTH rules may not be allowed to start if the rule contains a value
for SSLPEER.

Performance comparison

The following measurements were run using a 10Gb network between 2 z/0S v2r5 LPARs each with
3 dedicated processors on an IBM z16 (3931-7KO0).

A request /reply workload between 2 queue managers was run over a pair of sender-receiver channels
using non-persistent messages.

In the measurements using channels with SSLCIPH cipher specifications, the SSL key negotiation
has been disabled (by setting to ’0’) in order to provide a direct comparison. Similarly the AT-TLS
negotiation period has been disabled.

The costs shown in the following charts are for the queue manager, channel initiator and TCPIP
address spaces only and are based on the cost observed in both LPARs.

For the purposes of these measurements, the following ciphers have been used:

158

Type MQ SSL/TLS cipher AT-TLS cipher
TLS 1.2
(hardware - CPACF) || TUS_RSA_WITH_AES_256_CBC_SHA256| TLS_RSA_WITH_AES_256_CBC_SHA
TLS 1.3
(hardware - CPACF) TLS AES 256 GCM_SHA384 TLS_AES_ 256 GCM _SHA384
TLS 1.3
(software) TLS_CHACHA20 POLY1305 SHA256 TLS_CHACHA20 POLY1305 SHA256

As discussed in the MQ for V9.2.0 performance report, the cost of encrypting and decrypting data
flowing over MQ channels is typically reduced with the use of CPACF (Central Processor Assist for
Cryptographic Functions) and is relatively consistent. However cipher TLS_CHACHA20_POLY1305_SHA256
is not supported by hardware encryption and must be processed using software, hence for the pur-
poses of these measurements, we are calling the cipher “TLS 1.3 (software)”.

Request/Reply transport cost using 2KB non-persistent messages

ar-1is-Ts1.3sw) [|
ma - TLs1.3 (sw) | |
AT-TLS-TLS1.3 (HW) [
ma - TLst.3 (Hw) [N
AT-TLs-Tis 1.2 [
va-TLs1.2 [N

0 50 100 150 200 250 300 350

CPU Microseconds (3931-706 on each LPAR)

® Qmgr = Channel Initiator &0 TCP/IP

Notes on preceding chart:

e Cost of transporting the message is up to 25% lower when using AT-TLS to protect the
message, depending on cipher used.

e Channel initiator costs are up to 41% lower when using AT-TLS.

o TCPIP costs are 1.6 times higher when using ciphers able to exploit hardware encryption with
AT-TLS.

o TCPIP costs are 15 times higher when using ciphers that rely on software encryption with AT-
TLS when compared with equivalent TCPIP costs on MQ channels protected using SSLCIPH.

159

https://ibm-messaging.github.io/mqperf/MQ for zOS V920 Performance.pdf

Request/Reply transport cost using 16KB non-persistent messages

AT-TLS - TLS1.3 (s/w) I —
MQ - TLs1.3 (S/w) [—
AT-TLs -TLs1.3 (Hw) [
MQ-TLS1.3 (HW) (I
AT-TLS-TLS 1.2 [
vo-Tist.2 I

1 10 100 1000 10000

CPU microseconds (3931-706 on each LPAR) - log scale
EQmgr ® Channel Initiator OTCP/IP

Notes on preceding chart:

e Chart uses a log scale - for the AT-TLS using TLS 1.3 (software) the costs attributed to
the channel initiator and the TCP/IP address space are approximately equal at 1.2 CPU
milliseconds per transaction.

e Cost of transporting the message is up to 43% lower when using AT-TLS to protect the
message, depending on cipher used.

e Channel initiator costs are up to 54% lower when using AT-TLS.

Request/Reply transport cost using 32KB non-persistent messages

AT-TLS - TLs1.3 (sw) [
Ma-TLs1.3 (sw) I —
AT-TLS-TLs1.3 (HW) I
MQ-TLS1.3 (HW) | —
AT-TLs - LS 1.2 [|
ma-Tis1.2 [

1 10 100 1000 10000
CPU microseconds (8561-703 on each LPAR) - log scale

H Qmgr ® Channel Initiator O TCP/IP

Notes on preceding chart:

e Chart uses a log scale - for the AT-TLS using TLS 1.3 (software) configuration, the costs
attributed to the channel initiator and the TCP/IP address space are approximately equal, at
2.3 CPU milliseconds per transaction.

160

e Cost of transporting the message is up to 34% lower when using AT-TLS to protect the
message, depending on cipher used.

e Channel initiator costs are up to 48% lower when using AT-TLS.

Request/Reply transport cost using 64KB non-persistent messages

AT-TLS - TLs1.3 (Sw) I
ma -TLs1.3 (sw) I
AT-TLS - TLS1.3(HW) | |
MQ -TLS1.3 (HW) | —
AT-TLs-TLs 1.2 [I—
ma-Tis1.2 |

1 10 100 1000 10000

CPU microseconds (3931-706 on each LPAR) - log scale
HQmgr B Channel Initiator OTCP/IP

Notes on preceding chart:

e Chart uses a log scale - for the AT-TLS using TLS 1.3 (software) configuration, the costs
attributed to the channel initiator and the TCP/IP address space are approximately equal, at
4.8 CPU milliseconds per transaction.

e Cost of transporting the message is up to 36% lower when using AT-TLS to protect the
message, depending on cipher used.

e Channel initiator costs are up to 50% lower when using AT-TLS.

Request/Reply transport cost using 1MB non-persistent messages

AT-TLS - TLS1.3 (sw) | e
ma-TLs1.3 sw) I
AT-TLs-Tis1.3 (Hw) | |
ma-TLs1.3 (Hw) | —
At-TLs-Tes 1.2 |
ma-TLs1.2 |

1 10 100 1000 10000 100000

CPU microseconds (3931-706 on each LPAR) - log scale

EQmgr ®Channel Initiator OTCP/IP

161

Notes on preceding chart:

e Chart uses a log scale - for the AT-TLS using TLS 1.3 (software) configuration, the costs
attributed to the channel initiator and the TCP/IP address space are approximately equal, at
73 CPU milliseconds per transaction.

e Cost of transporting the message is up to 46% lower when using AT-TLS to protect the
message, depending on cipher used.

e Channel initiator costs are up to 62% lower when using AT-TLS.

Is the reduced cost reflected in a throughput improvement?

As the previous measurements have shown, there is potential for reduced CPU cost when transport-
ing MQ data over networks protected by AT-TLS encryption rather than protecting MQ channels
using the SSLCIPH channel attribute.

Those cost differences vary depending on the message size and the cipher used. In the measurements
reported previously, the cost differences were:

e TLS 1.2 (hardware) - between 18-31% lower cost using AT-TLS.
e TLS 1.3 (hardware) - between 25-47% lower cost using AT-TLS.
e TLS 1.3 (software) - between 2.7-7% lower cost using AT-TLS.

When hardware can be exploited, we observed a cost saving from AT-TLS rather than MQ and
System SSL services, but this saving is negligible when using ciphers that have to be processed in
software cycles.

In terms of transaction rates, the benefits are less clear - generally the round-trip times are similar
when using ciphers able to exploit hardware encryption, and using these ciphers the workloads are
constrained by network limits. It is worth noting that the encryption/decryption of data when using
AT-TLS is on the same TCPIP thread as the network send /receive request. This can lead to network
sizing windows to be less optimal than when using MQ with System SSL.

Additionally, with regards to TLS 1.3 cipher TLS_CHACHA23_P0OLY1305_SHA256, the AT-TLS through-
put degraded relative to the MQ with System SSL configuration, particularly as the message size
increased.

Table: Comparing the average transaction round-trip times (milliseconds) using TLS 1.3 (software)
cipher TLS_CHACHA23_POLY1305_SHA256:

. Mo [Mai [RITEER
Message Size System SSL AT-TLS rd-trip

time

2KB 1.04 1.00 -4

16KB 3.96 3.83 -3.3

32KB 7.10 7.01 -2.2

64KB 13.36 13.90 +4

1MB 202.47 202.57 +0.05

In the 1IMB measurement using the AT-TLS with cipher TLS_CHACHA23_P0OLY1305_SHA256, the mea-
surement was able to achieve the same XBATCHSZ as the MQ with System SSL configuration, but
saw a significant increase in NETTIME, rising from between 1-4 milliseconds up to 5-10 millisec-
onds, due to MQ’s collection of NETTIME data including AT-TLS’ encryption and decryption of
the data.

162

Why is there no improvement to transfer rate despite the transport cost being reduced?

The model used by Comms Server and AT-TLS to protect the data is a simple one - an SRB per
socket processes the request - this processing involves both the encryption and sending of the data.
As a result the send of the data over the network cannot begin until the encryption of the data is
complete.

Similarly at the receiving-side, the SRB will receive the data and decrypt it, before becoming avail-
able to receive more data.

With the extended time that the encryption and decryption takes when using AT-TLS, particularly
with cipher TLS_CHACHA23_POLY1305_SHA256 with larger payloads, the SRB is blocked for longer
periods.

By contrast, MQ has dedicated tasks for the network interaction (dispatchers) and separate tasks for
the encryption workload (SSL tasks). This enables MQ to be able to run encryption of one message
on an SSL task in parallel with sending another message (or indeed chunk of a large message) over
the network using a dispatcher task.

163

Starting and stopping MQ channels protected by AT-TLS

The rate and cost at which MQ channels are able to start and stop is particularly of interest where
the channels are starting and stopping regularly, perhaps due to a sudden increase or decrease in
workload.

Both this document in section “Channel start and stop rates and costs” and the MQ for V9.2.0 per-
formance report provide example costs and achieved rates when starting and stopping MQ channels,
with and without MQ ciphers.

The cost of starting MQ channels with TLS 1.3 ciphers has been reduced since the initial release of
MQ for z/08 v9.2 due to several reasons:

e A substantial performance improvement in ICSF FMID HCR77D1 which reduces the cost of
the key share handshake.

e MQ reduces the number of client key shares used - this code is only available in MQ for z/OS
CD releases v9.2.2 onwards.

The measurements relating to channel start and stop performance in this section use the MQ for
z/08S 9.3 code base.

The information in this section is based upon a comparison of the starting and stopping of 4000
outbound (sender) MQ channels, that have been defined between two z/0S queue managers hosted
on separate LPARs of a single IBM z16. The distance between the channel end-points will affect
the rate at which a channel can start, as a high latency network will increase the time taken for the
handshake process, involving multiple flows between channel initiators, to complete.

The channels are configured as defined below:

Type MQ SSL/TLS cipher AT-TLS cipher
TLS 1.2
(hardware - CPACF) || TLS_RSA_WITH_AES_256_CBC_SHA256 TLS_RSA_WITH_AES_256_CBC_SHA
TLS 1.3
(hardware - CPACF) TLS_AES 256 GCM_SHA384 TLS_AES 256 GCM_SHA384
TLS 1.3
(software) TLS CHACHA20 POLY1305 SHA256 TLS_CHACHA20 POLY1305 SHA256

The AT-TLS configuration used in these measurements specifies the server-side HandshakeRole
serverWithClientAuth in the TTLSEnvironmentAction statement.

Additionally, the channels protected using AT-TLS ciphers are configured to use default options in
the TTLSEnvironmentAdvancedParms statement for:

e Renegotiation
e RenegotiationIndicator
e RenegotiationCertCheck

Enabling certificate checking and full or abbreviated renegotiation may affect the costs observed.

164

https://ibm-messaging.github.io/mqperf/MQ for zOS V920 Performance.pdf

AT-TLS start channel performance

Chart: Start channel rate

MQ + SSL vs AT-TLS: MQ Channel Start rate

TLS 1.3 (S/W)

AT-TLS TLS 1.3 (H/W)
TLS1.2 (H/W)

TLS 1.3 (S/W)

MQ TLS 1.3 (H/W)
TLS 1.2 (H/W)

No security

50 100 150 200 250 300 350 400 450 500

(=]

Channels started per second

Notes on preceding chart:

Enabling secure channels has an immediate impact on the sate at which MQ is able to start the
channels:
e Channels secured using MQ with System SSL are able to start at approximately 40% of the
rate of unsecured channels.

e Channels secured using AT-TLS are able to start at between 70 to 80% of the rate of unsecured
channels.

Chart: Start channel cost
MQ + SSL vs AT-TLS: Cost of starting MQ channel
® MQ CHIN = TCPIP

TLS 1.3 (S/W)
AT-TLS TLS 1.3 (H/W)
TLS1.2 (H/W)
TLS 1.3 (S/W)
MQ TLS 1.3 (H/W)
TLS 1.2 (HW)
No security GG
0 100 200 300 400 500 600 700 800 900 1000

CPU microseconds per channel start

Notes on preceding chart:

With secure channels, MQ using System SSL does see a small increase in TCPIP costs but the
additional cost is primarily in the channel initiator address space.

e For the TLS 1.2 cipher used, this results in the channel initiator cost doubling that of an
unsecured channel.

e For the TLS 1.3 cipher where hardware support is available, the channel initiator cost is 2.2
times that of the unsecured channel.

165

e For the TLS 1.3 cipher without hardware support, the channel initiator cost of the channel
start is 2.4 times that of the unsecured channel.

With channels secured using AT-TLS, the impact is primarily in the TCPIP address space, and in
terms of CPU cycles is typically far less than those observed in the MQ channel initiator.

e For the TLS 1.2 cipher, the TCPIP cost increases from 10 to 100 microseconds.

e For the TLS 1.3 cipher with hardware support, the TCPIP cost increases from 10 to 205
microseconds.

e For the TLS 1.3 cipher without hardware support, the TCPIP cost increases from 10 to 245
microseconds.

It is also important to consider that with the current configuration, MQ is able to offload some of
the cryptographic processing to the CryptoExpress hardware (both co-processor and accelerator) at
channel start, whereas the AT-TLS configuration is not using cryptographic hardware.

AT-TLS stop channel performance
Costs attributed to the MQ channel initiator for stopping channels are of the order:
e 340 CPU microseconds for unprotected channels, or channels protected by AT-TLS policies.
e 450 CPU microseconds for channels protected by System SSL.
TCPIP costs when stopping MQ channels were of the order:
e 10-15 CPU microseconds per channel with not protected by AT-TLS policies.
e 30-60 CPU microseconds when protected by AT-TLS policies.

Should I use AT-TLS to provide encryption of my MQ channels?

Using AT-TLS to provide encryption of MQ channels may offer a substantial reduction in CPU cost
in the MQ channel initiator when compared with using MQ’s own implementation using System
SSL, and this typically results in a net reduction when including the additional CPU cost in the
TCPIP address space.

With regards to the processing model that TCPIP uses, i.e. a single task per socket which encrypts
and sends data, or receives and decrypts the data, despite the cost reduction there is not always a
commensurate improvement in throughput. There are instances when MQ is able to exploit parallel
processing when sufficient SSL tasks and dispatchers are available such that MQ can achieve parity
or indeed higher throughput over the channels.

Using AT-TLS does allow the user greater control over the security settings implemented but as a
result, does require further understanding of the ramifications whether choosing particular options
or indeed of relying on the defaults.

However, since AT-TLS is not fully integrated with M@, this can prevent customers from using
various MQ security controls and can make configuring some security scenarios more difficult.

166

Costs of Moving Messages To and From z/0OS Images

This section considers the total CPU costs of moving messages between queue managers in separate
z/0S images. A driver application attached to a queue manager in LPAR 1 puts a message to a
remote queue which is defined on a queue manager running in LPAR 2. A server application in
LPAR 2 retrieves any messages which arrive on the local queue.

No code page conversion costs are included in any “MVS to MVS” measurements. See “How much
extra does code page conversion cost on an MQGET?” for an estimate of typical MQFMT STRING
code page conversion costs.

LPAR1 LPAR 2

Sender App Receiver App

Notes on diagram:
e Each z/0S image was a 3-CPU logical partition (LPAR) of an IBM z16 (3931-7KO0).
e The MVS systems were connected via a 10Gb Ethernet network.

e The driver application continually loops, putting messages to the remote queue but ensures
queue has maximum queue depth of 1.

e The server application continually loops, using get-with-wait to retrieve the messages.
e Neither application involves any business logic.

e The server application runs non-swappable.

e The queue is not indexed.

e All non-persistent messages were put out of syncpoint by the sender application and got out
of syncpoint by the server application.

Measurements were made with two different channel settings:
e BATCHSZ(1) with BATCHINT(0) and NPMSPEED(FAST)
e BATCHSZ(50) with BATCHINT(1000) and NPMSPEED(FAST)

As mentioned in the “Tuning channels - BATCHSZ, BATCHINT and NPMSPEED” section, if all
messages flowing over the channel are guaranteed to be non-persistent and the channel is running
over a high-latency network, it may be of benefit to set the BATCHINT and BATCHSZ to higher

167

values. In our low-latency system, we set BATCHINT(100,000) and BATCHSZ(5000) and saw
similar performance (cost and throughput) as the BATCHINT(1000) BATCHSZ(50) configuration.

The chart below show the CPU costs in both systems for non-persistent messages with a variety of
message sizes for the queue manager and channel initiator address spaces.

NOTE: In the following 2 charts, there is only 1 requester and 1 server application, but by setting
the BATCHINT to 1000 to keep the batch open for longer, the cost is significantly reduced.

Cost per transaction in queue manager and channel initiator
with a NPMSPEED(FAST) channel

Single direction workload using non-persistent out-of-syncpoint messages
Costs include sender and receiver MQ MSTR and CHIN address spaces

70
60

50

40

30 - /

20

10

3931-703 CPU microseconds | fransaction

0 5000 10000 15000 20000 25000 30000 35000

Message Size (bytes)

—— BATCHINT(0) BATCHSZ(1) —e— BATCHINT(1000) BATCHSZ(50)

Contrast the previous chart with the following that shows using a channel with NPMSPEED(NORMAL).
With NPMSPEED(NORMAL) the effects of holding the batch open with BATCHINT and the cost

of channel syncpoints becomes clear.

Cost per transaction in queue manager and channel initiator
with NPMSPEED(NORMAL) and BATCHSZ(50) channels..

Single direction workload using non-persistent out-of-syncpoint messages
Costs include sender and receiver MQ MSTR and CHIN address spaces

4500
4000
3500
3000
2500
2000
1500
1000
500
0

4

= = o— @
v— = = ¥
0 5000 10000 15000 20000 25000 30000 35000

3931-703 CPU microseconds / transaction

Message Size (bytes)

—— BATCHINT(1) —e— BATCHINT(1000) —%— BATCHINT(0)

NOTE: With NPMSPEED(NORMAL), the achieved batch size was 1, but varying the BATCHINT
to 0 made a significant difference to the transaction rate. For example:

168

e With 1 requester and a BATCHINT(1000), only 1 message per second is flowing over the
sender channel.

e With NPMSPEED(NORMAL) and BATCHINT(0), the rate increased to 1460 messages per
second.

Non-persistent messages - NPMSPEED(FAST)
For BATCHSZ(1) on IBM z16, the CPU usage is approximately:

The total (sender and receiver queue manager and channel initiator) cost:

(38.53 4 0.0007S) CPU microseconds per transaction,
where S is the size of the message expressed in bytes.

The costs are shared evenly between the sender and receiver end.
E.g. for a 10 KB message this is:

38.53 + (0.0007 * 10240) = 45.7 CPU microseconds - approximately 22.85 at the sender end
and 22.85 at the receiver end.

For BATCHSZ(50) on IBM z16, the CPU usage is approximately:

The total (sender and receiver queue manager and channel initiator) cost:

(22.16 + 0.00058S) CPU microseconds per message
where S is the size of the message expressed in bytes

E.g. for a 10KB message this is:

22.16 + (0.00058 * 10240) = 28.1 CPU microseconds - approximately 14 CPU microseconds at the
sender end and 14 at the receiver end.

These algorithms produce figures which are within 10% of the measured figure for the range shown
in the charts.

169

Persistent messages

All persistent messages were put within syncpoint by the sender application and got within syncpoint
by the server application. Measurements were made with four different configurations all using
NPMSPEED(NORMAL):

o BATCHINT(0), BATCHSZ(1)
e BATCHINT(0), BATCHSZ(50) with achieved batch size of 1.
e BATCHINT(0), BATCHSZ(50) with achieved batch size between 5 and 12.
e BATCHINT(1000), BATCHSZ(50) with achieved batch size of 35 to 48.
The chart below show the total CPU usage in both systems for persistent messages with a variety

of message sizes.

Cost per transaction in queue manager and channel initiator
with NPMSPEED(NORMAL)

Single direction workload using persistent in-syncpoint messages
Costs include sender and receiver MQ MSTR and CHIN address spaces

350
300
250
200
150

100

3931-703 CPU microseconds / transaction

50

0 5000 10000 15000 20000 25000 30000 35000

Message size (bytes)

—B— BATCHSZ(1) —&— BATCHSZ(50) with achieved batch size 1
BATCHSZ(50) with achieved batch size 5 to 12 —a&— BATCHSZ(50) BATCHINT(1000) with achieved batch size 35 to 48

A reduction in the CPU usage at both ends of the transaction when conditions allow a batch size
greater than 1 can be achieved. A slow rate of MQPUT with BATCHSZ(50) will see the achieved
batch rate drop to 1 and the associated cost per transaction increase to parity with BATCHSZ(1).
Reducing the number of batches results in a reduction in the number of channel synchronisations
and TCPIP transactions per message.

Note: That this reduction in CPU is dependent upon messages being put at a suitable rate. In
a more realistic situation where the achieved batch size is close to 1, the CPU usage increases, as
shown by the top line in the chart.

The lowest CPU costs are achieved when the application unit of work exactly matches the channel
BATCHSZ or the BATCHINT parameter.

For capacity planning purposes it is safest to assume BATCHSZ(1) will be used. If it is known that
a higher batch size can consistently be achieved, a higher figure may be used.

170

An approximate straight line algorithm is presented here for the CPU usage with BATCHSZ(1)
on IBM z16:

The total (sender and receiver queue manager and channel initiator) cost:

(223 + 0.003S) CPU microseconds per message
where S is the size of the message expressed in bytes

e.g. for a 10KB message this is:

223 + (0.003*10240) = 253.7 CPU microseconds — with approximately 128 at the sender end and
124 at the receiver end.

This represents the ‘best choice scenario’ for persistent messages where the achieved
batch size is undetermined.

This algorithm produces figures which are within 10% of the measured figure for the range shown
in the charts.

The chart below shows the achieved transaction rate using persistent messages with a variety of
message sizes.

Transaction rate with NPMSPEED(NORMAL)
Single direction workload using in-syncpoint persistent messages
8000
7000
6000
5000
4000

3000

Transactions / second

2000

1000 A +

0 5000 10000 15000 20000 25000 30000 35000

Message Size (bytes)

—m— BATCHSZ(1) ~+—BATCHSZ(50) with achieved batch size 1
BATCHSZ(50) with achieved batch size 5 to 12 —&— BATCHSZ(50) BATCHINT(1000) with achieved batch size 35 to 48

Note: The best performance was obtained when the batch was held open for the minimum amount of
time for the available work. The BATCHSZ(50) measurement that achieved batch size of 5 to 12, was
able to complete the batch with the 12th message, whereas the measurement with BATCHINT (1000)
held the batch open for 1 second in an attempt to try to achieve the target batch size of 50. As
there was insufficient work to achieve the full batch, the end of batch flow occurred at BATCHINT.

171

Chapter 4

System

Hardware

DASD

There are limits to persistent message rates achievable

e Because of upper bounds to the overall data rate to a IBM MQ log, see “Upper bound on
persistent message capacity - DASD log data rate” to overcome any such limit then either
faster DASD or more queue managers will be required.

e Because of upper bounds to the log I/O rate achievable by a single application instance, which
may be required where messages must be processed in strict order.

e There is a limit to the maximum number of messages through one queue, see Maximum
throughput using non-persistent messages.

Maximum request/reply throughput (DS8900F)

The following chart shows the maximum throughput we could achieve with many request and reply
applications for a range of message sizes. Sufficient processors were available so they were not a
limiting factor in the throughput capacity.

As can be seen in the following chart, the underlying disk technology can make a significant difference
in the rate that MQ is able to log messages.

172

Maximum persistent message throughput - logs with 4 stripes

088870 v DSBI0OF

40000 36072
35000
30000
25000
20000
15000

Messages / second

10000
5000

kil
=

0 20000 40000 60000 80000 100000 120000

Message Size (bytes)

- DSB870 (tiped) —+— DSBOUOF (stipec) —¥— DSBO0OF (skipec] with ZHPF

Upper bound on persistent message capacity - DASD log data rate

The maximum total IBM MQ system capacity for persistent messages is bounded by the maximum
data rate sustainable to the DASD subsystem where the IBM MQ logs reside. For IBM MQ with
dual logging, the maximum sustainable data rate for messages put at one message per commit
and got at one message per commit is about:

Log data set DASD type 1KB messages 5KB messages | 1 MB messages
RVA-T82 2.3 MB/sec 2.8MB/sec

ESS E20 with ESCON 5.3 MB/sec 7.1 MB/sec

ESS F20 with ESCON 7.1 MB/sec 10.2 MB/sec 11.3 MB/sec
ESS F20 with FICON 7.4 MB/sec 13.0 MB/sec 15.6 MB/sec
ESS 800 10.0 MB/sec 16.5 MB/sec 24 MB/sec
DS8000 (RAID 5) 14.9 MB/sec 36.0 MB/sec 68.1 MB/sec
DS8000 (RAID 10) 15.6 MB/sec 36.1 MB/sec 68.6 MB/sec
DS8800 (RAID5) 32.1 MB/sec 62.4 MB/sec 128.7MB /sec
DS8870 (RAID 5) with 4-stripes 47.8 MB/sec 98.5 MB/sec 215 MB/sec
DS8870 (RAID 5) with 4 stripes

plus zHPF enabled 64.7 MB/sec 136.4 MB/sec 337.5 MB/sec
DS8900F (RAID 5) with 4

stripes 95 MB/sec 193 MB/sec 404 MB/sec
DS8900F (RAID 5) with 4

stripes plus zZHPF enabled 112 MB/sec 243 MB/sec 445 MB/sec

Note: Performance data from DASD types prior to DS8870 are included for comparison purposes,
however the measurements are not directly comparable as they span different levels of IBM MQ and
System Z hardware.

These are the peak rates on our system configuration. It is usually prudent to plan not to exceed
50% of the rates attainable on the target system particularly where message response time and not
just overall message throughput is important.

173

What is the effect of dual versus single logging on throughput?

On our system use of single logging rather than dual logging increased throughput from between 5%
for small messages to 50% for 1IMB messages. On a system with significant DASD constraint, use
of single logging might enable a much more significant throughput increase, for example on DS8870
where we saw cache contention, the single logging was able to log at up to 80% higher. Use of single
logging would mean there is a single point of failure possibility in your system.

Will striped logs improve performance?

Switching to active logs which use VSAM striping can lead to improved throughput in situations
where performance is being constrained by the log data rate. The benefit obtained from using VSAM
striping varies according to the amount of data being written to the log on each write. For example,
if the log dataset has been set up with 4 stripes, a log write carrying a small amount of data such
that only one stripe is accessed will gain no benefit at all, while a log write carrying sufficient data
to access all 4 stripes will gain the maximum benefit.

The increased logging rate achieved by using striped active logs will result in the log filling more
quickly. Prior to IBM MQ version 8.0.0 however, the time taken to archive a log dataset is unchanged.
This is because archive log datasets must not be striped as the BDAM backwards reads required
during recovery are not supported on striped datasets. Thus the possibility of needing to reuse a
log dataset before its previous archive has completed is increased. It may therefore be necessary
to increase the number or size of active log datasets when striping is used. If you attempt to
sustain these maximum rates to striped logs for long enough then eventually you will
fill all your active logs with consequent unacceptable performance.

Version 8.0.0 saw the changing of archive datasets from BDAM to QSAM, which allows the allocation
to exceed 65,535 tracks and the striping of the archive logs. Striping of the archive logs may result
in an improved rate of offload. We did see an increase in cost in the queue manager address space
when using archive datasets larger than 65,535 tracks when the dataset is using extended format.

In summary, striped logs are most likely to be of use where there is a reasonably predictable amount
of large messages in a particular time period such that the total amount of data to be logged does
not cause the active logs to be filled.

Should MQ for z/0OS use log striping?

There is an article from Db2 for z/OS named “Db2 log striping recommendation” that suggests on
modern DASD, Db2 customers are discouraged from striping Db2 logs with today’s disk subsystems.

In our measurements on DS8900F, striped MQ logs were able to sustain log rates of up to 50%
higher than non-striped logs when using messages of 64KB or larger.

Will striped logs affect the time taken to restart after a failure?

The recovery process will need to read active logs and this is significantly quicker with striped
datasets, particularly for the backward recovery phase. It may also involve reading archived log
datasets that cannot be striped. Thus any use of archive log datasets during recovery will not
be quicker. It is possible to minimise or even eliminate the possibility of an archive log being
required during recovery. This requires pageset and if using shared queue, CF structure backup, at
appropriate intervals and appropriate reaction to any CSQJ160I messages concerning long running
units of recovery with a STARTRBA no longer in active logs. With version 6, implementation of
log shunting, archive log datasets will not be used for recovery unless pageset or CF structure media
recovery is required.

174

https://www.ibm.com/support/pages/db2-log-striping-recommendation

Benefits of using zHPF with IBM MQ
What is zHPF?

High Performance FICON for System z (zHPF) is a data transfer protocol that is optionally employed
for accessing data from IBM DS8000 storage and other subsystems and was made available for System
z in October 2008.

zHPF may help reduce the infrastructure costs for System z I/O by efficiently utilizing I/O resources
so that fewer CHPIDs, fibers, switch ports and control units are required.

When can it help with IBM MQ work?

zHPF is concerned with I/0 to DASD, so queue managers that are used for non-persistent workload
may see little benefit.

Similarly, where the LPAR is running with low volume I/0, it is unlikely that using zHPF will give
much benefit.

Where multiple queue managers exist on the same LPAR and are processing high volume persistent
workload, whether local or shared queue, zZHPF may be able to provide an increase in the throughput
rate.

e Where throughput was restricted by the number of I/O channels available and then zHPF was
enabled, we saw a doubling of throughput.

e Where throughput was restricted by the DASD logging rate, enabling zHPF saw a 17% increase
in transaction rate.

e With larger messages (1MB and larger) using zHPF and striped logs, throughput was increased
by 55%.

175

Network

The measurements run in this document have been typically run on our dedicated performance
network which is rated at 1Gb.

When we moved onto a dedicated 10Gb performance network, we saw a number of changes:
e Measurements were more consistent.

e Response times for measurements with low numbers of channels were slightly faster than when
run on the slower network.

e CPU became the constraint point rather than network.

e Dedicated CHPIDs on LPARs that perform high volume network traffic gave significantly
better performance than shared CHPIDs — even when RMF shows CHPID is not at capacity.

By moving onto a more modern network with greater capacity we haven’t greatly improved a single
channels peak transmission rate, but we have been able to increase the number of channels driving
data to exploit the additional band-width.

Our network is high-bandwidth low-latency which means we can expect good response times for
request /reply type workloads.

It is important to consider what sort of network you have and tune your channels accordingly.

For example, a high-bandwidth high-latency network would not be ideal for a request-reply type
workload. It would be more suited to sending large batches of data before waiting for acknowl-
edgment, perhaps looking at batch size and batch intervals to keep the batch open for longer. In
addition, if work can be spread across multiple channels to exploit the high-bandwidth this may
help.

On a low-bandwidth high-latency network, it might be appropriate to consider message compression,
but there will be a trade-off with increased CPU costs which vary with compression algorithm. The
usage of zEDC with channel compression type ZLIBFAST may reduce the compression costs.

Troubleshooting network issues

Some of our performance measurements started to show a regression in throughput when using
TCP/IP to transport messages between 2 LPARs on the same sysplex. We had a good set of baseline
data, so could see that the performance was significantly down, despite making no code changes nor
applying any system updates. The tests used NETSTAT to monitor channel throughput and we
could see occasional re-transmissions, particularly for larger messages (1MB). NETSTAT also showed
the throughput rate on a "per second" basis for large messages was very varied.

The tests that were most impacted were streaming persistent messages from LPAR A to LPAR C.
We tried moving the workload onto different LPARs e.g. moving from LPAR A to B and then LPAR
B to C. The performance was only degraded when the target system was LPAR C.

This was an important factor in diagnosing the problem as we knew that LPAR A and B shared an
OSA, and LPAR C had its own OSA. The connection from A and B went via a switch to C.

Changing the direction of the streaming so that the flow was LPAR C to A, and we got the expected
(good) performance.

At this point we suspected a failing Small Form-Factor Pluggable (SFP) which converts optical
connections to copper connections and are present in LAN/SAN cards/switches. We took the switch
out of the equation by connecting the 2 OSAs directly - and the performance improved back to the
expected baseline rate. We then tried putting the switch back in with a different cable, and the
performance remained at the expected baseline rate, so the problem was cable-related.

What can we take from this?

176

Know what your system does and the achieved throughput rates.

Monitor your system, even when it is working well, so you have something to compare with,
when an issue arises.

If you need to make changes, do them one at a time so you can measure the impact of each
specific change.

Know what changes have been applied, so you can discount them if necessary.

Sometimes it’s not the software.

177

IBM MQ and zEnterprise Data Compression (zEDC)

IBM®) zEnterprise®) Data Compression (zEDC) capability and Peripheral Component Interconnect
Express (PCle or PCI Express) hardware adapter called zEDC' Ezpress were announced in July 2013
as enhancements to the IBM z/OS®) V2.1 operating system and the IBM zEnterprise EC12 (zEC12)
and the IBM zEnterprise BC12 (zBC12).

zEDC is optimised for use with large sequential files, and uses an industry-standard compression
library. zEDC can help improve disk usage and optimize cross-platform exchange of data with
minimal effect on processor usage.

There are a number of uses for zZEDC which may affect the performance of the IBM MQ product
including:

e Channel compression using ZLIBFAST. The performance benefits are discussed in Channel
compression on MQ for z/0OS.

e Compressing archive logs to reduce storage occupancy.

e IBM MQ and zEDC with SMF, which discusses the impact of capturing accounting data in a
high volume, short-lived transaction environment.

On the IBM z15, the zEDC function was re-located from PCle to on-chip, no longer being an
optional feature. This re-location can result in improved performance of compression function.
On-chip compression works in 2 modes.

1. Synchronous execution for problem state, as used by ZLIBFAST channel compression.
2. Asynchronous optimizations for large operations under z/OS, such as compressing archive logs.

Those operations performed using the synchronous execution mode see the largest improvement
when moving to z15, with details available in the report “MQ for z/OS on z15".

Reducing storage occupancy with zEDC
Can I use zEDC with MQ data sets?

Sequential files allocated by using basic sequential access method (BSAM) or queue sequential access
method (QSAM) can be compressed using the IBM zEnterprise Data Compression Express (zEDC
Express) feature.

In an MQ subsystem, this means that archive data sets are eligible for compression.

What benefits might I see?
There are a number of benefits which using zEDC to compress MQ archive logs may bring:

e Reduced storage occupancy of archive volumes, meaning more archives can be stored
on the same number of 3390 volumes. The compressibility of the messages logged will be the
largest factor in the archive data set size reduction.

e Reduced load on the I0 subsystem, which in a constrained subsystem could improve
response rate on other volumes.

In our tests with dual logs and dual archives where the IO subsystems’ cache was seeing
increased disk fast write bypass (DFWBP) on the control unit used by both log copy 2 and the
archive volumes, enabling archive log compression resulted in the response times from the I/0
to log copy 2 reducing, with DFWBP being 0, which manifested in up to a 94% improvement
in peak throughput with large messages.

178

https://ibm-messaging.github.io/mqperf/MQforZOS_ChannelCompression.pdf
https://ibm-messaging.github.io/mqperf/MQforZOS_ChannelCompression.pdf
http://ibm-messaging.github.io/mqperf/MQ_for_zOS_on_z15.pdf

What impact might I see?

The process of compressing, or indeed attempting to compress the MQ archive logs may result in a
small increase in queue manager TCB costs. For a queue manager running a dedicated persistent
workload with the intent to drive the MQ log process to its limit for a range of message sizes, we
observed the queue manager TCB cost increase for the zEDC enabled measurements.

The following table is a guide to how much the queue manager TCB cost increased:

Message Size 4KB 32KB 1MB 4MB
Increase in QM TCB over non-zEDC

measurement +4% +4% +5-7% +4-10%
Increase in peak throughput 0% up to 4% 44-72% 50-94%

Note: Some of the increase in queue manager TCB is associated with the increased peak log rate,
but there is some additional cost on MVS from the allocation/releasing of the target compression
buffer plus some costs in setting up the call to the zEDC hardware. The increase in queue manager
TCB is more significant with larger less compressible messages.

Reading the MQ archive data sets, such as when the “RECOVER CFSTRUCT” command was
issued, was impacted when the archives were compressed using zEDC. This impact took the form of
both a reduced read rate coupled with an increase in queue manager TCB costs for decompressing
the data.

The following table summarises the results of a “RECOVER CFSTRUCT” command resulting in
the recovery of 4GB of data.

Uncompressed Archives compressed
Archives using zEDC
Recovery Rate (MB /sec) 60 18
Cost per MB (CPU ms) 1.7 24

The numbers in the table are based upon a MQ for z/OS 9.3 queue manager with 4GB of data
stored on shared queues with data offloaded to SMDS. For the purposes of the backup and recovery
tests, the queue manager is configured with single logs and single archives. The queue manager
is configured with just 2 small active logs so that the majority of the data being backed up and
recovered is stored on archive logs. The data on the queues is highly compressible. The costs are
based on the measurements running on an LPAR with 3 dedicated processors of a 8561-7A1 (z15).

Note that when data is recovered solely from active logs, the recovery rate on our system was
370MB /second compared to the 60MB /second achieved when reading data back from archive logs.

When MQ is writing archive logs are a high rate the RMF PCIE report indicated that the single
configured zEDC processor for the logical partition was running up to 70% utilised when compressing
the dual archive logs for a single MQ queue manager. This peak usage occurred when the message
was incompressible. With highly compressible messages at the peak logging rate, the zEDC processor
was 50% utilised.

The PCle I/O drawer in which the zEDC Express feature can be installed, can support up to 8
features with each feature able to be shared across 16 logical partitions. Sufficient zEDC features
should be available to avoid impacting other users of the feature.

How we set up for testing

For the initial configuration we used Redbook “Reduce Storage Occupancy and Increase Operations
Efficiency with IBM zEnterprise Data Compression”. Within this document, sections 4.2 to 4.5 were
of particular interest as they discuss DB2 log archive data sets.

179

http://www.redbooks.ibm.com/redbooks/pdfs/sg248259.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg248259.pdf

For our testing purposes, we already had a storage group for the MQ archive data sets, so we defined
a dataclass of ZEDC, specifying ZR (zEDC required) for compaction and the data set name type of
EXTENDED.

We also defined a storage group MQZEDC that was based on the existing MQMARCH storage
group and added a similar number of volumes to the group.

Note, the zEDC feature was already enabled on the test system.

What to watch out for

The initial set up did not specify a value of EXTENDED for the data set name type - as a result
measurements showed similar size archive and log data sets - indicating the data was incompressible
or that no compression was attempted.

A subsequent review of the PCIE XML report produced by program ERBRMFPP indicated the
zEDC processor was not being used.

The PCIE report can be generated by specifying “REPORTS(PCIE)” and viewing the contents of
the XRPTS DD card, which contains data generated in XML format.

Note that on z15, the PCIE report has been replaced with the Extended Asynchronous Data Mover
(EADM) report which can be generated by specifying “REPORTS(EADM)”.

Measurements

On our performance system, measurements were run using a range of message sizes from 2KB to

4MB.

The queue manager was configured with dual logs and dual archives. There were sufficient logs
available such that a slow archive would not delay log reuse.

Measurements were run on an LPAR with 3 dedicated processors on a 3906-7TE1 with a dedicated
DS8870 with FICON Express 16S links.

The I/O subsystem was configured such that log copy 1 used control unit 7004, and log copy 2 plus
the archive logs used control unit 7128.

The following chart demonstrate the maximum sustained log rate where the data is minimally
compressible.

In these measurements, an increase in log rate was observed when archive log compression was
available for messages larger than 64KB, with a 50% improvement in log rate with 4MB messages.
Given the data is uncompressible, this may be a side effect of moving to the EXTENDED archive
data sets. Extended archive data sets have been supported since MQ version 8.0.

180

Impact of zEDC enabled archive logs

—— No compression —#— 0% Compress

450
400
350
300
250
200
150
100
50
0
2048 4096 16384 32768 65536 1048576 2097152 4194304

Message size (bytes)

MB / Second logged

—il

How compressible is the data?

The following chart demonstrates the increase in log rate as the data becomes more compressible:

Impact of message compressibility on performance of compressed archives
—— No compression —#— 0% Compress 20% Compress
—#&—40% Compress —#— 60% Compress 80% Compress
600.00
500.00
B 400.00
[=:}
g
E 300.00
3
w
= 200.00
=
100.00
0.00
1000 10000 100000 1000000 10000000
Message size (bytes) - log scale

Highly compressible large messages benefit more from being compressed, and in our measure-
ments where 4MB messages could be compressed by 80%, the log rate increased by 94%, to
529MB /second, compared to non-compressed archives.

181

Whether the I/O subsystem is constrained

As the data logged becomes more compressible, the amount of data written reduces, putting less
load on the I/O subsystem.

With our configuration of the archive data sets using the same control unit as log copy 2, the MQ
SMF data showed:

After L/0
time in uSec,

Note the difference in average I/0 time between log copy 1 and log copy 2, particularly when writing
multiple pages.

We can also see from the Cache Subsystem Report that control unit 7128 shows signs of disk fast
write bypass (DFWBP).

By contrast the equivalent measurement from the 0% compressible measurement shows no DFWBP
on either control unit and the MQ SMF data shows:

_write reguests, i, After 140
' , time in U

Note the significant reduction in log copy 2’s average 1/O time, reducing from 1218 to 897 which is
much more in-line with the log copy 1 time.

There is also a reduction in the DFWBP counts when compression is enabled as demonstrated in
the following extract from the Cache Subsystem RMF report:

nall CU-ID TYPE CACHE WS I/0 OFF --CACHE HIT RATE-
A0 OFL CF

B7/01 0,0 655, 0,0 0,0 0,0 0,0 0.0 0,0

0,0 00 00 0.0 0,0 0.0 0,0 0,0 0.0

182

IBM MQ and zEnterprise Data Compression (zEDC) with SMF

IBM MQ allows customers to enable accounting data to be captured and written to the MVS System
Management Facility (SMF).

We have found that with short-lived transactions, such as CICS transactions, that the transaction
rate can exceed the rate at which IBM MQ can write data to SMF. As a result, some accounting
data can be lost — and this loss is reported via the MQ queue manager job log.

In z/0S v1.9, SMF allowed data to be written to log streams rather than data sets and this gave an
immediate improvement to the rate at which IBM M(Q can write accounting data to SMF.

Note: When the transaction rate exceeds the rate at which IBM MQ can write to logstreams,
warning messages are only written to the system log.

Using z/0S 2.1 and the zEDC feature, log streams can be compressed using hardware compression
which can significantly increase the rate at which MQ can sustain accounting data being written to
SMF.

CICS Transaction Rate Achieved

All transactions monitored with MQ Accounting Class(3) enabled

W SMF written to Dataset
m SMF written to LogStream
m SMF written to LogStream with hardware compression

80000
70000
60000
50000
40000
30000
20000
10000

CICS Tranzactions ! second

The diagram above shows that moving from SMF data sets to log streams resulted in a doubling of
the transaction rate without loss of accounting data.

Using hardware compression on SMF log streams in conjunction with IBM MQ’s accounting trace
allowed a further 3.8 times higher throughput through a single queue manager to be recorded for
accounting purposes.

183

Data set encryption

Data set encryption (DSE) was originally implemented in z/0S v2r2, and initial MQ support in
version 8.0 was limited to archive logs and BSDS.

In MQ 9.2, support for data set encryption is enabled for active logs, page set and shared message
data sets (SMDS).

Table: MQ data set type and encryption support statement

Data set Pre-9.2 9.2
BSDS Supported Supported
Sequential Supported Supported
No - Abend
Page set 0 5C6-00C91400 Supported
No
Page sets 1-99 MQRC 2193 “Pageset error” Supported
No - Abend
Active logs 5C6-00E80084 Supported
Archive logs Yes - V8 onwards Supported
No
SMDS SMDS marked avail(error) Supported

Notes on table:

e Data held in buffer pool and SMDS buffers is not encrypted. The use of appropriate AMS
policies would ensure encryption of the data held in the buffer pool or SMDS.

e Prior to MQ 9.2, applying data set encryption to SMDS could result in unexpected behaviour
depending on the offload rules and potentially how full the structure gets. For example if the
SMDS status “avail(error)” is not noticed at the time the message is logged, an application
error may not occur until the MQPUT of a message that requires offload is attempted. If the
application only uses small messages, that offload may not occur until the CF structure is 80%
full, which could be a significant time between the SMDS error being logged and the MQPUTs
failing as a result.

184

Why use data set encryption

z/0S data set encryption provides enhanced data protection for z/OS data sets, giving clients the
ability to encrypt all of the data associated with entire applications and databases, without the need
to make application changes and without impacting SLAs.

Additional design advantages provided by z/OS data set encryption are:

Uses CPACF acceleration in collaboration with Crypto Express for protected key cryptography,
enabling cryptographic operations to be hardware accelerated while ensuring that key material
is not visible in the clear to the OS, Hypervisor or application.

Encrypt data by policy in a way that is aligned with clients’ current access control mechanisms,
offering a simplified configuration experience.

Encrypts at-rest data in bulk, performing efficiently at speed and for low-cost.

Allows data to remain encrypted with keys managed on IBM Z during replication, backup,
and migration.

Can be configured such that encryption keys are owned and managed by a logical organisational
environment, providing cryptographic separation between environments.

Reduce the risks associated with undiscovered or mis-classified sensitive data.

Encrypting all of the data associated with an application or database can simplify and reduce
the cost of compliance.

The data set encryption feature allows AES encryption of data contained in named data sets using
ICSF and RACF, so preventing visibility of sensitive data from systems administrators with a
legitimate need to manage those data sets.

185

Data set encryption with the M(Q queue manager

Encryption of data is not free, and as such, consideration should be given as to whether your system
has sufficient capacity to support encrypted MQ data sets without impacting the performance of
your workloads.

The following sections discuss the additional cost from encrypting MQ data sets based on observa-
tions on our dedicated performance systems. To try to simplify the impact, the costs are discussed
in three configurations:

1. Active and archive log data sets.
2. Page sets.
3. Shared message data sets.

Typically we might expect that if you are planning on encrypting any of the M(Q data sets, you
would encrypt all MQ data sets, i.e. page set, active and archive logs, SMDS and BSDS.

BSDS might be regarded as less important to encrypt as it contains systems rather than application
data, but this may depend on your sites encryption policy.

Despite MQ archive logs supporting data set encryption since IBM MQ for z/0S version 8.0, active
and archive logging are closely coupled, and so we offer a section on encrypting all of your MQ log
data sets.

The I/0 to MQ page set is somewhat different and will depend upon the nature of the workloads
using the queue manager. As such, the section on encrypting page set is kept separately from MQ
logs and SMDS.

186

Active and Archive log encryption

Before discussing the impact of encrypting the MQ active and archive logs, consider what happens
when logging occurs where the MQ queue manager has dual active and dual archive logs, all of which
are encrypted.

e Persistent message workload causes MQ queue manager to encrypt-+write to active log copy
1 and encrypt-+write to active log copy 2 data sets.

e At end of current active log:
o Queue manager reports CSQJ002I “END OF ACTIVE LOG DATA SET”.

o Current active log(s) switches to next active log(s).

@]

Checkpoint starts for all buffer pools.

o

Archive task started, processing the recently filled active log:
B Select either log copy 1 or 2 to provide the data to archive.
B Read+Decrypt chosen active log copy - 1 page at a time.
B Encrypt+write to active log copy 1.

B Encrypt+write to active log copy 2.

The point of this is to show that dual logging and/or dual archiving causes multiple encrypt calls
as well as decrypting the data read from the active logs.

With dual logging and dual archiving all protected with data set encryption, the queue manager is
encrypting the data 4 times, plus decrypting the data once, for a total of 5 encrypt/decrypt calls
for each page logged.

Table: Cost of data set encryption on MQ active and archive logs

CPU microseconds CPU microseconds
Log type per 4KB page per MB
Archive logs +0.6 +154
Active logs +0.7 +180

Notes on table:
e Active logs are accessed via Media Manager, which has additional overheads.
e Costs shown are based on the average across a range of message sizes:
o Archive logs: range between 0.25 to 1 microseconds per 4KB page.

o Active logs: range between 0.6 to 0.9 microseconds per 4KB page.

187

Since we know the impact of data set encryption to both active and archive logging, we can apply
this to our queue manager using the following example.

Example: MQ configured with dual active and archive logs, with 1GB log data sets.

MB in active Cost
Log type Cost / MB log Factor (Cost * MB * Factor)
Archive logs 154 1024 2 315 CPU milliseconds
Active logs 180 1024 3 550 CPU milliseconds

Notes on table:
e Factor of 2 used for the separate encrypt and write to each copy of the archive log.

e Factor of 3 used for the separate encrypt and write to each copy of the active log plus the
read and decrypt of the log for the archiving task.

In this example, for each 1GB of MQ workload logged, there would be approximately 0.86 CPU
seconds additional cost in the MQ MSTR address space as a result of enabling data set encryption
for both active and archive logs.

188

Page set encryption

The cost of encrypting MQ page sets is slightly more complicated than encrypting MQ logs due to
types of I/O performed.

The program MQSMF, available in supportPac MP1B “Interpreting accounting and statistics data”,
provides a number of page set related reports, but the one of interest here is PSET. Note that only
selected data is shown in the following sample:

PS01 BP 1, Pages 1040334, Size 4063MB, ... Pageset is encrypted
Pages written in checkpoint 2918219
Pages written not in checkpoint 10289

PSO1 Type :I/0 requests. Pages, Avg I/0 time, pages per I/0

PSO1 Write: 182403, 2918331, 1968, 16.0

PSO1 IMW : 10177, 10177, 274, 1.0

PSO1 GET : 1, 1, 378, 1.0

As highlighted in the sample report, there are three types of I/O performed on MQ page sets, namely
WRITE, IMW (immediate write) and GET:

e GETs are performed when MQ determines it necessary to read (and decrypt) from page set.
Reads are performed one page per I/O request.

o IMWs (Immediate writes) occur when the buffer pool reaches 95% full and the data is moved
from buffer pool to page set synchronously. Immediate writes are performed 1 page per I/0
request. This is an indication that the buffer pool is not sufficiently large for optimal perfor-
marnce.

e Writes are performed at 2 points - at checkpoint and when the buffer pool reaches 85% full
(also termed “written not in checkpoint”). In each instance, each I/O request will write up to
16 pages.

In terms of the additional cost of data set encryption on page set I/0:
e GET +0.7 microseconds / page read.
e IMW -+0.7 microseconds / page read.
e WRITE 2.6 microseconds / page (+41.6 microseconds per 1/0).

We can use these numbers in conjunction with the output from the PSET report to estimate the
cost impact from applying data set encryption to MQ page sets e.g.

e GET: 1 request for an additional 0.7 microseconds, i.e. not a discernible impact from page
set encryption.

e IMW: 10,177 requests for 10,177 pages - an additional cost of 7124 CPU microseconds.

e WRITE: 182,403 requests for 2,918,219 pages - which we would predict at costing an addi-
tional 7.59 CPU seconds.

189

http://www-01.ibm.com/support/docview.wss?uid=swg24005907

Shared message data set encryption

Typically for messages that can be stored in their entirety in the Coupling Facility, there is no
significant impact to the transaction cost from encrypting the SMDS. This is true even when the
CF structure is encrypted.

Due to the way that SMDS works, the majority of the encryption costs will be incurred by the
application performing the MQPUT, rather than the queue manager address space.

Decrypting the data held on SMDS is charged to the queue manager address space and can partially
be offset by reduced cost in the application issuing the MQGET. This is discussed further in “Why
are unencrypted gets more expensive than encrypted?”

Furthermore, when accessing messages stored in the local queue manager’s SMDS, sufficient DSBUFS
can mean the message can be accessed from buffer rather than needing to read and decrypt the data
physically stored on the data set.

When data is read from a remote queue managers’ SMDS, the decryption costs are charged to the
local queue manager performing the read of the SMDS.

Message persistence does not impact the cost of encryption or decryption of SMDS data.

190

MQPUT to SMDS

The cost of an MQPUT of a message to a shared queue where the message is offloaded to SMDS
is largely attributed to the application address space. For non-persistent messages the cost in the
queue manager address space is minimal compared to the application cost.

As a result of encrypting the SMDS, putting messages to shared queues where the message is written
to SMDS does result in increased cost to the putting application - whether a local application or
the channel initiator if the message arrives via an MQ channel.

The following chart compares the cost of non-persistent messages put to a shared queue for 2
configurations:

1. Neither CF nor SMDS are encrypted.
2. Both CF and SMDS are encrypted.

The application performing the MQPUT generates the message once, and performs multiple iter-
ations of MQPUT and MQCMIT before ending. There is no business logic in the program so the
costs reported are largely equivalent to the data reported by MQ Accounting class(3).

Chart: Compare cost of MQPUT to Shared Message Data Set

Cost per transaction for non-persistent messages put to shared queue
B No encryption ® Encrypted CF + SMDS

E
§ 6000 %
= 5000 =t
+
=
2 4000 .
S 3000 =
= ©w N
g b
é 2000 =

o
2 1000 T c
g + @ N o E § o P
s 0 22 02 emmm il
E 64KB 100KB 512KB 1MB 2MB 4MB 5MB 10MB

Message Size (bytes)

Note: The increase in cost from encrypting the SMDS equates to approximately 0.7 CPU microsec-
onds per 4KB page on IBM z15 regardless of message persistence.

191

MQGET - When the messages are read from SMDS buffers

As mentioned earlier, when sufficient DSBUFS are available that the messages can be gotten from
SMDS buffers, the cost of the MQGET remains the same regardless of whether the data set is
encrypted.

Note: Configuring more DSBUFS to minimize the effect of decrypting data can have a negative
effect - due to the time taken to locate the next available buffer (oldest). For example puts and
gets to structures defined with DSBUF(3000) were significantly more expensive than messages put
to structures defined with DSBUF(10-200).

MQGET - When the messages are read from local SMDS

The increase in cost from decrypting the message on the SMDS is approximately 0.7 CPU microsec-
onds per 4KB page, regardless of message persistence.

In the queue manager address space there was an increase of approximately 0.8 CPU microseconds
per 4KB page in SRB usage. However some of this cost increase was offset by a reduction in the
application address space equivalent of 0.1 CPU microseconds per 4KB page. This is described in
further detail in Why are unencrypted gets more expensive than encrypted?

MQGET - When the messages are read from remote SMDS

The increase in cost from decrypting the message on the SMDS is approximately 0.8 CPU microsec-
onds regardless of persistence.

In the queue manager address space there was an increase of approximately 0.9 CPU microseconds
per 4KB page - as with reads from local encrypted SMDS’. However, as with reads from the local
SMDS, some of this cost increase was offset by a reduction in the application address space equivalent
of 0.1 CPU microseconds per 4KB page.

When reading from a remote queue managers’ SMDS, there are slightly reduced costs charged to
the local queue manager, but this is offset by a small increase in the CPU used by the remote queue
manager.

This CPU usage in the remote queue manager usage is due to the remote queue manager deleting
the message from its own SMDS and is not affected by data set encryption status.

Our measurements suggest the total cost of MQGET from a remote queue managers’ SMDS is within
5% of the cost of an MQGET from a local queue managers’ SMDS.

192

Comparing the cost of MQGETs from shared queue

The following charts offer comparisons of MQGET costs, by address space, for the configurations of
MQGETs described previously, for three messages sizes - 64KB, 1MB and 10MB.

Chart: Compare cost of MQGET of 64KB non-persistent shared queue message

Cost of MQGET of 64KB Non-Persistent Message

Application m Local QM = Remote QM

Get from remote SMDS, encrypted(Yes)

|
Get from local SMDS, encrypted(Yes) I
Get from buffers, encrypted(Yes)]
|
_—
[

Get from remote SMDS, encrypted(No)
Get from local SMDS, encrypted(No)
Get from buffers, encrypted(No)

0 10 20 30 40 50 60 70 80 90

CPU microseconds per MQGET+MQCMIT

Notes on chart:

e The cost of decrypting the message held on SMDS is charged to the queue manager address
space.

e The total cost of MQGET from a remote SMDS is similar to the cost of an MQGET from a
local SMDS.

e When a message can be got from SMDS buffers, the encryption status of the SMDS does not
affect the cost of the MQGET.

e The cost to the application address space of the MQGET is slightly less when accessing en-
crypted data than when accessing unencrypted data.

193

Chart: Compare cost of MQGET of 1MB non-persistent shared queue message

Cost of MQGET of 1MB non-persistent message
Application mLocal QM ® Remote QM

Get from remote SMDS, encrypted(Yes)

.}
Get from local SMDS, encrypted(Yes) |
Get from buffers, encrypted(Yes) []
n
/=
=1

Get from remote SMDS, encrypted(No)
Get from local SMDS, encrypted(No)
Get from buffers, encrypted(No)

0 50 100 150 200 250 300 350 400 450 500
CPU microseconds per MQGET+MQCMIT

Notes on chart:

e The total cost of the MQGET from a remote SMDS is similar to the cost of the MQGET from
a local SMDS - within 5%.

e With these 1MB messages, the application cost, i.e. the reported cost of the MQGET as per
MQ accounting class(3), is 13% lower when accessing encrypted data.

Chart: Compare cost of MQGET of 10MB non-persistent shared queue message

Cost of MQGET of 10MB non-persistent messages

Application mLocal QM m Remote QM

Get from remote SMDS, encrypted(Yes)
Get from buffers, encrypted(Yes)

Get fromlocal SMDS, encrypte(Yes) [——
Get from remote SMDS, encrypted(No) l
Get from local SMDS, encrypted(No) I

Get from buffers, encrypted(No)

0 500 1000 1500 2000 2500 3000 3500 4000 4500

CPU microseconds per MQGET+MQCMIT

Notes on chart:

e With these 10MB messages, the application cost, i.e. the reported cost of the MQGET as per
MQ accounting class(3), is 22% lower when accessing encrypted data. This does not take into
account the increase in queue manager address space costs from decrypting the data.

194

Why are unencrypted gets more expensive than encrypted?

According to the MQ Accounting class(3) data and as can be seen in the “MQGET of 1MB” and
“MQGET of 10MB” message charts, it appears that the MQGET costs are lower when getting data
from encrypted SMDS than when accessing data from unencrypted SMDS.

For example:

Table: Accounting class(3) data for MQGET of 10MB messages

Unencrypted Encrypted

Average CPU time 1923 CPU microseconds 1683 CPU microseconds

In this example, the savings from encryption equate to approximately 0.1 CPU microseconds per
4KB page.

This does not take into account the increased cost in the queue manager address space from de-
crypting the message.

The increase in queue manager cost from MQGETs of message in encrypted SMDS is in SRB and
there are no MQ-based statistics to report details of this cost.

195

Summary of data set encryption costs with the M(Q queue manager

As has been discussed in this data set encryption section, the cost of encrypting MQ data sets does
not come at zero cost.

The following provides a summary of the CPU overhead from encrypting each of the types of MQ
data set, but it is worth considering the impact as a whole, i.e. persistent shared queue messages will
see the costs rise due to encrypted active logs, encrypted archive logs as well as encrypted shared
message data sets.

Active and archive log data sets costs when operating with data set encryption can be sum-
marised as follows:

e Archive logs cost increases with data set encryption by approximately 0.6 CPU microseconds
per 4KB page written.

e Active logs cost increases with data set encryption by approximately 0.7 CPU microseconds
per 4KB page read / written.

e Remember to factor in whether running with single or dual logging / archiving.

e Remember that when using encrypted active logs, the data must be decrypted prior to archiving
- even if the archives are encrypted too.

Page set costs when operating an encrypted data set can be summarised as follows:
e GET +0.7 microseconds / page read.
e IMW -+0.7 microseconds / page read.
e WRITE 2.6 microseconds / page (+41.6 microseconds per 1/0).

Shared message data set costs when operating an encrypted data set can be summarised as
follows:

e Increased MQPUT costs of approximately 0.7 CPU microseconds per 4KB page.

e Increased MQGET costs of approximately 0.7 CPU microsecond per 4KB page when the data
is read from the local queue managers shared message data set.

e Increased MQGET costs of approximately 0.8 CPU microsecond per 4KB page when the data
is read from a remote queue managers shared message data set.

The impact of encrypted SMDS can be mitigated for MQGETs when the queues are sufficiently low
in depth such that messages can be gotten from SMDS’ buffers. Note that it is not recommended to
significantly increase the number of SMDS buffers to avoid gets from encrypted SMDS as this can
increase the cost of both MQPUTs and MQGETs.

Final observations on data set encryption with MQ:

e The cost per page when writing multiple pages per I/O request is higher than the cost of a
single page I/0 request.

e Costs may vary depending on how busy your system is - lightly loaded systems or tasks, such
as the MQ logger, may see a higher cost per page than reported in this section.

e Data set encryption costs were generally similar on z14 and z15 for our measurements, as they
used AES encryption which has been optimised on CPACF. Costs may be higher on earlier
generations of IBM z hardware.

196

e Consider that in CPU constrained systems that the additional cost from encryption may impact
existing workload characteristics, resulting in more data written at checkpoint or needing to
be read from page set.

e Page set immediate writes and gets can be minimised with sufficiently large buffer pools.
Over-sized buffer pools can minimise immediate writes to page set.

o Over-sized buffer pools are buffer pools that are sized at 105% of the corresponding page
set.

B By setting the buffer pool to 105% of the size of the page set, you can avoid additional
I/O’s for immediate writes.

B When multiple page sets map to a single buffer pool, over-sizing the buffer pool may
not have the desired impact of avoiding immediate writes.

197

zHyperWrite support for active logs

MQ 9.2 introduces support for zHyperWrite with MQ’s active log data sets.

This section discusses improved active log performance, in particular with IBM®) Metro Mirror and
zHyperWrite.

IBM® Metro Mirror, previously known as Synchronous Peer to Peer Remote Copy (PPRC), is
a synchronous replication solution between two storage subsystems, where write operations are
completed on both primary and secondary volumes before the write operation is considered to be
complete.

The IBM MQ Knowledge Centre section on “Using MetroMirror with IBM MQ” discusses which
types of IBM MQ data sets can be replicated using Metro Mirror.

As of MQ 9.2, zHyperWrite is supported with M(Q active logs. This offers benefits in a number of
areas:

e Reduced I/O times by up to 60%.
e Reduced elapsed time for MQ commit by up to 60%, which can reduce contention.
e Reduced elapsed time for MQ put of persistent messages by up to 33%.

e Improved sustained log rate, allowing for each M(Q queue manager to process up to 2.4 times
the volume of workload.

Caveats:
e The benefits of zZHyperWrite reduces as the distance of replication increases.

e Whilst improved log performance can be achieved with zHyperWrite, increased SRB time in
the MQ MSTR address space might be observed because the extra (Media Manager) I/O
requests are processed under MSTR SRB when zHyperWrite is enabled.

e It can be beneficial to configure additional channel paths (CHPIDs) from z/OS specifically for
the zHyperWrite secondary volumes.

198

https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.3.0/com.ibm.mq.pla.doc/q132600_.htm

What is zHyperWrite?
The z/0S 2.4 Knowledge Centre describes zHyperWrite as:

IBM zHyperWrite processing can be used by I/O drivers, such as Media Manager, for certain write
I/O operations to perform software mirroring to peer-to-peer remote copy (PPRC) devices that
are monitored for HyperSwap®) processing (with GDPS®) or TPC-R). IBM zHyperWrite data
replication can be used to reduce latency in these HyperSwap environments. For maximum benefit,
IBM zHyperWrite data replication should only be used when all synchronously mirrored relationships
are managed by HyperSwap. Devices support IBM zHyperWrite data replication when the following
conditions are true:

e The devices support IBM zHyperWrite data replication. Both the primary and secondary
devices in a synchronous PPRC relationship must support this function.

e The devices in the synchronous PPRC relationship are managed by HyperSwap (either GDPS
HyperSwap or TPC-R HyperSwap).

A simplified view of the difference between PPRC and zHyperWrite is offered in the following
diagram:

Metro Mirror (PPRC) zHyperWrite

Primary Secondary

Notes:
In the PPRC configuration, the mirroring is driven from the primary control unit.

In the zHyperWrite configuration, the mirroring is requested once the I/O to the primary control
unit is requested. This can reduce the time to initiate the mirrored request.

199

Why does my log performance matter?
Improved MQ active log performance is important for a number of reasons:
e Allows more work to get done with the same hardware footprint.
e Better able to handle workload spikes.
e Reduces cost.
Generally, there are a number of ways to make transactions run faster on System Z and z/0S:
1. Faster CPU.
2. Software scaling, reducing contention, faster 1/0.

3. Faster I/O technologies such as zHPF, 16Gb channels, zHyperWrite, faster DASD with larger
cache sizes, etc.

4. Run at lower utilisations, address Dispatcher Queuing Delays.
5. Faster network, such as SMC-R or SMC-D.

When using high levels of persistent messaging, the rate at which MQ is able to process the workload
is largely dependent on the rate at which the M(Q logger task is able to complete its I/O. This rate
is almost entirely dependent upon the rate at which the I/O subsystem is able to respond to the
requests.

The following extract from MQ Statistics data, formatted using program MQSMF (part of support-
pac MP1B “Interpreting accounting and statistics data”), demonstrates the single logger task, which
runs as an SRB, is 99.82% busy, of which 95.90% is waiting for I/O to complete:

Log write rate 272MB/s per copy
Logger I/0 busy: 95.90%
Logger task busy: 99.82%

In this environment, one way to alleviate this constraint is to reduce the I/O times.

When running synchronous replication technologies such as Metro Mirror (PPRC), the I/O times
can be significantly higher than when running without the datasets replicated. The zHyperWrite
technology can significantly reduce the I/O times when replicating datasets.

There are a number of benefits that zHyperWrite-enabled active logs can offer to a MQ queue
manager:

1. Reduced I/0O time.
2. Reduced elapsed time for M@ commit and MQPUT.
3. Improved sustainable log rate.

These benefits do not come at zero cost, and indeed there is an impact to the queue manager costs,
which is discussed in the “Impact to MQ queue manager costs” section.

200

http://www-01.ibm.com/support/docview.wss?uid=swg24005907

zHyperWrite test configuration

The following measurements were run on a single LPAR of the 3 LPAR MQ Performance sysplex on
the IBM 216 (3931-7x1). In these tests, the LPAR was configured with 3 dedicated general purpose
processors, and for the purposes of comparison is similar to a 3931-703, connecting to IBM DS8950F
DASD.

A single MQ queue manager was created in 3 configurations, in each case with dual active logs and
dual archive logs.

1. Baseline - no mirrored datasets.
2. PPRC - active logs mirrored using Metro Mirror.

3. zHyperWrite - active logs mirrored using Metro Mirror and zHyperWrite enabled at the queue
manager.

Previously, measurements on IBM z15 using DS8870 DASD had the queue manager configured with
single active and archive logs. In the dual active and archive log configuration we saw measurements
impacted by site hardware limitations. Details of the observed impact can be found in the “Impact
of I/O limitations on dual active and dual archive logs on older hardware” section of the report.

With the updated DASD the limitations previously observed were alleviated and for these measure-
ments, the queue manager was configured with dual active and dual archive logs.

In each configuration, a put-commit/get-commit workload was run using a range of message sizes
from 2KB to 4MB.

In the test configuration used, the mirrored DASD was at short distance (less than 1KM). Syn-
chronously replicated DASD over extended distance may see different results.

With regards to the disk subsystem, the tests were run on a single frame DS8950F dedicated for
performance testing, with dedicated links between the z16 and the DS8950F.

The PPRC configuration has 4 dedicated 16Gb Fibre channels for the PPRC-specific traffic that is
routed from one half of the DASD via a switch to the other half.

I/O driven directly from z/OS is spread across 4 dedicated 32Gb Fibre channels.

To avoid contention from the zHyperWrite mirror write requests, 2 of the 4 channel paths were
configured for the I/O to the secondary (mirror) volumes and all other I/O was routed through the
remaining 2 channel paths.

Ideally there would have been 4 channel paths for the primary writes, which included I/O to both
active logs and archive logs and all MQ page set I/O, with 2 additional channel paths for the
secondary writes to the mirror of the active logs.

In all configurations, zHPF (z High Performance FICON) was used.

The measurements ran for a number of SMF intervals and were designed to run the MQ logger task
at the maximum sustainable throughput rate.

201

Reduced I/0 time

When a persistent workload is throughput constrained, it can be due to the MQ logger task running
at capacity. The overall throughput may vary depending on message size(s), and to achieve a higher
throughput there are several options:

e Split the workload over multiple queue managers.
e Reduce the I/O response time.

The following chart uses the MQ Statistics data to plot the average I/O times for the logger task
for each of the three specified configurations:

Chart: Average I/0 time for write to LOGCOPY1

Average Log 10 time of LOGCOPY1

W Bazeline wess PPRC zHyperWrite —a&— zHyperWrite % of PPRC

1600 100

1400 80

BO
1200
70
1000 60

800

600

30
4
20
[i] 0
2 4 16 32 64 96 128 256 512

1024 2048 4096

CPU microseconds

=
=]

(=1
o
w
(=]
zHyperWrite 1/O time as % of PPRC /O time

Message Size (KB)

For messages up to 96KB, zHyperWrite I/0O is taking less than 60% of the time of the PPRC I/0O
requests.

Once the messages exceed 96KB, the I/O times get closer, but in this configuration where the I/0O
subsystem is not constrained, zHyperWrite shows I/O times at least 10% less for all message sizes
when compared with the PPRC configuration.

202

Reduced elapsed time for MQ commit

In transactions, the wait time for the MQ log write I/O, typically at commit time, often makes up
a significant proportion of the transaction latency, particularly when disk replication is enabled.

zHyperWrite is designed to reduce the latency of the log writes in a synchronous peer-to-peer remote
copy (PPRC) environment. With zHyperWrite enabled, MQ triggers a log write I/O to the secondary
disk subsystem in parallel to the log write I/O to the primary disk subsystem. By overlapping the
two I/0Os, which are run serially without zHyperWrite enabled, a significant reduction in MQ log
write I/O write time is possible.

The following chart shows the average elapsed time of the MQ commit for a range of message sizes.

Chart: Average elapsed time of MQ commit

MQ Commit - Average Elapsed Time
Dual logs, dual archive
® Baseline W PPRC ZHyparWrite
8000
7000
E 6000
E
S 5000
& 4000
=
8
g 3000
§ =zo000 '
) 1
1000
" e e ol ol ol ol ol
2 4 16 32 64 96 128 256 512 1024 2048 4096
Message Size (KB)

The reduction in average commit time ranges from 15% to 60% less than the PPRC configuration.

In some cases, another indirect benefit of zHyperWrite can be observed. The reduced log write wait
times as a result of having zHyperWrite enabled, can lead to reductions in other types of contention,
which in turn can result in more CPU time savings because MQ has fewer contentions, both suspend
and resume, to manage.

Note that for most messages, the amount of data logged at put time far exceeds the amount of data
logged at get time. See “How much log space does my message use?”’ for guidance on how much
data is logged.

In our measurements the elapsed time of the MQPUT was reduced by up to 33% when comparing
the zHyperWrite with PPRC (Metro Mirror) configuration.

203

Improved sustainable log rate

The chart in this section shows the rate in MB per second that the dual active log was able to
sustain on our system.

In all cases, the queue manager is configured with dual logs and dual archives, so for every MB
put by the application, there are writes of between 4MB (for the baseline) to 6MB (for PPRC or
zHyperWrite) in total volume to the disks i.e.:

e 2 MB to active log (1 MB per log)

e 2 MB to archives - once the test is running, the queue manager is driving the archive process
constantly.

e 2 MB to the mirrored logs (1 MB per log).

What this means is that when the charts show a logging rate of 250 MB / second, there is approx-
imately 1 GB / second written to the I/O subsystem in the baseline configuration and 1.5 GB /
second in the PPRC and zHyperWrite configuration.

With the larger cache size on DS8950F, there was no indication of disk cache saturation that we saw
previously on DS8870, which is discussed in the section “Impact of I/O limitations on dual active
and dual archive logs on older hardware”.

Chart: MQ Log task - sustained log rate

MQ Log Task - Average Sustained Log Rate

Dual Logs - rate is MB/sec per log

e Baseline (4 CHPIDs) S Bascline —— PPRC
zHyperWrite - zHyperWrite increase over PPRC (MB/second)

500 70

60
50
40
. 30
20
10

0

2048 4096

2 4 16 32 B4 96 128 256 512 1024

450

400

350

300

250

200

MB/second

150

100

(5]
(=]
zHyperWrite delta over PPRC (MB/second)

Message Size (KB)

Notes on chart:

The baseline performance has 2 sets of data, one where all four CHPIDs were available for both
active logging and archiving, and the second where only 2 CHPIDs were available. With larger

message sizes, limiting the baseline measurement to two CHPIDs reduces the capacity by up to
30%.

The green line indicates the difference in MB/second that zHyperWrite offers over PPRC in our test
environment.

For messages up to 64KB, zHyperWrite is achieving double the rate of the PPRC measurement.

The benefits of zHyperWrite are such that with messages of 128KB, we saw an additional 60 MB
per second per log written with a corresponding increase in transaction rate, equating to 120 MB
per second total data written.

204

Impact to MQ queue manager costs

As previously mentioned, the zHyperWrite configuration may see increased SRB costs in the MQ
MSTR address space.

There are a number of factors which can affect the actual scale of the impact, and it is difficult to
predict exactly how much any particular workload might be affected. Some of the factors include:

o Message size.
e Utilisation of the MQ logger task.
e Amount of data written per I/0O.

If we compare the cost per MB in the MQ MSTR address space when running as the maximum
sustainable rate, we can plot the following chart.

Chart: Cost to MQ when running at maximum sustained rate

Cost per MB - running at maximum sustainable rate

Dual active and archive logs - based on queue manager costs only

HBaseline ® PPRC * zHyper\Write

5000
4500
4000
3500
3000

2500
2000
1500
1000
5 T AR ER
0
2 4 16 32 64 a5 128 256 512

1024 2048 4096

CPU microseconds / MB

=
(=1

Message Size (KB)

In this example, the maximum increase is using a 16KB workload, zHyperWrite is 25% more expen-
sive than the PPRC configuration.

In these configurations with dual active/archive logs, the cost increase is typically the order of 14%.
In a single active/archive log configuration, the increase is more typically 8%.

In the majority of these data points associated with smaller messages, the zHyperWrite configuration
is logging at a significantly higher rate, sometimes more than double the rate - which will increase
the contention within the queue manager, which in turn can increase costs.

Using a message size where the log rate is similar should minimise any additional costs incurred from
higher throughput. In these measurements, the 4MB workload achieves the most similar throughput,
but even here there is a 10% increase in log rate in the zHyperWrite configuration.

205

Table: Comparing costs of 4MB workload

Average queue Average queue
manager CPU manager SRB
Rate . .
Configuration MB /Second (including SRB)
CPU uSeconds/MB | CPU uSeconds/MB
Baseline 313 690 383
PPRC 259 684 376
zHyperWrite 283 722 411

This example shows that the zHyperWrite configuration adds 38 CPU microseconds per MB to the
PPRC configuration costs. This additional CPU is primarily SRB time and equates to an increase
of 5.5% of the total MQ MSTR CPU or 9.3% in the total SRB used by the MQ MSTR address
space.

These measurements were made from data gathered when the MQ logger task was fully utilised.

206

Impact of I/O limitations on dual active and dual archive logs on older hardware

On our current systems using IBM z16 and DS8950F, we did not observe the following issue but
we have kept this section as it is likely applicable on systems where non-MQ specific workloads are
adding to the load on the DASD subsystems.

When running on MQ queue managers configured with dual active and dual archive logs on previous
DS8870 DASD subsystem , the high throughput measurements - typically observed with 256 KB
messages or larger, saw increased I/0 response times due to the saturation of non-volatile storage
(NVS) in the I/O subsystem, which manifests itself in the form of increased Disk Fast Write Bypass
(DFWBP).

What is Disk Fast Write Bypass?
In the 3990/3390 era, when NVS is full, the write I/O bypasses the NVS and the data is written
directly to the disk module (DDM).

In DS8000, when the NVS is full, the write 1/0 is retried from the host until the NVS space becomes
available. So DFW Bypass must be interpreted as DFW Retry for DS8000. If RMF shows that DFW
Bypass divided by the total I1/0 rate is greater than 1%, that is an indication of NVS saturation.

Note that in our measurements, it was not uncommon to see DFW Bypass exceed 80% of the total
I/0O rate.

Impact on reduced I/0 time
The following chart demonstrates the impact on the I/O time from increase DEWBP.

In our configuration, messages of 256KB and larger resulted in the I/O time for the zHyperWrite
measurements being much closer to the PPRC measurements due to NVS saturation in excess of
20% - with the 4MB workload seeing DFWBP for in excess of 100% of requests.

Chart: Average I/0 time for write to LOGCOPY1

Average /0 times for write to LOGCOPY1

As reported by MQ statistics data

Baseline mmmm PPRC s zHyperWrite —#— ZHyperWrite % of PPRC

2500 120.00

100.00
2000

1500

1000

2 4 16 32 B4 96 128 256 5

12 1024 2048 4096

CPU Microseconds

20.00

3
8
zHyperWiite /0 time as % of PPRC 1/O tims

0.00

Message Size (KB)

For workloads that are not impacted by DFWBP, i.e. messages up to 128KB, zHyperWrite is taking
between 32% and 60% less time per I/O than the equivalent PPRC request.

207

Impact on reduced I/O time

The chart in this section shows the rate in MB per second that each log copy was able to sustain
on our system.

In all of these measurements, the queue manager is configured with dual active and dual archive
logs, so for every MB put by the application, there are writes of between 4 MB (for baseline) to
6MB (for PPRC or zHyperWrite) in total volume to the disks, i.e.:

e 2 MB to active log (1 MB per log)

e 2 MB to archives - once the test is running, the queue manager is driving the archive process
constantly.

e 2 MB to the mirrored logs (1 MB per log).

What this means is that when the charts are showing 250 MB/second, there is approximately
1GB/second written to the I/O subsystem in the baseline configuration and 1.5GB/second in the
PPRC and zHyperWrite configurations.

As discussed previously, at the higher volumes, this causes waits for cache in the I/O subsystem,
which is why the performance of PPRC and zHyperWrite becomes similar and the benefits of zHy-
perWrite are less obvious.

In the case of the PPRC measurement, the system has a separate fibre channel and therefore see

less waits for cache - the I/O subsystem is still impacted by DFWBP but not to the same extent as
zHyperWrite.

Chart: MQ Log task - sustained log rate with dual logs

Average Sustained Log Rate

Dual Logs - rate is MB/sec per log

Baseline mmmm PPRC wwm zHyperWrite —&— zHyperWrite increase over PPRC

300 70
250
200

150

100
‘ 10
5° 1
0
nam Tan ol _
2 4 16 32 B4 96 128 256 512

1024 2048 4096

MB/Second

zHyperWrite Increase over PPRC (MB/sec)

Message Size (KB)

Notes on chart:
The green line highlights the difference in MB/second that zHyperWrite offers over PPRC.

For messages of 64KB and less, the zHyperWrite configuration is achieving double the rate of the
PPRC measurement.

As noted previously, the benefits of zHyperWrite grow with message size - in this case the ac-
tual difference (MB/second) in sustained log rate is peaking with messages sizes between 64KB to
256KB. Workloads with these messages using the zZHyperWrite configuration were able to log 50-60
MB/second more than the PPRC equivalent measurement.

208

After this point, the benefits diminish, largely because the zHyperWrite configuration is being im-
pacted more significantly by I/O cache waits (disk fast write bypass) than the PPRC configuration.

209

Summary of zHyperWrite benefits

Whilst the zHyperWrite measurements detailed in this report were run on a queue manager config-
ured with single active and single archive logs, this is not the recommended configuration.

Single logs were used to demonstrate the impact of zHyperWrite, particularly when the I/O subsys-
tem can be configured such that any additional I/O load does not cause NVS (Non-Volative Storage)
saturation.

At zero distance replication, zHyperWrite can:

Reduce the elapsed time from an MQ commit by up to 60%.
Reduce the elapsed time from an MQPUT by up to 33%.

Reduce the average I/O time when writing to the MQ active log(s) by up to 60%.
e Improve the maximum sustainable log rate by up to 2.4 times.

Despite the RMF CPU report indicating that the LPAR was less than 25% busy for the entire
measurement period, disabling archiving improved the sustained log rate for the 4MB workload by
up to 25% for PPRC and 45% for zHyperWrite. This was due in part to periods where the number
of CPUs available was insufficient for the number of tasks on the LPAR. Disabling archiving also
removed some contention on the channel paths that were used by the writes to the primary volumes
of the active logs, as these were also used by the archive process.

As the section “Impact of I/O limitations on dual active and dual archive logs on older hardware”
discusses, the additional load on our previous I/O subsystem when the queue manager was configured
with dual active and dual archive logs, coupled with the mirroring of the active logs was enough to
result in NVS saturation. This manifested itself in DFWBP (Disk Fast Write Bypass) and resulted
in the performance benefits of zHyperWrite being less distinct.

210

zHyperLink support for MQ active logs

IBM zHyperLink is designed to provide an ultra-low latency link directly between the mainframe
CPU and the I/O device.

IBM MQ for z/OS 9.4 implements support for zHyperLink when writing to MQ active logs.

In our performance environment, this improved active log throughput and reduced IBM MQ trans-
action times by up to 3.7 times. When running “real-world” scenarios, where the MQ queue manager
and other workload are both using the disk infrastructure, enabling zHyperLink resulted in improved
active log throughput by up to 5.9 times and transaction times reduced by up to 5.5 times.

Chart: Reduced MQ elapsed time compared to zHPF

MQ Transaction: Elapsed Time (when DASD subsystem is busy)
Transaction = Put+Commit, Get+Commit
10
8
B
7
& Up to 5.5x reduction
5
4
3
2
: .
0
ZHPF (basaling) ZHyperlLink

211

https://ibm-messaging.github.io/mqperf/MQ for zOS 9.4 Performance.pdf

To clarify the differences between performance environment and “real-world”:

Our performance environment is a dedicated system which in order to run consistent repeatable
measurements has dedicated links to dedicated DASD. This means that there is little contention on
the path from CPU to disk. It also means that for the non-zHyperLink measurements, there is no
significant contention over the cables or into the cache on the DASD, and so the benefit of switching
from traditional I/O to zHyperLink is less significant than in a busier environment.

To simulate a more real-world environment, a number of simple batch tasks were run concurrently
with the MQ workload, to read and write to a separate discrete set of VSAM files on the same DASD
device as the MQ log data sets. This had the effect of using the existing channel paths and FICON
links from the mainframe to the I/O device as well as using more disk cache. In turn, this had
the effect of longer I/0 times for the MQ log task. Switching MQ to the zHyperLink configuration
removed the effects of contention from the channel paths and FICON links, resulting in a more
significant improvement in MQ performance.

Later in this chapter, the impact of zHyperLink on MQ transactions and log rate will be compared
in both the performance and the real-world environment.

With a persistent messaging workload, the elapsed time of the MQ commit is often a major compo-
nent in the time spent completing a transaction. In the following two charts, a single application is
using an MQPUT, MQCMIT, MQGET, MQCMIT model of processing.

The data in the chart is collected from MQ’s class(3) accounting data, where the CPU cost of the
MQPUT, MQGET and MQCMITs are combined and the “wait” time for each of those API’s is
displayed separately. The wait time is calculated from the elapsed time minus the CPU cost of the
APIL

Chart: Time in Transaction by MQ API for 2KB persistent workload

Time in Transaction - by MQ API - when DASD infrastructure is busy
2KB Messages, single log copy (non-striped)
ECPU ™ Wait (MQPUT) = Wait (MQGET) ™ Wait (MQCMIT)

1200
1000

Baseline ZHyperLink

CPU microseconds / transaction
=
=

Notes on chart

e With this 2KB persistent messaging workload, the wait time for the MQPUT and MQGET is
negligible.

e The API cost, as reported by class(3) accounting, is similar in the baseline and zHyperLink
measurements.

212

e The wait time for the MQCMITs is significantly reduced in the zHyperLink configuration such
that the elapsed time is 16% of the baseline measurement.

Chart: Time in Transaction by MQ API for 4MB persistent workload

Time in Transaction - by MQ API - when DASD infrastructure is busy

4MB Messages, single log copy (non-striped)

mCPU ®mWait (MQPUT) = Wait (MQGET) m Wait (MQCMIT)

Baseline ZHyperLink

40000
35000
30000
25000
20000
15000
10000

5000

CPU microseconds ! transaction

Notes on chart

e The API cost, as reported by class(3) accounting, is similar in the baseline and zHyperLink
measurements.

e The wait time for the MQPUT when using the zHyperLink configuration is 20% of the baseline
measurement.

e The wait time for the MQGET when using the zHyperLink configuration is 5% of the baseline
measurement.

e The wait time for the MQCMITs, which remains the largest component of the elapsed time
even when using the zHyperLink configuration, is half that of the baseline configuration.

e The reduced wait times of the MQ APIs with zHyperLink means that the overall time in the
transaction is reduced by 63%

In terms of peak logging rates when using zHyperLink, there were instances where the MQ queue
manager was able to log persistent messages at a rate of 1 GB per second.

213

What is zHyperLink?

The “Getting Started with IBM zHyperLink for z/OS” Redbook offers a good introduction, as well
as guidance on planning and deployment of zHyperLink.

IBM zHyperLink technology is designed to reduce input/output (I/O) latency by providing a fast,
reliable, and direct communication path between the CPU and the I/O device.

This is achieved through zHyperLink adapters on the z/OS host, select IBM storage hardware,
and connecting them using zHyperLink cables. This creates a point-to-point connection between
CPU and I/O device, which reduces the I/O response time by up to 10 times compared to IBM
z High-Performance FICON (zHPF). Such a low response time is achieved using synchronous I/O
requests.

Asynchronous (Traditional) I/0:

Asynchronous I/0 is a form of input/output processing that permits other processing to continue
before the transmission on the storage pathway completes. When the operating system processes
a block storage request, the CPU is released to perform other tasks, while the hardware device
completes the storage operation.

Standard I/O processing that is available, such as zHPF, requires I/O operations to perform a series
of time-consuming tasks, including;:

e 7/0S dispatching

e Interrupt handling

e CPU queue time

e Reload L1/L2 processor cache

These tasks and others that are required for I/O processing cause the I/O response time to be
relatively long compared to transferring data within virtual storage, with response times of 110+
microseconds as well as interrupt handling and CPU dispatch time.

Synchronous (zHyperLink) I/0:

Synchronous I/O means that the entire path that handles an I/O request stays within the process
context that started the I/O. When synchronous I/0 is performed, the CPU waits (or “spins”) until
the I/0O is completed, or the timeout value is reached.

zHyperLink can significantly reduce the time that is required to complete the I/O because the
dispatching, interrupt handling, CPU queue time, and CPU cache reload activities are no longer
necessary.

When using zHyperLink to write, DS8000 cannot meet the latency requirements of a random write
because too much overhead exists in the DS8000 to acquire lock tracks, assign Non-Volatile Storage
(NVS) space, and so forth. Therefore, only writes that follow a log-like pattern are supported. IBM
MQ for z/OS 9.4 only uses zHyperLink to write to its active logs.

zHyperLink write operations require that z/OS establishes a zHyperLink session with the IBM
DS8000, which consists of issuing a special channel program to establish zHyperLink write access.
The channel program returns a token that is used for subsequent I/Os to that data set and causes
the DS8000 to assign NVS space and set up descriptors to move data.

Current DS8000 technology limits the number of tokens to a single DS8000 to 64 concurrent write
tokens.

214

https://www.redbooks.ibm.com/redpapers/pdfs/redp5493.pdf
https://ibm-messaging.github.io/mqperf/MQ for zOS 9.4 Performance.pdf
https://ibm-messaging.github.io/mqperf/MQ for zOS 9.4 Performance.pdf

The following diagram demonstrates the different routes that I/O requests will use for asynchronous
I/O and zHyperLink I/0.

Diagram: Asynchronous and Synchronous I/0O paths from mainframe to disk

Z£16

zHyperLink™

D58950F

100% cache
on writes

55CH

FICON / zHPF FICON / zHPF

zHyperLink and striped active logs

MQ uses Media Manager to write its I/O to disk, and this traditionally allows up to 128 4K pages to
be written in a single I/O request, i.e. the maximum I/O for a single request is 512KB. Historically,
the use of striping (4-stripes) would offer log rate improvements when MQ attempts to write 16K
or more in a single I/0, such that a 128 page I/O request will write 32 pages (or 128KB) per stripe.

zHyperLink I/O is track-based, i.e. a zHyperLink I/O request will write no more than 56KB in
a single request. In this case, 4-way striped logs would write 19KB per I/O request, which is less
effective than traditional 1/0’s 128KB per stripe.

Db2’s current recommendation is that whilst Db2 supports striped active log data sets, striping is
generally unnecessary with the latest devices, and is not recommended in most cases.

MQ does not have the same recommendation but may be worth evaluating whether striped logs are
still necessary when implementing zHyperLink on your MQ queue manager.

215

https://www.ibm.com/docs/en/db2-for-zos/13?topic=objects-active-archive-logs

Single Page I/0 Response Times

To offer an indication of the difference in response times observed on our systems, the following table
details how long a single page of I/O takes in a range of configurations.

The data has been extracted from MQ’s statistics trace class(3) data and formatted using tooling
included in MP1B “Interpreting accounting and statistics data”.

I/0 response time
Configuration (microseconds)
zHPF disabled, quiet system 181
zHPF enabled, quiet system 115
zHPF enabled, busy system 200
zHyperLink, quiet system, 30 metre cable 28
zHyperLink, busy system, 30 metre cable 31

Comparing the single page I/O on quiet systems, zHyperLink offers a 4x improvement over zHPF
and 6x improvement over non-zHPF response times.

On our "real world” environment, as described in the zHyperLink highlights section, for single page
I/0 requests zHyperLink offers a 6.4x improvement over zHPF response times (200 microseconds
reduced to 31 microseconds).

Why might you use zHyperLink?

zHyperLink is intended to reduce the I/O times by providing a dedicated link between IBM z
mainframe and the storage device.

On a naturally busy system, I/O’s will be routed over a set of channel paths and FICON links
into the storage device, and the response times of MQ active log writes can be affected by other
workload’s use of those common resources.

Using zHyperLink means that the I/0 traffic is taken off of those common channel paths and FICON
links and re-located onto the dedicated zHyperLink cable, which has 2 effects - firstly to move to a
less contended path to disk and secondly to reduce the load on the shared channel paths and FICON
links which may offer some relief to the workload that remains.

However the use of zHyperLink with MQ active logs does come at a cost. As the I/O is synchronous,
the MQ logger task spins whilst the I/O completes. This means that once the I/O does complete,
z/0S does not need to re-dispatch the MQ logger task, but whilst the I/O time is reduced, for each
microsecond of I/O time, the same amount of CPU is used, i.e. a zHyperLink I/O that takes 50
microseconds to complete will use 50 CPU microseconds, and since the MQ logger task runs as a
high-priority SRB, that potentially in a high CPU utilisation logical partition may prevent other
tasks completing as quickly as they might when MQ uses asynchronous I/0.

The installation might determine that the potential increase in MQ SRB time that is associated
with zHyperLink cannot be justified, even with the reduced latency that synchronous I/O provides.

216

http://www-01.ibm.com/support/docview.wss?uid=swg24005907

Requirements

Both the IBM Documentation “Faster log throughput with zHyperLink” and the blog “MQ 9.4:
Faster log throughput with zHyperLink” describe the following system requirements in order to use
zHyperLink for MQ active logs:

Hardware:
e IBM z14 or later.
e DS8880 or later.
Software:
e zHyperLink Express is supported on z/0S 2.3 or later.
e The z/0S image must be run in an LPAR, not as a guest in a IBM z/VM.
e zHyperLink requires IBM z High-Performance FICON (zHPF) to be enabled.

If your environment will use PPRC and you intend to test the impact of zHyperLink in a loopback
configuration such that the primary and secondary devices are on the same control unit, you will
require APAR OA66234.

Using zHyperLink with IBM MQ active logs:
In order to use zZHyperLink with the active logs of a queue manager, you need to:
e Configure IBM MQ to use zHyperLink, and

e Ensure the active logs are on zHyperLink capable volumes.

You can configure IBM MQ to use zHyperLink by using one of the following methods:
e Specify ZHYLINK(YES) in the log parameters.
e Issue the command SET LOG ZHYLINK(YES)

Notes:

e zHyperLink requires that zHyperWrite is switched on. This means in order to use ZHYLINK,
ZHYWRITE must also be switched on in the log parameters. When only specifying ZHYLINK(YES)
when ZHYWRITE(NO) is set on the queue manager, the ZHYWRITE parameter automati-
cally overrides to YES.

e Explicitly trying to set ZHYLINK(YES) and ZHYWRITE(NO) results in an abnormal com-
pletion of the SET LOG command.

e Setting ZHYLINK=YES in the ZPRM overrides ZHYWRITE to YES.

217

https://www.ibm.com/docs/en/ibm-mq/9.4?topic=environment-faster-log-throughput-zhyperlink
https://community.ibm.com/community/user/integration/blogs/matthew-wakeham/2024/07/10/mq-940-zos-faster-log-throughput-with-zhyperlink
https://community.ibm.com/community/user/integration/blogs/matthew-wakeham/2024/07/10/mq-940-zos-faster-log-throughput-with-zhyperlink
https://www.ibm.com/support/pages/apar/OA66234

Monitoring your environment
System commands

The “Getting Started with IBM zHyperLink for z/OS” Redbook provides information on system
commands that are used for displaying and managing resources that are related to zHyperLink, but
the following are the commands that we found particularly useful in our testing and evaluation of
the performance.

DISPLAY PCIE

The use of the D PCIE command shows the information that is registered for the device type with
PCle. The example shown below shows two zHyperLink PCle I/O cards with eight ports in total.
One of the PCIe I/0O cards is in standby mode.

PFID DEVICE TYPE NAME STATUS ASID JOBNAME CHID VFN PN
00000030 8GB zHyperLink ALLC 0019 1I0SAS 0150 0001 1
00000031 8GB zHyperLink ALLC 0019 1I0SAS 0150 0002 1
00000032 8GB zHyperLink ALLC 0019 1I0SAS 0150 0001 2
00000033 8GB zHyperLink ALLC 0019 I0SAS 0150 0002 2
00000060 8GB zHyperLink STNBY 011C 0001 1
00000061 8GB zHyperLink STNBY 011C 0002 1
00000062 8GB zHyperLink STNBY 011C 0001 2
00000063 8GB zHyperLink STNBY 011C 0002 2

To bring the PFIDs in standby to online, the following command may be used:
CF PFID(60-63) ,0NLINE

DISPLAY IOS,HYPERWRITE

The display IOS command with the HYPERWRITE parameter displays the status of the HYPER-
WRITE option that is defined in parmlib member IECIOSxx or set by way of the SETI0OS HYPERWRITE
system command. HyperWrite must be enabled for zHyperLink writes.

DISPLAY I0S,ZHYPERLINK

The display IOS command with the ZHYPERLINK parameter shows if zHyperLink is ENABLED or
DISABLED. When zHyperLink is ENABLED, it describes what I/O operation is available, i.e. read and
write.

DISPLAY I0S,ZHYPERLINK,LINK=ALL,DETAIL

This display IOS command with the LINK=ALL ,DETAIL parameter is used to display detailed infor-
mation for all links.

Offline PFIDs are not included in the display.

The number of successful and unsuccessful (timeout) read and write operations is provided in the
response for each active link, for example:

218

https://www.redbooks.ibm.com/redpapers/pdfs/redp5493.pdf

CU Port ---- CU Info --- -- PFIDs --

PCHID PN Link State Mfg.Ser or WWNN Avail Unav
0150 1 0080 Oper IBM.0000000TJS31 4 0
WWNN: 5005076307FFD76D
PFID: 00000030 S/W State: Allocated

Success: Read - 0 Write - 9,395,709

Timeout: Read - 0 Write - 2

Diagnostic Info: 00100000
PFID: 00000031 S/W State: Allocated

Success: Read - 0 Write - 9,395,707

Timeout: Read - 0 Write - 1

Diagnostic Info: 00100000

As well as Success and Timeout counts, you may see Link Busy counts. Any of these three category
of counts are not returned if both read and write counts are zero.

For non-zero Link Busy counters, this means that z/OS has to retry the I/O operation on another
PFID.

For non-zero Timeout counters, this means that z/OS has had to retry the I/O operation asyn-
chronously.

DISPLAY M=DEV (devno),ZHYPERLINK

The display system configuration command M=DEV (devno) with the ZHYPERLINK parameter dis-
plays whether the specified device has zHyperLink capabilities. It also shows the reason why a device
is not enabled for zHyperLink.

If the device displayed is enabled for zHyperLink, it provides information about the type of zHyper-
Link (READ|WRITE) and the number of zHyperLinks that are available for accessing the device.

Whether zHyperLink is entirely disabled for READ and WRITE or partially disabled for READ or
WRITE, it displays why it is disabled. These include the following reasons:

e Processor does not support zHyperLink

z/0S reasons (IECIOSxx, SETIOS), including zHyperLink is disabled for the system.

zHyperLink reasons, for example there are no zHyperLinks available.

Secondary device reasons when using Metro Mirror, for example there are no zHyperLinks
available for the secondary device.

DEVSERV QDASD,TYPE=ALL This command may be abbreviated to DS QD,TYPE=ALL.

The command displays diagnostic information about the status of direct access storage devices
(DASD) and storage control units (SCU).

It can be used to correlate the specific volume(s) used by the MQ active logs and the storage control
unit.

Use of the TYPE option will cause an I/O operation for each DASD in the system.

219

DEVSERV QDASD,MACH=<serial number>,ZHL This command may be abbreviated
to DS QD,MACH=<serial number>,ZHL.

The command displays zHyperLink write tokens that are allocated to datasets on the named disk
subsystem. The MACH= parameter is the 10-byte SCU serial number of the disk subsystem that was
obtained when using the DS QD,TYPE=ALL command.

One token represents a zHyperLink write session with the DS8000. As mentioned in the Synchronous
I/0 explanation, current DS8000 technology limits the number of tokens to a single DS8000 to 64
concurrent write tokens.

DISPLAY SMS,DSNAME(<MQ active log data set name>)... The command in full is
DISPLAY SMS,DSNAME(<MQ active log data set name>),STATS(ZHLWRITE) [,RESET].

This display SMS command with the STATS (ZHLWRITE) parameter is used for displaying zHyperLink
write statistics for the data set that is specified in the DSNAME parameter.

For example:

D SMS,DSNAME,STATS(ZHLWRITE) Start of Report
DATA SET MQMDATA.VTS1.LOGCOPY1.DSO1.DATA
STATISTICS Since 07/19/2024 21:32:12.043383
SUMMARY
TOTAL %SYNC ——-----ommm - HASYNC----——om oo
WRITE REQUESTS WRITES SKIP LNKBSY EST MISC DISABL
34791 99.88 0.01 0.00 <0.01 0.02 0.00
----%ASYNC----
MISS DELAY DUAL
0.02 0.00 0.04
DEVICE STATISTICS
TOTAL %SYNC -------------—- HASYNC-—--mmmm e
SSID DEVNO WRITES WRITES SKIP LNKBSY 'EST MISC MISS DELAY
3110 0782B 294863 99.96 <0.01 0.00 <0.01 0.02 <0.01 0.00
D SMS,DSNAME,STATS (ZHLWRITE) End of Report

The output from the above display command of the “MQMDATA.VTS1.LOGCOPY1.DS01” data
set reveals the following:

e The vast majority of I/Os were synchronous, with 0.12% of being asynchronous.

e The IGW289I message provides an explanation as to why there were synchronous writes to
this data set.

e The “device statistics” section reports a much higher number of writes (294,863) compared to
the data set total of 34,791. This is simply because multiple of the queue managers’ active log
data sets were defined on the same device, i.e. device number 0782B.

Adding the RESET parameter to the display command will clear the statistics that follow the display.
The timestamp of the last RESET is displayed at the top of the output. If a RESET for the data set
was never done, the time stamp is from when the data set was opened.

220

https://www.ibm.com/docs/en/zos/3.1.0?topic=messages-igw289i

RMF

The z/0OS Resource Measurement Facility (RMF) can be used to review the I/O characteristics of
your MQ active log data sets. When the MQ active log data sets have been enabled for zHyperLink
access, there are a few differences to be aware of:

e Channel Path Activity report - there may be a reduction in the utilisation and number of
operations performed by the defined channel paths. How significant this reduction is, will
depend on what else is using the channel paths.

e Direct Access Device Activity report - the storage group and device number used by the MQ
active log data sets may see a significant decrease in the Activity Rate.

e Synchronous I/O Device Activity report - this report will show the synchronous I/0 for each
device using zHyperLink.

Channel Path Activity report
RMF Monitor I gathers data for this report automatically.
To produce the report, specify: REPORTS (CHAN)

Traditional asynchronous I/0 to MQ active log data sets will use channel paths, and the I/O activity
is included in the utilisation percentages and either the FICON or ZHPF operation rates. When
successfully using zHyperLink to write the data to MQ active logs, the I/O is no longer passed
through the channel paths and as a result, there may be a decrease in the usage.

Direct Access Device Activity report
RMF Monitor I gathers data for this report automatically with the default option DEVICE (DASD).

To produce the report, specify: REPORTS (DEVICE (DASD)

The report provides an activity summary grouped by device number.

DIRECT ACCESS DEVICE ACTIVITY

RPT VERSION 3.1 RMF TIME 21.35.57 CYCLE 0.200 SECONDS
TOTAL SAMPLES = 300 IODF = 03 CR-DATE: 06/05/2024 CR-TIME: 11.42.43 ACT: POR
DEVICE AVG AVG AVG AVG AVG AVG AVG AVG % %

MQMLOG1 0782B 33909 65520 AALG12 1.0H 0006 4.117S .420 .008 .000 .000 .000 .038 .147 .227 0.09 0.15

%

STORAGE DEV DEVICE NUMBER VOLUME PAV LCU ACTIVITY RESP I0SQ CMR DB INT PEND DISC CONN DEV DEV DEV

GROUP NUM TYPE OF CYL SERIAL RATE TIME TIME DLY DLY DLY TIME TIME TIME CONN UTIL RESV

0.0

Notes on DASD report:

The storage group MQMLOG1 on storage number 0782B appears to have a low activity rate of 4.117
per second, which in isolation appears to indicate that there is little activity to the MQ data set(s)
stored on that device. The activity rate does however have an “S” appended to the rate i.e. 4.117S,
which indicates that the device performed synchronous I/O requests and that detailed synchronous
I/0 performance measurements for this device are available in the Synchronous I/O Device Activity
report section.

221

Synchronous I/O Device Activity report

The Synchronous I/O Device Activity report is only produced if at least one DASD device actively
performed synchronous I/O requests using IBM zHyperLink technology.

For DASD devices actually used for synchronous I/0, the Synchronous I/O Device Activity report
shows detailed IBM zHyperLink activity data:

SYNCHRONOUS I/0 DEVICE ACTIVITY

z/0S 3.1 SYSTEM ID MVAA DATE 07/19/2024 INTERVAL 00.59.999
RPT VERSION 3.1 RMF TIME 21.35.57 CYCLE 0.200 SECONDS
TOTAL SAMPLES = 300 IODF = 03 CR-DATE: 06/05/2024 CR-TIME: 11.42.43 ACT: POR
- DEVICE ACTIVITY RATE - -- AVG RESP TIME -- AVG SYNCH I/0 % % %
STORAGE DEV DEVICE VOLUME LCU -- SYNCH I/0 -- ASYNCH -SYNCH I/0O - ASYNCH TRANSFER RATE REQ LINK CACHE
GROUP NUM TYPE SERIAL READ WRITE I/0 READ WRITE I/0 READ WRITE SUCCESS BUSY MISS
MQMLOG1 0782B 33909 AALG12 0006 0.000 13567.3 4.117 0.000 0.115 0.420 0.000 592.9 99.98 0.00 0.00
LCU 0006 0.000 13567.3 4.117 0.000 0.115 0.420 0.000 592.9 99.98 0.00 0.00

%
--REJECTS--
READ WRITE

0.00 0.02

0.00 0.02

Notes on Synchronous I/0 Device Activity report:

The storage group MQMLOG1 on storage number 0782B reports the same low asynchronous activity
rate of 4.117 per second as the earlier Direct Access Device Activity report. However in this report,
details of the synchronous I/O are presented.

For the selected interval, there were 13567.3 synchronous write requests per second against device
number 0782B. This resulted in 592.9 MB per second being written synchronously with the average
I/0O being 0.115 milliseconds. Synchronous I/O accounted for 99.98% of I/O requests on this device.

SMF 42 (DFSMS Statistics and Configuration)

SMF 42 subtype 6, specifically DASD data set level I/O statistics now includes two new Synch I/0
sections and provides data on the many attributes including number of SynclO write requests at a
data set level.

Please refer to the SMF 42 subtype 6 documentation for further details.

The RMF post processing application ERBRMFPP does not provide a report option to format the SMF
42 subtype 6 records.

222

https://www.ibm.com/docs/en/zos/3.1.0?topic=configuration-subtype-6

MQ Statistics
The MQ class(3) statistics trace has been updated to include zHyperLink I/O statistics.

The additional data can be formatted using the MQSMF application, part of MP1B “Interpreting
accounting and statistics data”, where the results will be found in the LOG DD card. Additionally a
zHyperLink summary in CSV format may be generated to the LOGHLCSV DD card.

The following is an example of the LOG output for a queue manager with a single MQ active log
copy that was running a simple put/get workload using 4MB persistent messages:

From 2024/07/17,05:38:31 to 2024/07/17,05:39:31, duration 60 seconds.

Wait for buffers (should be 0): 6779 out of 14968773, 0%

Total Number of pages written: 14984701

Number of pages written/sec: 249745

Amount of data written/sec: 975 MB/Sec

Total Number of write requests: 168887

Number of write requests/sec: 2814

Pages written per I/0: 88

Total number of read requests: 0

Total number of copyl new logs used during interval: 14

Total number of copy2 new logs used during interval: 0

Total number of new logs used which are zHyperWrite capable: 0

Total number of new logs used which are zHyperWrite enabled: 14

Total number of new logs used which are zHyperLink capable: 14

Total number of new logs used which are zHyperLink enabled: 14

Total number of new logs used which are encrypted: 0

Write_Wait O, Write_Nowait 57669209, Write_Force 196, WTB 6779

Read_Stor 0, Read_Active 0, Read_Archive 0, TVC

BSDS_Regs 15067, CIs_Created 14968773, BFWR 1054442, ALR

ALW 0, CIs_0ffload 0, LLCheckpoints 28

Read_delayed 0, Tape_Lookahead 0, Lookahead_Mount 0

Write_Susp 68504, Write_Regs 168887, CI_Writes 14984701

Write_Serl 0, Write_Thrsh 985938, Buff_Pagein 0

Copy1_Used 14, Copy2_Used 0,

Logs_ZHWC 0, Logs_ZHWE 14, Logs_encr 0

_____ ,__ Wwrite requests, CIs, Average I/0, After I/0, pages/IO0
time in uSec, time in uSec,

Log 1, 1 page 21218, 21218, 29, 0, 1

Log 1,>1 page 147669, 14963483, 370, 0, 101

Standard deviation of first log, 1 page per I/0, response time +- 29

Log 1, 1 page Longest I/0 852 at 2024/07/17,04:38:34.043256 UTC

Log 1, 1 page Longest Request 194 at 2024/07/17,04:39:16.060978 UTC

223

http://www-01.ibm.com/support/docview.wss?uid=swg24005907

Log 1,>1 page Longest I/0

Log 1,>1 page Longest Request
975MB/s per
0.35%

96.6%

zHyperLink write stats

Log write rate
Logger I/0 busy :
Logger task busy:

______________________ 1 page,
Write requests 21218,
Sync writes 21209,
Async writes 9,
...switch 1,

Average async writes per log
Average async pages written p

zHyperLink I/0 stats

__Pages,_______ Longest I/0,__
1, 852 uSec,
>1, 1978 uSec,

Standard deviation of first log,

21610 at 2024/07/17,04:39:03.320261 UTC
21611 at 2024/07/17,04:39:03.320261 UTC

copy

_______ >1 page,_______Total pages
147669, 14984701
147484, 14965521
185, 19180
26, 2604
switch: 1.9
er log switch: 186.0
_____ Shortest I/0,_______Total I/0_______Avg I/0
24 uSec, 629572 uSec, 29.7 uSec
29 uSec, 54497499 uSec, 369.5 uSec

1 page per I/0, response time +- 29

Notes on L0OG extract:

e Text in blue is zHyperLink specific.

o There is a count of capable and enabled zHyperLink logs used during the interval. The
values for capable and enabled may differ, for example if the zHyperLink environment is

disabled during the interval.
o zHyperLink write statistics

B This section provides cou

nts of the number of write requests, both single and multi-

page requests whilst providing a breakdown of synchronous and asynchronous re-

quests

Additionally, at log switch M(Q must relinquish the write token(s) on the current MQ

active log and establish a new token on the next MQ active log, so there is a brief
interval where synchronous requests are delayed. The impact of this is indicated in

the row labelled “switch”

and the subsequent data reporting average async writes.

To minimise the impact of log switch, the maximum sized MQ active logs should be

used (4GB).
o zHyperLink I/O statistics

B This section provides the

shortest, longest and average I/0 times for both single and

multi-page I/Os that successfully used zHyperLink to complete the write to the MQ

active log.

The section also provide
writes to the MQ active

s the total I/O time spent when performing zHyperLink
logs data sets. This is a useful number as it is a good

indication of how much time the MQ logger task has spent spinning (using CPU)
whilst performing zHyperLink I/O. This is additional CPU cost that is not incurred
when using asynchronous I/0 and further evidence of this cost can be found in the
RMF workload report, where it is recorded as SRB time.

224

e Text in red: has been affected by zHyperLink

o With traditional asynchronous I/0, the “logger 1/O busy” and “logger task busy” per-
centages are typically close in utilisation values.

o When the logger task is successfully using zHyperLink, the “logger 1/O busy” percentage
is generally a much lower value as the logger task is no longer waiting for the I1/0 to
complete.

225

Getting best performance out of your zHyperLink environment

Whilst the enabling of zHyperLink with MQ active logs is relatively straightforward, there are some
things that can be done to give M(Q the best opportunity to benefit from zHyperLink.

1. Ensure there are sufficient write (token) sessions available on your system.
2. Use the shortest possible zHyperLink cable.
3. Ensure there are sufficient zHyperLink paths to the DASD.

These topics are expanded in the following pages.

226

Do I have enough write sessions?
When using zHyperLink, one or more zHyperLink write sessions are established with the DASD.

Current DASD supports a maximum of 64 concurrent write sessions so you should carefully consider
which queue managers you enable zHyperLink on, and whether other subsystems, such as Db2 are
also using zHyperLink for writing to the same DASD. If you run out of available write sessions then
the queue manager automatically switches back to using traditional asynchronous I/0.

You can calculate the number of zHyperLink write sessions as follows:

Number of log copies (either 1 or 2) * number of stripes per log copy
Multiply this number by 2 if Metro Mirror (PPRC) is used

Note: While Metro Mirror results in twice as many write sessions being used, unless using a loopback
to single device, those write sessions are split evenly between the two mirrored DASDs.

For example, a queue manager with single logging with four stripes uses 4 write sessions.
To view how many write sessions are in use, you can use the command:
DEVSERV QDASD MACH=<device serial number>,ZHL

Where the device serial number is a ten character serial number specifying either the storage control
unit or the DASD device about which DEVSERYV will display information.

This command will return the number of tokens and the names of the dataset with the write token,
for example:

TEE4591 23.32.01 DEVSERV QDASD 089

UNIT VOLSER SCUTYPE DEVTYPE CYL SSID SCU-SERIAL DEV-SERIAL EFC
07800 AAATS4 2107996 2107900 65520 3110 0175-TJS31 0175-TJS31 *0K
ZHYPERLINK WRITE TOKENS ASSIGNED

TOKEN DATE TIME UNIT DATA SET NAME

1BEO 07/19/24 23:30 07861 MQMDATA.VTS8.LOGCOPY1.DS01.DATA

1CE1 07/19/24 23:30 07860 MQMDATA.VTS8.LOGCOPY1.DS01.DATA

1DE2 07/19/24 23:30 0782B MQMDATA.VTS8.LOGCOPY1.DSO1.DATA

1EE3 07/19/24 23:30 078C4 MQMDATA.VTS8.LOGCOPY2.DS01.DATA

1FE4 07/19/24 23:30 078C9 MQMDATA.VTS8.LOGCOPY2.DS01.DATA

20E5 07/19/24 23:30 078C3 MQMDATA.VTS8.LOGCOPY2.DS01.DATA

21E6 07/19/24 23:30 0785F MQMDATA.VTS8.LOGCOPY1.DSO01.DATA

22E7 07/19/24 23:30 078C7 MQMDATA.VTS8.LOGCOPY2.DSO01.DATA

*x*x*x 8 WRITE TOKEN(S) MET THE SELECTION CRITERIA

x%x 1 DEVICE(S) MET THE SELECTION CRITERIA

*x*x* O DEVICE(S) FAILED EXTENDED FUNCTION CHECKING

In the above example, there is a single queue manager with dual logging, where each log is striped
4-ways. This results in 8 write tokens being used.

227

What is the impact of zHyperLink cable length?

The length of the cable used for zHyperLink between the IBM z mainframe and the DASD is limited
to 150 metres, and the length used may be predicated by the distance between the two.

However, there is a benefit to having the shortest possible cable in terms of both I/O response times
and the additional cost incurred by the MQ logger task when using zHyperLink synchronous writes.

The Getting Started with IBM zHyperLink for z/OS Redbook in section 2.3.6 discusses the standard
cable lengths (40 and 150 metres) but also states that other length options are available.

In our original testing of zHyperLink, there was a 150 metre cable connecting our IBM z16 and
DS8950F as the DASD was located on the far side of our data centre. For a single page I/O request
with the 150 metre cable, MQ reported the I/O taking 35 microseconds to complete.

Following discussions with the zHyperLink team, we moved our DASD to be located much closer to
the IBM z16, and replaced the 150 metre cable with a 30 metre cable. In the “What is zHyperLink”
section, a table was provided that reports the subsequent single page I/0O times. For zHyperLink on
a quiet system with a 30 metre cable, we saw I/O times of 28 microseconds.

For a single page I/O request, reducing the cable length from 150 to 30 metres, reduced the I/O
time by 7 microseconds which is the equivalent of a 20% improvement in response times.

Since the synchronous I/O results in the MQ logger task spinning whilst the I/O completes, reducing
the length of the cable in this way also reduces the I/O cost by 7 CPU microseconds.

A longer zHyperLink cable also offers more opportunity for the I/O request to timeout, which is
more noticeable with multi-page 1/0 requests. Such a request would initially be attempted as a
synchronous I/O request and then may fall back to an asynchronous I/0 request.

Even when the I/O remains synchronous, the cable length can affect the I/O response times for
multi-page 1/Os. For example, a multi-page I/O writing 16 pages or 64KB of data with a 150 metre
cable reported a response time of 167 CPU microseconds. Using a 30 metre cable resulted in the
I/0 time taking 105 CPU microseconds, a reduction of 62 CPU microseconds or an equivalent of a
37% reduction in I/O and MQ logger SRB time.

If you are not in the fortunate position of having the DASD and the IBM z mainframe located
adjacent, or are unable to move them closer together, it is still beneficial to check that the zHyperLink
cable is not unnecessarily long as this will add both latency to the I/O response times and CPU cost
to the MQ logger task. Additional cost to the MQ logger task may be of importance as the logger
task runs as a high priority SRB, which when spinning may be preventing other, potentially high
importance, tasks from fulfilling their own CPU requirements.

228

https://www.redbooks.ibm.com/redpapers/pdfs/redp5493.pdf

Are there sufficient zHyperLink paths to the DASD?

In our original testing environment there were 8 PFIDs enabled over a single PCle adapter, which
is 4 PFIDs per zHyperLink port for each logical partition sharing the DS8000. The IBM z16 was
configured with a second adapter and a further 8 PFIDs but these were reserved.

When using zHyperLink to write to MQ active logs, the 1/O requests are shared equally between
the available PFIDs, using a round-robin technique.

We were advised that for most reliable performance, the PFIDs usage should not exceed 25% else
there was an increased risk of the I/O changing to asynchronous, with the subsequently longer I/0
times.

To determine the PFID utilisation requires reviewing the RMF Synchronous I/O Device Activity
report. If we review the data in the earlier Synchronous I/O Device Activity report, we need to use
the following attributes:

e Synch I/O writes
e Average Response Time for Synch I/0O

If there are multiple devices, perhaps from striping, or the MQ active logs being located on separate
devices, it may be easier to use the values in the LCU summary, shown at the bottom of the diagram.

Multiplying these two values together i.e. 13567.3 * 0.115, the sum is the number of CPU mil-
liseconds used per second, i.e. 1560 CPU milliseconds per second. This equates to a single PFID
being 156% busy for the interval.

Provided the number of active PFIDs is known, this can be used to work out the approximate
utilisation of the PFIDs, i.e. on a system with 8 PFIDs that is 156% busy, each PFID is 19.5%
utilised, which is below the 25% busy guideline value.

A symptom of the PFIDs being over capacity is a decrease in synchronous I/O and an increase in
asynchronous I/0.

By using the second adapter and allocating a total of 16 PFIDs per logical partition, we found that
for all of the configurations detailed in this section, there was minimal asynchronous I/0.

It should be noted that having insufficient paths for zHyperLink may not always cause a performance
issue, as it can depend on the configuration of the MQ queue manager and the workload.

The following chart compares the MQ log rate achieved on an MQ queue manager configured with
dual log copies that are each striped 4-ways, when there is both insufficient and sufficient zHyperLink
paths to the DASD.

The workload used to collect the data in the chart is based upon that used for “Upper bounds of
persistent logging rate” in the Regression section of this document.

229

Chart: Impact of insufficient zHyperLink paths

Achieved log rate - impact of insufficient zHyperLink paths
Dual Logs, striped
E— PFID(S) S—PFID(16) e % Sync
500 an
% i 70 ’
ki 60 g
E ® g
& @ g
- 200
2 n #
100 20
11 .
0 0
1KB 16KE 32KE B4KE 100KE 0.5MB
Message Size

Notes on chart:

e For messages up to 8KB, 8 PFIDs was sufficient to keep the workload synchronous and was
largely able to sustain throughput rates similar to the 16 PFID configuration.

o As the message size increased to 16KB to 100KB, the percentage of synchronous I/O decreased
from 97 to 62% and throughput rates dropped by up to 38% with 8 PFIDs.

e For messages of 0.5MB to 4MB with the 8 PFID configuration, the percentage of synchronous
I/O continued to drop compared to the 16 PFID configuration. However as MQ switched to
asynchronous I/0, the achieved logging rate improved due to the benefits of striping the active
logs.

o With the 16 PFID configuration using messages of 0.5MB to 4MB, the striped nature of
the logs does provide the same benefits when using zHyperLink to perform the I/0.

Rule of Thumb

Try to keep the zHyperLink path utilisation to a maximum of 25% busy.

230

Performance Measurements

This section compares the performance of 4 queue manager configurations running workloads with
increasing message sizes, with the configurations being;:

1. Single active log copy, non-striped
2. Single active log copy, striped

3. Dual active log copies, non-striped
4. Dual active log copy, striped

Each of those configurations compares the workload run with traditional asynchronous I/O with
zHPF-enabled against synchronous I/0.

For all measurements, there are 16 PFIDs enabled, to ensure the maximum chance of zHyperLink
success. The zHyperLink cable used is 30 metres.

Additionally, for each configuration of queue manager, there are two environments used. The first
environment is our performance environment where the only workload on the logical partition is the
MQ workload. The second workload named “real-world" has other non-MQ workload driving I/0O to
and from the same DASD device. This is intended to simulate a more realistic environment which
has the benefit of showing zHyperLink to best effect.

Each section contains comparisons of the achieved rate that the MQ logger task was able to sustain
for a range of message sizes from 1KB to 4MB. For the performance section, a comparison of the
cost per MB logged is also included.

The cost per MB comparison charts can make the impact of zHyperLink look quite significant,
particularly in these micro-benchmark workload where the MQ cost forms 95% or more of the total
cost, and because of that the section “Cost of zHyperLink” attempts to put the additional cost into
context.

In every measurement in this section, the queue manager was configured with 4GB active logs.

The workload used to collect the data in this section is based upon that used for “Upper bounds of
persistent logging rate” in the Regression section of this document.

Note: The costs reported are based on the total cost charged to the MQ queue manager and the
light-weight applications divided by the total MB logged.

231

Measurements in performance environment

Single active log copy, non-striped The following charts compare the performance of the MQ
queue manager when configured with a single non-striped log copy.

Chart: Achieved Log Rate using single log copy (non-striped)

Achieved MQ log rate - Single log copy (non-striped)

M Baseline W zHyperLink

700
600

%JJJJJ‘JJ“J‘

16KB 32KB 64KB 100KB O0.5MB 1M

L Y e |

MB / Second logged

=

Meszage Size

When using a single log copy with zHyperLink enabled, where the logs were not striped, MQ was
able to achieve improved log rate for all of the measured message sizes.

For smaller messages, the log rate was up to 3.6 times that of the baseline configuration, whilst with
larger messages the improvement was up to 2.3 times that of the baseline measurement.

For example, with 1KB messages the baseline workload achieved a log rate of 33 MB per second,
but when the MQ active log was zHyperLink-enabled, the log rate reached 120 MB per second.

With larger messages, the baseline measurement peaked at 268 MB per second, whilst the zHyper-
Link configuration achieved 614 MB per second.

232

Chart: Cost per MB logged when using single log copy (non-striped)

Cost per MB logged - Single log copy (non-striped)

B Baseline ™ zHyperLink
14000
12000

10000

Mideas...

16KB 32KB 64KB 100KB 0.5MB 1MB 2MB

CPU microseconds / MB logged

Message Size

The cost per MB for the MQ workload when using a single log copy with zHyperLink ranged between
2 to 3.5 times that of the baseline measurement.

The additional cost is incurred in the MQ queue manager address space and is attributed to SRB
in the RMF CPU report.

For smaller messages the cost was typically 2 to 2.4 times that of the baseline, whereas larger message
workloads saw a more significant increase in cost per MB logged.

233

Single active log copy, striped

The following charts compare the performance of the MQ queue manager when configured with a
single log copy that is striped 4-ways.

Chart: Achieved Log Rate using single log copy (striped)

Achieved MQ log rate - Single log copy (striped)

B Baseline ™ zHyperLink

1000
[ap0
800
‘g 700
g 600
E 500
S 400
9 300
@ 200
e = B B
1KB 2KB BKB 16KB 32KB 64KB 100KB 0.5MB 1MB 2MB 4MB
Message Size

When using a single striped log copy with zHyperLink enabled, M(Q was able to achieve improved
log rate for all of the measured message sizes.

For smaller messages, the log rate was up to 3.7 times that of the baseline configuration, whilst with
larger messages the improvement was up to 1.3 times that of the baseline measurement.

The baseline workload achieved a log rate of 33 MB per second with 1KB messages, but when the
MQ active log was zHyperLink-enabled, the log rate reached 122 MB per second.

With larger messages, there was less benefit for zZHyperLink as striping the logs in the non-zHyperLink
environment gave a significant improvement to the log capacity, increasing from 268 to 764 MB per
second. By contrast, striping the zHyperLink single logs resulted in the 4MB workload increasing
from 614 to 976 MB per second.

234

Chart: Cost per MB logged when using single log copy (striped)

Cost per MB logged - Single log copy (striped)

®m Baseline m zHyperLink

14000
3 12000
g 10000
<
= 8000
3
§ 8000
5 4000
E
2 2000
L]
" ‘ ol ol ol B
1KB 2KB 8KB 16KB 32KB 64KB 100KB 0.5MB 1MB 2MB 4MB
Message Size

The cost per MB for the MQ workload when using a single log copy that was striped with zHyperLink
ranged between 1.9 to 2.6 times that of the baseline measurement.

For smaller messages the cost was typically up to double that of the baseline, whereas larger message
workloads saw a more significant increase in cost per MB logged.

Striping the M(Q active log in the baseline configuration made little difference to the cost per MB
logged but using striped logs in the zHyperLink configuration with larger messages reduced the cost
by up to 30% over the non-striped equivalent measurement.

235

Dual active log copies, non-striped

The following charts compare the performance of the MQ queue manager when configured with a
dual log copies without striping.

Chart: Achieved Log Rate using dual log copies (non-striped)

Achieved MQ log rate - Dual logs (non-striped)

M Baseline ™ zHyperLink

700
600

aJJJJJJJ““

SKB 16KB 32KB 64KB 100KB 0.5MB 1M 2MB

o o

ME / Second logged (per log copy)
=

Message Size

When using a dual log copies with zHyperLink enabled, where the logs were not striped, MQ was
able to achieve improved log rate for all of the measured message sizes.

For smaller messages, the log rate was up to 3.6 times that of the baseline configuration, whilst with
larger messages the improvement was up to 2.3 times that of the baseline measurement.

For example, with 1KB messages the baseline workload achieved a log rate of 31 MB per second,
but when the MQ active log was zHyperLink-enabled, the log rate reached 113 MB per second.

With larger messages, the baseline measurement peaked at 249 MB per second, whilst the zHyper-
Link configuration achieved 566 MB per second.

236

Chart: Cost per MB logged when using dual log copies (non-striped)

Cost per MB logged - Dual logs (non-striped)

W Baseline ™ zHyperLink

14000

12000
10000
8000
&6000
4000
o ddiaaa
0
1K 2KB

BKB 16KB 32KB 64KB 100KB 0.5MB 1MBE 2MB 4MB

CPU microsecods [MB logged

Message Size

The cost per MB for the MQ workload when using dual log copies with zHyperLink ranged between
1.9 to 3.4 times that of the baseline measurement.

For smaller messages the cost was typically up to double that of the baseline, whereas larger message
workloads saw a more significant increase in cost per MB logged.

237

Dual active log copies, striped

The following charts compare the performance of the MQ queue manager when configured with a
dual log copies that are striped 4-ways.

Chart: Achieved Log Rate using dual log copies (striped)

Achieved MQ log rate - Dual logs (striped)

B Baseline ® zHyperLink

700
600
500

%JJJJJ“‘IIII

8KE 16KB 32KB 64KB 100KB O.5MB 1MB

o o

ME ! Second logged (per log copy)
=

Message Size

When using dual striped log copies with zHyperLink enabled, MQ was able to achieve improved log
rate for messages up to 0.5 MB, but for larger messages the rate achieved was 90% of the baseline
configuration.

For smaller messages, the log rate was up to 3.6 times that of the baseline configuration, whilst with
larger messages there was a 10% decrease in peak log rate when using zHyperLink.

The baseline workload achieved a log rate of 31 MB per second with 1KB messages, but when the
MQ active log was zHyperLink-enabled, the log rate reached 112 MB per second.

With larger messages, the baseline configuration was able to exploit the striped logs to best effect
and was able to sustain up to 600 MB per second per log copy. This was a significant increase in
capacity over the non-striped configuration where the peak log rate was 249 MB per second.

In the zHyperLink configuration with striped dual log copies, there was sufficient zZHyperLink ca-
pacity, i.e. paths to disk, that the I/O remained synchronous for all message sizes but this resulted
in the peak log rate actually being lower than the non-striped equivalent measurements, such that
non-striped achieved 566 MB per second and striped logs achieved 519 MB per second.

With less PFIDs (paths to disk), the zHyperLink configuration would have resulted in more time-outs
and used asynchronous I/0, giving a slightly improved log capacity.

238

Chart: Cost per MB logged when using dual log copies (striped)

Cost per MB logged - Dual logs (striped)

B Baseline ™ zHyperLink

14000
12000

Al

BKB 16KB 32KB 64KB 100KB 0.5MB 1MB 2MB 4MB

CPU microseconds / MB logged

Messapge Size

The cost per MB for the MQ workload when using dual log copies that are striped with zHyperLink
ranged between 1.8 to 3.3 times that of the baseline measurement.

For smaller messages the cost was typically up to double that of the baseline, whereas larger message
workloads saw a more significant increase in cost per MB logged.

Once more, striping the M(Q active log in the baseline configuration made little difference to the cost
per MB logged. Using striped logs in the zHyperLink configuration saw a small increase in cost per
MB logged over the non-striped equivalent measurement of up to 7.5%.

With fewer zHyperLink resources, i.e. 8 PFIDs rather than 16, the I/O for the larger messages
would have gone predominantly asynchronous, such that the costs would have been 60% of the 16
PFID measurement. Note, that the 8 PFID measurements going asynchronous with larger messages
still incur a cost over the baseline measurements as synchronous I/0 is still attempted.

239

Measurements in “real-world” environment

The measurements in this section are a repeat of those in the performance environment, with a small
but significant difference.

For these measurements, the workload includes a set of 30 medium-priority batch tasks that are each
reading and writing to their own RRDS (relative record data set) file. These batch tasks randomly
read and write records of 32KB, with the purpose of increasing the utilisation of the channel paths
to the storage device and to increase cache usage on the disk.

To offer an indication of the impact of the additional workload on the 1KB single active log copy
(non-striped) baseline measurement, the average of the 4 channel paths utilisation increased from

2% to 94%.

As mentioned in the introduction to the performance measurements, the “real world” measurements
in the following section will not include charts with the cost per MB logged, as the costs for the MQ
workload is not significantly different to those reported in the performance environment.

240

Single active log copy, non-striped

The following chart compares the performance of the MQ queue manager when configured with a
single log copy that is not striped.

Chart: Achieved Log Rate using single log copy (non-striped) when disk infrastructure
is busy

MQ Log Rate achieved when other workload using /O infrastructure

Single Logs, non-striped

NN Baseline m— zHyperlink -----c--------- Factor

&

700 7.0 =

j=1

=

- ﬁﬂﬂ “II“”””“"”"""rl;,l E.D' E

% 500 nrlu:nuru"“”' R0 El

£ 400 40 3

5 3{][] Jr“r” LT [RILL1] T T 3'0 E

w200 20 ©

o g
m

o xaadl 0

0 00 g

1KB 2KB 4KB BKB 16KB 32KB 64KB 100KE 0.5MB 1MB Z2MB 4MB E

»

Message Size

When using a single non-striped log copy with zHyperLink enabled in an environment where the
common I/0 infrastructure was in use, MQ was again able to significantly improve log rate for all
of the measured message sizes.

For smaller messages, the log rate was up to 5.8 times that of the baseline configuration, whilst with
larger messages the improvement was up to 2.7 times that of the baseline measurement.

The baseline workload achieved a log rate of 19 MB per second with 1KB messages, but when the
MQ active log was zHyperLink-enabled, the log rate reached 112 MB per second.

With larger messages, there was still a significant benefit for zHyperLink as the I/O no longer used
the same congested channel paths as the non-MQ workload, such that the baseline configuration
achieved a peak of 227 MB per second whereas the zHyperLink measurement achieved 605 MB per
second.

241

Single active log copy, striped

The following chart compares the performance of the MQ queue manager when configured with a
single log copy that is striped 4-ways.

Chart: Achieved Log Rate using single log copy (striped) when disk infrastructure is
busy

MQ Log Rate achieved when other workload using |/O infrastructure
Single Logs, striped
I Boscline e zHyperlink ---:eoooeee Factor

1000 6.0

5.0

600
400 J
200

N N J J

1KB 2KB 4KB 8KB 16KB 32KB 64KB 100KB 0.5MB 1MB 2MB 4MB

3.0
2.0
1.0
0.0

MB / Second Logged

times improvement using zHyperlink

Message Size

When using a single striped log copy with zHyperLink enabled in an environment where the common
I/0 infrastructure was in use, MQ was able to significantly improve log rate for all of the measured
message sizes.

For smaller messages, the log rate was up to 5.7 times that of the baseline configuration, whilst with
larger messages the improvement was up to 1.8 times that of the baseline measurement.

The baseline workload achieved a log rate of 19 MB per second with 1KB messages, but when the
MQ active log was zHyperLink-enabled, the log rate reached 110 MB per second.

With larger messages, even with striped logs, there was still a significant benefit for zHyperLink
as the I/O no longer used the same congested channel paths as the non-MQ workload, and whilst
that the baseline configuration achieved a peak of 560 MB per second, the zHyperLink measurement
achieved 952 MB per second.

The benefits of striping the logs for both the baseline and zHyperLink configurations equated to
improving the peak log rates by 330 to 350 MB per second over the non-striped equivalent measure-
ment.

242

Dual active log copies, non-striped The following chart compares the performance of the MQ
queue manager when configured with dual log copies that are not striped.

Chart: Achieved Log Rate using dual log copies (non-striped) when disk infrastructure
is busy

MQ Log Rate achieved when other workload using I/O infrastructure

Dual Logs, non-striped

I Bascline s zHyperLink - Factor

£

600 7.0 T

a

- 500 S TTTTTTTn 60 £

& 50 o

E’ 400 “r,-m,“” 3 =

S ”....J..,_“”“m 40 @

é 20 20 ¢

o o
100

0 0.0 @

1KB 2ZKB 4KB B8KB 16KB 32KB 64KB 100KB 0.5MB 1MB 2MEB 4MB E

»

Messages Size

When using dual non-striped log copies with zHyperLink enabled in an environment where the
common I/0 infrastructure was in use, MQ was again able to significantly improve log rate for all
of the measured message sizes.

For smaller messages, the log rate was up to 5.9 times that of the baseline configuration, whilst with
larger messages the improvement was up to 2.8 times that of the baseline measurement.

The baseline workload achieved a log rate of 17 MB per second with 1KB messages, but when the
MQ active log was zHyperLink-enabled, the log rate reached 102 MB per second.

With larger messages, there was still a significant benefit for zHyperLink as the I/O no longer used
the same congested channel paths as the non-MQ workload, such that the baseline configuration
achieved a peak of 198 MB per second whereas the zHyperLink measurement achieved 557 MB per
second.

It is worth recalling that in the equivalent performance environment measurement, the baseline
configuration achieved a peak MQ log rate of 249 MB per second and this rate has dropped to 198
MB per second (-21%) due to the additional load on the channel paths. By contrast the zHyperLink
configuration changes by less than 2%.

243

Dual active log copies, striped

The following chart compares the performance of the MQ queue manager when configured with dual
log copies that are striped 4-ways.

Chart: Achieved Log Rate using dual log copies (striped) when disk infrastructure is
busy

MQ Log Rate achieved when other workload using I/O infrastructure
Dual Logs, striped
I Baseline W zHyperLink -coeeeeo Factor

600 i
5{][] L LU LT Ty 6-[}

J!rnri!rl!r"rl” -
-Hilnun -
Juun“
b Hapgy, -
try |
1 y = a 1.
0.

1KB 2KB 4KB 8KB 16KEB 32ZKB 64KB 100KE 0.5MB 1MB 2MB 4MB

MEB / Second Logged
=

* times improvement using zHyperlink

Message Size

When using dual striped log copies with zHyperLink enabled in an environment where the common
I/0 infrastructure was in use, MQ was able to significantly improve log rate for all of the measured
message sizes.

For smaller messages, the log rate was up to 5.9 times that of the baseline configuration, whilst with
larger messages the improvement was up to 1.2 times that of the baseline measurement.

The baseline workload achieved a log rate of 17 MB per second with 1KB messages, but when the
MQ active log was zHyperLink-enabled, the log rate reached 103 MB per second.

With larger messages using striped logs there was a less significant benefit to zHyperLink, similar
to the performance environment, but due to the baseline performance being impacted by non-MQ
workload using the channel paths, MQ’s active logs using zHyperLink were able to achieve higher
peak log rates of up to 505 MB per second compared to the baseline of 409 MB per second.

The benefits of striping the logs for the baseline configuration resulted in the achieved log rate
increasing by 210 MB per second over the equivalent non-striped measurement, however the zHy-
perLink configurations saw a drop of 52 MB per second on the peak log rate achieved when compared
to the dual logs non-striped configuration.

244

Cost of zHyperLink

CPU in the MQ queue manager address space is largely attributed to administration-type tasks,
for example: active log writes, deferred write processing, message expiry and archiving. Of these 4
examples, the first 3 perform their processing using SRB and archiving uses a TCB.

How much cost is charged to the queue manager for each of these tasks will depend on many factors
and will be unique to each MQ installation.

For a non-persistent type MQ workload, there may be very little cost attributed directly to the MQ
queue manager, but a persistent workload would typically see a higher cost, particularly associated
with active log writes and at end of log, writing the active log to archive.

In the measurements for zHyperLink thus far, the impact has been to increase the cost per MB logged
from between 1.8 to 3.7 times the cost per MB of traditional asynchronous I/O. These calculations
are based on the total CPU used for the MQ queue manager and the very simplistic applications
putting and getting messages.

Given synchronous I/0 results in the MQ logger task (SRB) spinning CPU until the I/O completes,
I/O that has an elapsed time of 100 microseconds will cost 100 microseconds of CPU.

As such, it is clearly beneficial to reduce the I/O time, and therefore the cost as much as possible.
This can be achieved in two ways:

1. Increase the number of paths available to zHyperLink.
2. Reduce the length of the connection between the IBM z mainframe and the DASD.

In our initial investigation, we increased the number of zHyperLink paths from 8 to 16. This gave
mixed results, the I/O was spread evenly over the additional paths and did in some cases reduce the
I/0O time, particularly when MQ was attempting to write many pages per I/O request. However,
as the paths were more difficult to saturate, there were instances where large message workloads
remained synchronous and achieved lower throughput than the asynchronous equivalent.

Reducing the length of the zHyperLink connection meant re-organising the data centre to physically
locate the DASD next to the IBM z mainframe and replacing the 150 metre cable with a 30 metre
cable. This had the effect of decreasing a single page I/O from 35 to 28 microseconds, which for
synchronous I/0 also meant the cost of the I/O was reduced by 7 CPU microseconds (-20%).

By ensuring both of the above actions are applied will ensure that MQ with zHyperLink-enabled
active logs will have the best opportunity for minimal I/O times and therefore minimal time spent
spinning CPU while the I/O completes.

245

Cost of zHyperLink is all relative

Having ensured that the zHyperLink environment is optimised, the next step is to look at the relative
cost of zHyperLink.

Users of MQ may be interested in the CPU increase for their MQ estate, for example they may be
aware of their MQ CPU usage from RMF workload reports, and a significant increase in MQ CPU
utilisation may raise concerns.

To demonstrate the impact of zHyperLink against the MQ MSTR address space, the following
compares the costs as reported by RMF Workload reports for 2 message sizes, 2KB and 1MB, from
different perspectives. In both instances, the queue manager is configured with a single log copy
that is not striped.

The values given are the number of times higher the zHyperLink cost per MB is, compared to the
baseline (asynchronous I/O) measurement.

2KB workload
e Total cost (applications plus MQ): 1.9 times
e MQ (TCB plus SRB): 3.2 times
e MQ SRB (active logging only): 3.2 times

1MB workload
e Total cost (applications plus MQ): 3.1 times
e MQ (TCB plus SRB): 10.4 times
e MQ SRB (active logging only): 11.1 times

Even with the improvements to the MQ log rate from zHyperLink, it might be difficult to justify
a cost increase to your MQ estate that approaches 11 times the existing cost, which is it why it is
crucial to consider your own processing requirements.

For example if the depth of the queues on a queue manager is high for periods of time, then the MQ
queue manager may incur costs from writing data from buffer pools to page set using the Deferred
Write Processor (DWP). Similarly if there is a high usage of message expiry, there will be additional
non-logger related cost attributed to the MQ queue manager.

The cost of using the DWP and message expiry will increase the baseline SRB cost in the queue
manager and will not be affected by implementing zHyperLink support for MQ active logs, but may
reduce the impact of zHyperLink as a proportion of the total MQ CPU utilisation.

Equally if the system is set up to combine MQ queue manager and channel initiator costs as a single
value, the impact of enabling zHyperLink will be a smaller proportion of the total MQ cost.

For the measurements in this chapter, the application costs are small, simply because the applications
are doing nothing other than MQ messaging, i.e. there are no complex calculations, database or file
interactions etc.

246

Factoring in a more complex environment Throughout all of this zHyperLink section, the
workloads have used simplistic applications with no complex processing.

The total costs of the workloads have been based on the total of those applications and the MQ
queue manager address space, but this is not a realistic environment for MQ.

In this section, a comparison of the impact of zHyperLink to the MQ costs is offered, which differs
from previous comparisons as a higher cost from those systems that interact with the MQ queue
manager will diminish the relative impact to CPU usage of zHyperLink.

The following chart shows the number of times more expensive enabling zHyperLink is to the total
cost as the application (or MQ channel initiator) cost increases.

Chart: Impact of zHyperLink on cost per MB of an MQ workload

Impact of zHyperLink of cost / MB as the proportion of persistent MQ workload decreases in the system.

Single logs, non-striped for 1MB workload

Persistent w/l accounts for 1% of all work | 1.02

Persistent w/l accounts for 2% of all work [N 1.02

Persistent w/l accounts for 5% of all work [N 1.04
Persistent w/l accounts for 10% of all work [N 1.11
Persistent w/l accounts for 20% of all work |[INNNEGEN 1.43
Persistent w/l accounts for 30% of all work | IR 1.64
Persistent w/l accounts for 40% of all work | 1.86
Persistent w/l accounts for 50% of all work | IR 2 .07
Persistent w/l accounts for 60% of all work |G 2 22
Persistent w/l accounts for 70% of all work |IRNNREREEEEEN - S0
Persistent w/l accounts for 80% of all work | NRNRNRENGEGTEEN - 71
Persistent w/l accounts for 90% of all work [RNRERGTE : o2

Persistent w/l accounts for 100% of all work [NRNRNREGEN .14
Ma (CPU + SRE) | 1041
Ma SR E | 1111
0.00 2.00 4.00 6.00 8.00 10.00 12.00

zHyperLink factor of 'x' fimes more expensive

Notes on chart:

e The MQ SRB costs consist entirely of MQ logger task costs - there is no deferred write nor
message expiry.

e When comparing the impact of zHyperLink solely on MQ SRB costs, the impact for the 1 MB
workload is that zHyperLink was 11.11 times as expensive as the asynchronous I/O workload.

e When comparing the impact of zHyperLink, when the MQ persistent workload accounts for
80% of the entire CPU cost, zHyperLink increases the overall CPU cost by a factor of 2.71
times.

e When comparing the impact of zHyperLink, when the MQ persistent workload accounts for
20% of the entire CPU cost, zHyperLink increases the overall CPU cost by a factor of 1.43
times.

e When comparing the impact of zHyperLink, when the MQ persistent workload accounts for
5% of the entire CPU cost, zHyperLink increases the overall CPU cost by a factor of 1.04
times, or 4%

There is clearly a cost impact to a system when MQ active logs are configured to use zHyperLink, but
the overall impact will depend on how large a proportion of the workload uses persistent messages.

247

Checklist

Be aware if already using zHyperLink for other subsystems e.g. Db2 - additional load on those
paths may impact the response times of all subsystems using the links.

Monitor resources, including CPU, Synchronous I/O Device Activity, MQ log statistics.
Use the shortest zZHyperLink cable between IBM z mainframe and storage device.
Ensure there are sufficient paths (PFIDs) to the storage device.

Consider whether you need striped logs and zHyperLink, particularly when using MQ with dual
logs. The performance characteristics can change depending on whether there are sufficient
zHyperLink resources.

Measure in your own environment to ensure the additional cost is not prohibitive to
your installation and to understand whether there are sufficient zHyperLink resources for your
workload.

Ensure sufficient CPU is available to address the additional SRB costs incurred with zHyper-
Link.

Be aware that in a Metro Mirror (PPRC) environment, zHyperLink being enabled results in
zHyperWrite being enabled too.

Whilst the additional cost of zHyperLink may be of concern to the installation, be aware that
once zHyperLink has been configured and enabled in the MQ queue manager, zHyperLink can be
enabled /disabled dynamically on the MQ queue manager using SET LOG ZHYLINK(YES | NO) to
address periods of high-volume persistent workloads.

248

Chapter 5

How It Works

Tuning buffer pools

This chapter gives an outline of how buffer pools are used and what the statistics mean.

Introduction to the buffer manager and data manager
This describes how buffer pools are used. It will help you determine how to tune your buffer pools.

The data manager is responsible for the layout of messages within one or more 4KB pages, and for
managing which pages are used on a page set. A message always starts on a new page and a long
message can span many pages. A page can contain persistent messages or non-persistent messages,
but not both.

The buffer manager is responsible for reading and writing these pages to the page sets, and for
managing copies of these pages in memory. The buffer manager makes no distinction between
persistent and non-persistent messages, so both persistent and non persistent messages can be written
to the page set.

A buffer pool page is written to a page set at the following times:

e At checkpoint, if it contains any change since it was last written and this is the second check-
point to have occurred since the first such change.

e Whenever the threshold of less than 15% free buffer pool pages is reached. Pages are then
written asynchronously by an internal task. This is referred to as the "15% free threshold".

e When an application has finished with a page and there are less than 5% free pages in the
buffer pool.

e At shutdown, if it contains any change since it was last written.

e From V5.3 buffer pool pages which contain non-persistent messages are usually not written to
a page set at checkpoint or shutdown.

A page is changed both when a message is put and when it is retrieved, because the MQGET
logically deletes the message unless it is a browse.

Pages are usually written by the Deferred Write Process (DWP, although it is sometimes called
DWT) asynchronously from user application activity. The DWP writes pages from the buffer pool
in least recently used order (that is, from the oldest changed page).

A page is read from a page set data set into the buffer pool at the following times:

249

e When a message that is not already in the buffer pool is required.

e During read ahead, which is when an internal task reads a few messages into the buffer pool
before an application needs them. This happens if the current MQGET does 1/O to read a
page and was not using MSGID or CORRELID.

Read ahead is most effective when you have a few applications getting short persistent messages
with only a few messages per unit of work, because the read ahead is more likely to complete while
the application waits for log I/0.

There is no direct user control on read ahead. However, you might be able to improve throughput
and response time by using multiple queues on separate page set data sets spread across multiple
volumes to reduce I/O contention.

Differences in performance due to the size of a buffer pool depend on the amount of I/O activity
between a buffer pool and the associated page set data sets. (Real storage usage, and hence paging,
might also be a factor but this is too dependent on individual system size and usage to be usefully
discussed here.) The unit of I/O is a page rather than a message.

The effect of message lifespan
This section discusses some message usage scenarios.

e For messages that are used soon after they are created (that is, typically within a minute, but
possibly up to 2 checkpoint intervals) and a buffer pool that is large enough to contain the
high water mark number of messages, plus 15% free space:

o Bulffer pool pages containing such messages are likely to be re-used many times, meaning
that relatively few pages need to be written at checkpoint and almost no pages need to
be read.

o Both CPU cost and elapsed time are minimized.
e For messages that are stored for later batch processing:

o All pages containing such messages are likely to be written to the page set data set
because they become more than 2 checkpoints old, regardless of buffer pool size. All
these pages need to be written again after the messages are used by an MQGET call,
for example at the second checkpoint after the MQGET call (because the pages on the
page set still contain the messages and must eventually reflect the fact that the messages
are now flagged as deleted). However, if pages are reused for new messages before being
written to the page set, one write operation will cover the MQGET of the old messages
and the MQPUT of the new.

o MQGET operations can still be satisfied directly from the buffer pool, provided that the
pool has not reached the 15% free threshold since the required message was MQPUT.

e In either case, if the 15% free threshold is crossed, the DWP is started. This uses the least
recently used algorithm for buffer pool pages to write the oldest changed buffer pool pages to
the page set and make the buffer pool pages available for other messages. This means that
any messages written to a page set will have to be read back from the page set if the buffer
pool page is reused.

o This is the least efficient buffer pool usage state. Elapsed time and CPU cost will be
increased.
In many cases (for example, a single queue that is much larger than the buffer pool and is
accessed in first in first out sequence) most messages will have to be read from the page
set.

250

o A busy buffer pool, once in this state, is likely to remain so.
Non-persistent message processing does not require IBM MQ log I/0O and thus page set
read I/Os might have greater impact on elapsed time.

A buffer pool that is large enough to keep 15% free buffers will avoid any reads from the page set
(except after a queue manager restart).

Understanding buffer pool statistics

A page in a buffer pool is in one of five states

Unused

This is the initial state of all pages within the buffer pool.
Changed and in use

The content of the page in the buffer pool is different from the matching page on the page set.
Eventually the queue manager will write the pages back to the page set. The page is currently in
use by an application, for example a message is being placed within it. When a large message is
being put, many pages might be updated, but usually only one page will be in use at a time.

Changed and not in use
The page is the same as "Changed and in use" except that the page is not in use by an application.
Unchanged and in use

The content of the page in the buffer pool is the same as the matching page on the page set. The
page is in use, for example, an application is browsing a message on the page.

Unchanged and not in use

The content of the page in the buffer pool is the same as the matching page on the page set, and
the page is not in use by an application. If a buffer for a different page is required, the buffer page
can be reassigned without its contents being written to disk.

e The term stealable buffers refers to those buffers that are unused or unchanged and not in use.
The number of stealable buffers available as a percentage of the total number of buffers affects
the behavior of the buffer pool.

e A page can only be written to disk if it is ’changed‘ and not ’in use‘. In some circumstances,
pages that are ’changed‘ and ’in use‘ are written to disk synchronously after the application
has finished with the page - which results in the page becoming 'changed‘ and not ’in use‘ only
when the I/O completes.

e When a changed page is written to disk (so the version on disk is the same as that in the buffer
pool) the page becomes unchanged and not in use.

The data manager issues requests for pages to the buffer manager. If the contents of a page are
required, a request to get a page is issued:

e The buffer manager checks to see if the page is already in the bufferpool; if it is, the page
status is set to in use and the address of the page is returned.

e If the page is not in the buffer pool, a stealable buffer is located, the page status is set to in
use, the page is read in from the page set, and the address of the page is returned.

e If an update is going to be made to the page, the data manager calls the buffer manager with
a SET WRITE request. The page is then flagged as changed and in use.

e When an application has finished with the page it releases it and, if no other application is
using the page, the status is changed to not in use.

251

If the contents of the page are not required (for example, the page is about to be overwritten with
a new message) a request to get a new page is issued. The processing is the same as above except,
if the requested page is not in the buffer pool, a stealable buffer is located but the page is not read
in from the page set.

252

Definition of buffer pool statistics

This section describes the buffer pool statistics. The names given are as described in the assembler
macro thlqual. SCSQMACS(CSQDQPST) and is discussed in more detail in the InfoCenter section
'Buffer manager data records‘. The names shown in brackets are those used by the program MQSMF
which can print out SMF statistics. (MQSMF is available as part of performance report MP1B

“Interpreting accounting and statistics data”).

The number of pages allocated to the buffer pool in the CSQINPT data
QPSTNBUF (#buff set at MQSeries startup.
QPSTCBSL(#low) || The lowest number of stealable buffers during the SMF interval.
QPSTCBS(#now) || The number of stealable buffers at the time the SMF record was created.
QPSTGETP(getp) || The number of requests to get a page that were issued.
QPSTGETN(getn) || The number of requests to get a new page that were issued.
QPSTSTW(STW) || The number of SET WRITE requests that were issued.
QPSTRIO(RIO) The number of pages that were read from the page set.

If the percentage of stealable buffers falls below 15% or the percentage of changed buffers is greater
than 85%,the DWP is started. This task takes changed pages and writes them to the page sets, thus
making the pages stealable. The task stops when there are at least 25% stealable pages available in
the buffer pool.

When the status of a changed page goes from in use to not in use, and the percentage of stealable
pages falls below 5% or changed pages is greater than 95%, the page is written to the page set
synchronously. It becomes unchanged and not in use, and so the number of stealable buffers is
increased.

When a checkpoint occurs, all pages that were first changed at least two checkpoints ago are written
to disk, and then flagged as stealable. These pages are written to reduce restart time in the event
of the queue manager terminating unexpectedly.

If a changed page was in use during checkpoint processing or when the DWT ran, but should have
been written out, the page is written out to disk synchronously when the page changes from in use
to not in use.

QPSTDWT(DWT) || The number of times the DWP was started.
QPSTTPW(TPW) || The total number of pages written to page sets.
QPSTWIO(WIO) || The number of write request.
The number of synchronous write requests. (There is some internal
QPSTIMW (IMW) || processing that periodically causes a few pages to be written out syn-
chronously.)
The number of times pages were written synchronously to disk because
QPSTDMC(DMC) the percentage of stealable buffers was less than 5% or changed pages
was greater than 95%.

When the data manager requests a page that is not in the buffer pool, a stealable page has to
used.

The number of times a page was not found in the buffer pool and a

QPSTSTL(STL) stealable page was used.

The number of times that a stealable page was needed and there were
QPSTSOS(S0S) no stealable pages available (a short on storage condition).
QPSTSTLA(STLA)|| The number of times there was contention when getting a stealable page.

253

http://www-01.ibm.com/support/docview.wss?uid=swg24005907

Interpretation of MQ statistics

1. If QPSTSOS, QPSTSTLA, or QPSTDMC are greater than zero you should increase the size
of the buffer pool or reallocate the page sets to different buffer pools.

2. For buffer pool 0 and buffer pools that contain short lived messages:

e QPSTDWT should be zero and so the percentage QPSTCBSL/QPSTNBUF should be
greater than 15%.

e QPSTTPW might be greater than 0 due to checkpointing activity.

e QPSTRIO should be 0, unless messages are being read from a page set after the queue
manager is restarted.

e A value of QPSTSTL greater than 0 indicates that pages are being used that haven’t
been used before. This could be caused by an increased message rate, messages not being
processed as fast as they were (so there is a build up of messages), or larger messages
being used.

e You should plan to have enough buffers to handle your peak message rate.

3. For buffer pools with long lived messages, where there are more messages than will fit into the
buffer pool:

e (QPSTRIO+QPSTWIO) Statistics interval is the I/O rate to page sets. If this value is
high, you should consider using multiple page sets on different volumes to allow I/0 to
be done in parallel.

e Over the period of time that the messages are processed (for example, if messages are

written to a queue during the day and processed overnight) the number of read 1/Os
(QPSTRIO) should be approximately the total number of pages written (QPSTTPW).
This shows that there is one disk read for every page written.
If the QPSTRIO is much larger than QPSTTPW, this shows that pages are being read
in multiple times. This could be caused by application using MQGET by MSGID or
CORRELID, browsing messages on the queue using get next, or using message selectors.
The following actions might relieve this problem

o Increase the size of the buffer pool so that there are enough pages to hold the queue,
in addition to any changed pages.

o Move page sets to a different buffer pool to reduce contention between messages from
different applications.

o Use the INDXTYPE queue attribute which allows a queue to be indexed by MSGID
or CORRELID and eliminates the need for a sequential scan of the queue.

o Change the design of the application to eliminate the use of MQGET with MSGID
or CORRELID, or the get next with browse option. Applications using long lived
messages typically process the first available message and do not use MQGET with
MSGID or CORRELID, and they might browse only the first available message.

254

Example of a badly tuned buffer pool

This example was taken from a production system. Buffer pool 0 contains only page set 0.

The system was being monitored using the ISPF interface on TSO to display information about
queues and channels. The initial symptom was that throughput to the distributed M(Q systems

dropped by a factor of 100.

Table: Buffer pool statistics for intervals
Field Previous interval Problem interval
QPSTNBUF 1050 1050
QPSTCBSL 300 154
QPSTCBS 308 225
QPSTGETP 1800000 23000000
QPSTGETN 16000 13000
QPSTRIO 0 310000
QPSTSTW 508000 432000
QPSTTPW 940 1938
QPSTWIO 59 107
QPSTIMW 29 47
QPSTDWT 11
QPSTDMC 0
QPSTSTL 84 732000
QPSTSTLA 421000
QPSTSOS 0

Observations on the problem interval

1. The value for QPSTSTLA (contention when getting a stealable buffer) is 421000. This is
extremely high.

2. More than half the request for a stealable buffer had contention
(QPSTSTLA/QPSTSTL) = 421000,/732000.

3. The number of pages read (QPSTRIO) is very high. 310,000 I/O in 30 minutes is approximately
172 1/O per second (about the maximum capacity of the device).

4. QPSTDMC is zero so the buffer pool was not critically short of buffers.

5. QPSTDWT is greater than zero, QPSTCBSL/QPSTNBUF=154/1050 is 14.6%, QPSTTPW=1938,
these figures are not unusual.

6. QPSTGETN is lower than the previous interval, but QPSTGETP is significantly higher. Also
QPSTSTW is lower, indicating less updates. This implies that there were more requests for
MQGET with browse or by MSGID or CORRELID.

255

What was happening

1. In the mover, information on channels is held in messages on the SYSTEM.CHANNEL.SYNC.QUEUE.
At the end of a batch, the messages relating to the channel are retrieved from the queue. The
MQGET request uses MSGID which is the index type on the queue in the sample.

2. The SYSTEM.CHANNEL.SYNC.QUEUE was in page set 0 and in buffer pool 0.

3. Normally there were sufficient stealable pages for the whole of the SYSTEM.CHANNEL.SYNC.QUEUE
to be kept in the buffer pool.

4. The model queue definitions for command requests and responses pointed to page set 0.

5. For some reason (perhaps the ISPF operator asked for all information about all queues, which
produced many response messages) buffer pool 0 filled up.

6. DWT processing moved the older pages out to disk and made the pages stealable.

7. When a channel reached the end of a batch, it had to read pages for the channel from the
page set looking for a particular message. Because there were insufficient stealable buffers to
hold the whole of the SYSTEM.CHANNEL.SYNC.QUEUE in the buffer pool, stealable pages
were reused and so, for example, the buffer that held the first page of the queue was reused
and was replaced with the 100th page of the queue.

8. When the next channel reached the end of a batch, it had to read the first page of SYS-
TEM.CHANNEL.SYNC.QUEUE from disk and re-use a stealable buffer. The stealable buffers
were then "thrashing".

9. In time, the problem would gradually have corrected itself as pages on the SYSTEM.CHANNEL.SYNC.QUEUE
became changed when messages were put to and retrieved from the queue. However the ISPF
panels were used to display information about the system, and pages were being written out
to disk again, and the whole cycle repeated itself.

Actions taken to fix the problem

1. The SYSTEM.COMMAND.REPLY.MODEL queue was altered to use a storage class on a
different page set, and so in a different buffer pool.

2. The size of buffer pool 0 was doubled. This was not strictly necessary but it allowed room for
any unexpected expansion.

256

Log manager

The log manager is responsible for writing recovery information to the log data sets. This information
is used to recover in the event of a failure or a request to roll back recoverable changes. Recoverable
resources includes persistent messages and MQ objects. Non-persistent messages are not recoverable
and are not handled by the log manager; they are lost at system restart.

This section discusses only recoverable resources.

The log is conceptually a very long buffer. In practice the log is implemented using virtual storage

and DASD. The position of information in this buffer is defined by the Relative Byte Address (RBA)
from the start of the buffer.

Description of log manager concepts and terms

This section describes the concepts and terms used in this section. They are described more fully in
the IBM MQ for z/OS Concepts section of the IBM Knowledge Center.

e Each log buffer is 4096 bytes long and resides in virtual storage.
e The number of log buffers is determined from the OUTBUFF keyword of the CSQ6LOGP

macro.

e When the log buffers fill, or an application issues a commit, the buffers are moved from virtual
storage to log data sets, called the active log data sets. When the log records have been
written, the log buffers can be reused.

e There are at least two active log data sets, which are used cyclically.

e Dual logging describes the situation where the log buffers are written to two log data sets. In
the event of the loss of one data set, the other data set can be used. This facility is enabled
with the TWOACTV keyword of the CSQ6LOGP macro.

e Single logging is when only one ring of active data sets are used.

e When an active log data set fills up, an archive log data set is allocated and the active log is
copied to it. When the copying has completed, the active log data set can then be reused.

e A data set called the bootstrap data set (BSDS) records which RBA range is on which active
or archive log. At system restart, the BSDS is used to identify which log data set to use first.

e You can have two copies of the BSDS data set, so in the event of the loss of one BSDS, the
other can be used.

e When an active log is archived, the BSDS data sets are also archived.

Other terms used in this description

e The current log buffer is the log buffer that is being filled. When this buffer fills up, the next
buffer is used and becomes the current log buffer.

e The logger is a task, running within the queue manager, that handles the I/O to log data sets.

e A log check request occurs while work is being committed. If the data up to the RBA has
not been written out to disk, a request is made to the logger passing the RBA value, and the
requester is suspended. The logger writes the data up to the RBA out to disk and resumes
any tasks waiting for the logger. When the log check request completes, the data has been
copied to disk and it can be used in the event of a failure. A log check is issued when:

o A commit is issued.

o A persistent message is put or got out of syncpoint.

257

o An MQ object, such as a local queue, is defined, deleted or altered.

Illustration of logging

The following section gives a simplified view of the data that is logged when an application gets a
persistent message and issues a commit.

When a message is got, a flag is set to indicate that the message is no longer available. The change
to the flag and information to identify the message within the page, along with information to
identify the unit of work, are written to the log buffers. During the commit, "end of unit of work"
information is written to disk and a log check request is issued with an RBA of the highest value
used by the application.

When does a write to the log data set occur?
Log buffers are written to disk at the following times:

e When a log check request is issued. When the application is running under a syncpoint
coordinator (for example, CICS Transaction Server) and has issued update requests to multiple
resource managers (such as MQ requests) and recoverable CICS resources, the sync level
2 protocol is used at commit time. This causes two MQ log check requests, one for the
PREPARE, and the other for the COMMIT verbs.

e If the number of filled log buffers is greater than or equal to the value of WRTHRSH specified
in the CSQ6LOGP macro, a request is made to the logger to write out up to the RBA of the
previous page.

e When all of the log buffers are in use and there are none free.
e When the system shuts down.

The logger writes up to 128 log buffers at a time to the log data sets, so 129 log buffers require at
least two I/O requests, but the buffers might be written out when other applications are issuing log
check requests.

How data is written to the active log data sets

The current log buffer is the buffer that is currently being filled with data. When this buffer fills
up, the next buffer is used and becomes the current log buffer.

Single logging
If the log check request specifies an RBA that is not in the current buffer, the logger writes up to
and including the page containing the specified RBA.

If the log check request specifies an RBA that is in the current buffer, the logger writes any log
buffers up to, but not including, the current buffer, and then writes the current buffer up to the
requested RBA (a partial page) with another I/0.

Dual logging

If the log check request specifies an RBA that is not in the current log buffer, the I/Os are performed
on each log data set in parallel.

If the check request specifies an RBA in the current buffer, the I/Os will be performed on each log
data set in parallel unless the DASD used does not support write caching. Should DASD without
write caching be used, any rewrites of the buffer writes will be performed to each log data set in
series.

258

Rule of thumb In effect, for a log check request with dual logging, the elapsed time for the write
of the current page to the log data sets is the time required for two I/Os in series; all other log writes
take the time for one log I/0.

Interpretation of key log manager statistics
Consider an application that gets two messages and issues a commit.

When a message is retrieved, a flag is set to indicate that the message is no longer available. The
change to the flag and information to identify the message within the page, along with information
to identify the unit of work, are written to the log buffers. The same happens for the second message.
During the commit, "end of unit of work" information is written to disk and a log check request is
issued with an RBA of the highest value used by the application. data records‘. If this is the only
work running in the queue manager, the three log requests are likely to fit in one log buffer. The
log manager statistics (described in the IBM Knowledge Center section 'Log manager system data
records) would show the following:

QJSTWRNW Number of log writes with no wait 3
QJSTBFFL Number of log pages used 1
QJSTBFWR Number of calls to logging task 1
QJSTLOGW Number of I/O to each log data set 1

In reality, more data than just one flag is logged and there might be more than one I/O involved.
This is explained below.

Detailed example of when data is written to log data sets

Consider two applications, each putting a persistent message and issuing a commit. Assume that:
e Each message needs 16 log buffers to hold all of the data
e The WRTHRSH value in CSQ6LOGP is 20
e Dual logging is used

The following figure shows the log buffers used:

Message 1 Message 2 Commit 1 Commit 2
B1 B2 ... B15 B16 B17 B18 ... B31 B32 B33 B34

Where:
e B1...B16 are the 16 log buffers for message 1
e B17...B32 are the 16 log buffers for message 2

e B33 is the log buffer for the commit of the first application

e B34 is the log buffer for the commit of the second application. In reality, each log buffer
usually contains information from different applications, so an individual log buffer might
contain information from message 1 and message 2.

If the interval between each MQPUT and the commit is relatively long compared to the time taken
to do a disk I/O (for example, more than 20 milliseconds), the following happens:

1. The first message is put, buffers B1-B16 are filled.

2. When the second message is being put, and buffer B21 is about to be filled, because the
number of full log buffers is greater than the value of WRTHRSH in CSQ6LOGP, this signals
the logger to write out pages up to (but not including) the current buffer. This means that

259

buffers B1-B20 are written out, buffers B1-15 in one I/O, and buffers B16-B20 in a second
I/0.

3. When buffer B22 is being filled, the number of full log buffers is greater than WRTHRSH so
a request is made to the logger, passing the RBA of page B21. Similarly, when writing B23 a
request is made to the logger to write out buffer B22.

4. When the I/O to buffers B1-B15 has completed, these buffers are available for reuse, and so
the number of full buffers falls below the value in WRTHRSH and no more requests are made
to the logger.

5. When buffer B23 is being filled, the number of full log buffers is not greater than WRTHRSH,
so a request is not made to the logger.

6. When the logger has finished processing the requests for buffers B1-15 and B16-20, it checks
the work on its input queue. It takes the highest RBA found and writes up to that page to
the data sets (so it would write out pages B21-B22). In practice, all of the buffers B23-B32
would be filled while the I/O of buffers B1-B15 is happening.

7. When commit 1 is issued, a log check is issued and buffers B23-B32 are written out in one I/0
and buffer B33 (the current buffer) written out in a second I/O. The I/O for buffers B21-B32
is performed in parallel, and because this is the first time B33 has been written, the I/0 is
performed in parallel. The time taken for the commit is at least the time to perform two I/Os.

8. When commit 2 is issued, buffer B33 is rewritten, so the 1/O is performed in series. Buffer
B34 (the current buffer) is written out and the I/O to the two logs is performed in parallel.
This commit request takes at least the time to do three I/O requests. When B34 is rewritten,
the I/0O is performed in series.

If the interval between the MQPUTs and the commits is very short compared to a disk I/O (for
example less than 5 milliseconds), the following happens:

1. As before, when the second message is being put, and buffer B21 is about to be filled, because
the number of full log buffers is greater than the value of WRTHRSH in CSQ6LOGP this
signals the logger to write out pages up to (but not including) the current buffer. Buffers
B1-B20 are written out, buffers B1-15 in one I/O, and buffers B16-B20 in a second I/0O. The
I/0s to each log data set are done in parallel.

2. If both the commits are issued while the above I/Os are happening, when the I/Os have
finished, the logger writes buffers B21-B33 out in one I/O and buffer B34 (the current buffer)
in a second I/O. The I/0O for buffers B21-B33 is done in parallel, and the 1/O for the current
log buffer (B34) is also done in parallel to the two log data sets. The next time buffer B34 is
rewritten, the I/O is done in series. The following table summarizes which buffers are written
in each I/0O:

Long interval

Short interval

B1...B15 in parallel

B1...B15 in parallel

B16...B20 in parallel

B16...B20 in parallel

B21...B22 in parallel

B21...B33 in parallel

B23...B30 in parallel

B34 in parallel

B33 in parallel

B33 in series

B34 in parallel

260

Time taken: 4 I/0. However, because more
Time taken: 8 1/0. data is written in each I/O on average, each
I/O takes longer than the long interval case
The next log check request rewrites B34 in|The next log check request rewrites B34 in
series series.

The effect of one log I/O containing data from multiple transactions is called coat-tailing. As a
general rule, as the amount of data written to the log increases, the response time of requests
requiring a log check increases.

In the example above, if the value of OUTBUFF was 80 (giving 20 log buffers) the put of message 2
would be suspended just before the write of buffer 21 because there are no free log buffers because
buffers B1-B20 are all in use, with buffers B1-B15 being written to the log data sets. When the
I/0O completes and buffers B1-B15 are available again, the application can be resumed. The number
of times that an application is suspended because no buffers are available is recorded in the log
manager statistic QJSTWTB. If you get a nonzero value in this field, you should increase the value
of OUTBUFF until the value of QJSTWTB remains at zero.

MQPUT example

Table: Interpretation of log statistics from MQPUT and commit of 100,000-byte messages
QJSTWRNW Number of log writes with no wait 215
QJSTBFFL Number of log pages used 2 550
QJSTBFWR Number of calls to logging task 200

e The information in the table is for 100 messages, so each message used approximately 25 log
pages per message. Each log page is 4096 bytes long, so the 25 pages use 102,400 bytes. This
includes the information about which pages have been changed, and information about the
unit of work.

e For each MQPUT and commit there were two calls to the logging task, one call was made
because the number of full log buffers was greater than the value of WRTHRSH (20), the
other call was made during the commit.

e To write out 25 pages causes one I/0O for 15 pages, another I/O for 9 pages, and an I/O for
the current log buffer. The elapsed time taken to log the data is the duration of 4 I/Os, the
parallel I/O for the 15 pages and the 9 pages, and two I/Os in series for the current log buffer.

261

MQGET example

Table: Interpretation of the Iog statistics from MQGET and commit of 100 000-byte mes-
sages
QJSTWRNW Number of log writes with no wait 110
QJSTBFFL Number of log pages used 29
QJSTBFWR Number of calls to logging task 102

e The information in the table is for 100 messages so there is approximately one call to the logger
per message.

e Only 29 pages were used to hold the log data. This shows that not very much data was logged
and the same page used for several requests before the page was full.

e The same page was written out several times, even though it had not been completely filled.

e Because the current log buffer only was written each time, there was one I/0 to each log, and
because it was for the current buffer, these I/O were done in series.

Interpretation of total time for requests

In some measurements, the time taken to put a 100 000-byte message and a commit was 67 millisec-
onds on average, and the time to get a 100 000-byte message and a commit was 8 milliseconds on
average. In both cases, most of the elapsed time was spent waiting for log 1/0O.

For the MQGET, the write I/Os to the dual logging devices were done in series. Because little data
was written each time the connect time, when data was transmitted to the device, was small and
RMEF reports showed that the device had a short response time of 3-4 milliseconds. Two I/Os taking
3-4 milliseconds is close to the time of 8 milliseconds.

For the MQPUT, the write of the 15 and the 9 pages were done in parallel, and the write of the
current buffer were done in series; in effect the time taken for four I/Os. Because a lot of data
was written in a request, this caused a longer connect time, which leads to a longer overall DASD
response time. RMF showed a response time of about 16-17 milliseconds for the log DASD. Four
I/0Os of 16-17 milliseconds is close to the measured time of 67 milliseconds.

What is the maximum message rate for 100 000-byte messages?
If we assume that:
e Put and commit of 100 messages use 2550 buffers (from the figures above)
e Get and commit of one message uses less than 1 buffer
e MQ writes a maximum 128 buffers for every 1/0
e The I/O response time when writing 15 buffers per I/O was about 20 milliseconds
e The I/O response time for writing the current log buffer was 4 milliseconds

e There were no delays when writing to DASD (this includes within zOS and within the DASD
subsystem)

e Concurrent copies of an application which puts a message, commits, gets the message, and
commits again. We can estimate the maximum message rate as follows:

1. Out of the 2550 log buffers used for MQPUTs, 100 are written as the current log buffer,
so 2450 can be written in parallel

2. We can write up to 15 pages per 1/0, so 2450 pages need 164 1/Os
3. 164 I/0s, each taking 20 milliseconds gives a total of 3280 milliseconds

262

4. Each commit writes the current log buffer to each log data set in series. There are 100
commits for puts and 100 commits for gets. For two I/Os in series, each of 4 milliseconds,
the total time for writing the current log buffers is (100 + 100) * 2 * 4 giving a total of
1600 milliseconds.

5. Total time for the 1/0 is 3280 + 1600 giving a total of 4880 milliseconds.

6. If it takes 4.88 seconds to process 100 messages, 20.5 messages could be processed in
1 second. This means that the theoretical absolute message rate is 20.5 messages per
second.

This is the theoretical maximum with the given assumptions. In practice, the maximum will be
different because the assumptions made are not entirely realistic. In a measurement made using a
requester /reply application model where a CICS transaction put a 100 000-byte message to a server,
and received the same message back, the transaction rate was 10-11 transactions (21 messages) per
second.

263

Chapter 6

Advice

Use of LLA to minimize program load caused throughput effects

IBM MQ sometimes needs to load programs when applications or channels start. If this happens
very frequently then the I/O to the relevant program libraries can be a significant bottleneck.

Using the Library Lookaside (LLA) facility of the operating system can result in very significant
improvement in throughput where program load I/0 is the bottleneck.

The member CSVLLAxx in SYS1.PARMLIB specifies the LLA setup. The inclusion of a li-
brary name in the LIBRARIES statement means that a program copy will always be taken from
VLF (Virtual Lookaside Facility) and hence will not usually require I/O when heavily used. Inclusion
in the FREEZE statement means that there is no I/O to get the relevant DD statement concatena-
tion directories (this can often be more I/O than the program load itself). Use the operating system
“F LLA,REFRESH” command after any changes to any of these libraries.

The following are some specific examples of when programs are loaded:

Frequent use of MQCONN/MQDISC - for example WLM Stored Proce-
dures

Every time an MQCONN is used, an IBM MQ program module has to be loaded. If this is done
frequently then there is a very heavy load on the STEPLIB library concatenation. In this case it
is appropriate to place the SCSQAUTH library in the CSVLLAxx parmlib member LIBRARIES
statement and the entire STEPLIB concatenation in the FREEZE statement.

For example: Ten parallel batch applications running on the same queue manager were used to drive
WLM (Work Load Manager) stored procedures, where each application looped 1000 times issuing
'EXEC SQL CALL Stored Proc()’. All stored procedures ran in a single WLMSPAS address space.
The stored procedures issued MQCONN, MQOPEN, MQPUT (a single 1K nonpersistent message),
MQCLOSE, MQDISC, but no DB2 calls were made, and were linked with the MQ/RRS stub
CSQBRSTB.

1. We achieved 300 transactions a second with all of the WLMSPAS’s STEPLIB concatenation
in LLA (in both the LIBRARIES(..) and FREEZE(..) dataset lists of the parmlib member
CSVLLAxx

2. We achieved 65 transactions a second with just the LIBRARIES(..)

3. We achieved 17 transactions a second without any such tuning

264

Frequent loading of message conversion tables

Each conversion from one code page to another requires the loading of the relevant code page
conversion table. This is done only once per MQCONN, however, if you have many batch programs
instances which process only a few messages each then this loading cost and elapsed time can be
minimised by including the STEPLIB concatenation in both the LIBRARIES(..) and FREEZE(..)

lists.

Frequent loading of exits - for example, channel start or restart after failure

Channels can have a number of separate exits; SCYEXIT MSGEXIT, SENDEXIT and MREXIT for
MCA channels, and SCYEXIT, SENDEXIT, RCVEXIT for SVRCONN channels. If a significant
number of channels start in a short time then a heavy I/O requirement is generated to the exit
libraries.

In this case the CSQXLIB concatenation must be included in the FREEZE(..) dataset lists to gain
any benefit as a BLDL is done for every exit for every channel.

Frequent loading of CSQQDEFV

Each time IMS checks to see if it can connect to a particular queue manager, it has to load the
CSQQDEFV module. By placing the dataset in both the LIBRARIES(..) and FREEZE(..) lists we
saw an improvement in transaction rate of up to 10%.

System resources which can significantly affect IBM MQ per-
formance

Clearly, having more than enough CPU power is desirable in any system.

DASD I/0 capability, particularly write response time and data rate through DASD controller NVS
can significantly affect the IBM MQ log and hence persistent message throughput. DASD I/0
capability, particularly page set reads for MQGET, can affect performance where large amounts of
message data require messages to be spilled from buffer pools and later read back from page sets.

For shared queues,

e CF link type can significantly affect performance. ICP links are faster than CBP links which
are faster than CFP links.

e Enough CF CPU power must be allowed for, remembering that it is recommended not to
exceed 60% busy on a CF.

e CFLEVEL(4) application structures can use DB2 table and log resources for which DASD I/O
capability is important for performance.

265

Large Units of Work

Multiple messages can be processed in a single unit of work, i.e. within the scope of a single commit.
Unless changed at your site, the default setting of MAXUMSGS is 10,000 and can be reviewed using
the “DISPLAY QMGR MAXUMSGS” command.

Using larger units of work can use additional storage. In the case of messages on private queues,
additional storage will be used from the queue managers private storage, whereas shared queue
messages will use storage in the CSQ_ADMIN structure.

The MQPUT cost is typically consistent for units of work up to 10,000 messages.
The MQGET cost is typically consistent for units of work up to 10,000 messages except:

e When the queue is indexed and the messages use a common value for the index. In this case,
whether using get-next or get-specific there can be additional cost incurred when the unit of
work is exceeds 1000 messages.

e If the gets are running at the same time as puts, there will be interaction. For example a task
tries to get a message from a queue whilst another task is putting a large number of messages
in a unit of work. As the messages being put are in a unit of work, they are not available. This
results in the getter task attempting to get each message on the queue. If there are 100,000
messages in the unit of work, the getter task may attempt up to 100,000 gets. If each of these
gets takes 1 microsecond, the failed get could cost 100 milliseconds of CPU.

Typically the time of taken to commit will increase as more data needs to be committed. As the
number of messages per commit increases, the duration of the commit time is spread across more
messages, so the impact is reduced as the number of messages per commit increases.

The following chart shows the CPU and elapsed time per commit as the number of messages in a
unit of work increases.

Note: When there is 1 message per commit, for 1000 messages there will be 1000 commits. This
means that the commit cost would be 2000 microseconds and the elapsed time would be 7000
microseconds. Contrast this 1000 messages per commit where the commit cost is 4 microseconds
and the elapsed time is 51 microseconds.

a

Commit cost with increasing size of unit of work

—@— Pl —— Elapsed

60
51
50

=

E

E

5 &

2

o

z 23

S

o 20 16

g o 1

s w0d ri ri ? ~
5 3 3 * 3 3 3 3 4

N — o L = = & - —a
1 10 100 1000
o Messages in UoW (log scale)

266

Application level performance considerations

If and when appropriate consider:

Is there really a requirement to use persistent messages?

Processing multiple reasonably small messages in one unit of work (that is, within the scope
of one commit)

o But do not usually exceed 200 messages per unit of work

Combining many small messages into one larger message, particularly where such messages will
need to be transmitted over channels. In this case a message size of 30KB would be sensible.

The following are particularly important for thin client applications
o Minimise the number of calls, in particular keep connected, and keep a queue open.
o Is it necessary to use temporary dynamic queues?

o Use MQPUT1 rather than MQOPEN, MQPUT, MQCLOSE, unless multiple MQPUTs
are going to be issued against the same queue.

Application requirement for strict message ordering.

If using IMS message processing regions, preload the IBM MQ modules.

Some applications require messages to be processed in strict order of arrival. This requires that a
single application instance process a queue of messages. There would be many requester applications
but only a single reply application. If this application should fail or slow down due to resource
contention, the queue depth could rise dramatically.

267

Common MSGID or CORRELID with deep shared queues

MQ shared queues can contain many millions of messages and with the use of unique index keys, such
as message ID, can enable the application to get specific messages from the queue with consistent
response times.

However, MQ shared queues are not optimised for MQGET when the queue is deep and a common
key is used to identify many messages. As the number of messages using the common key increases,
the cost increases as does the time taken to complete the MQGET.

If it is necessary to use a common value in the index of a shared queue, best MQGET performance
will be achieved with less than 50 messages. Where more than 6,000 messages have the same value
and an MQGET using the index is specified, the cost of the MQGET may be in excess of 9 times
that of a get where only 1 message matches the search criteria.

Example: Consider a shared queue indexed by correlation ID that contains many messages and
includes multiple messages with the same key.

An application getting the messages is configured to only get the messages with the same known
correlation ID.

The following charts demonstrate the cost of getting each message, as the number of messages with
the same correlation ID increases.

Cost of MQGET from shared queue with common correlation ID
IBM z16 (3931-703) with internal CF, using MQ 9.3

450
400
350
300
250
200
150
100

50

CPU microseconds /| MQGET

10 100 1,000 10,000 100,000
Messages on queue with same CORRELID (log scale)

Note: On IBM z16 with an internal CF, there is a noticeable increase in cost at approximately 50
and 1100 messages, and for each subsequent 1000 messages with the same correlation ID up to 5,200
messages with the same key. Once there are more than 25,000 messages with the same key, the costs
are relatively static (within 10%).

The following chart demonstrates the impact of the increased cost on the rate that the application
is able to get the matching messages.

268

Rate of MQGET from shared queue with common Correlation 1D
IBM 216 (3931-703) with internal CF, using MQ 9.3

30000
25000
20000

15000

MQGET / second

10000

5000

10 100 1,000 10,000 100,000

Messages on queue with same CORRELID (log scale)

Note: The measurements were run on a 3931-703 with an internal CF. With a remote CF, the rate
of get may be significantly less.

In addition, depending on the number of matching messages, there may be re-drives to the Coupling
Facility. In the worst case, where there are more than 5,200 messages with the same identifier, you
will see 6 re-drives per MQGET.

The following data is an extract from the SMF 115 data containing the CF Manager data when
putting 10,000 messages with a common CORRELID and subsequently getting those messages using
the known CORRELID gives:

APPLICATION1, Structure-fulls 0O

Single 30000, avg et in uS 5, Retries 0
Multiple 64235, avg et in uS 130, Retries 44235
Max entries 10034, Max elements 60064

Note that the number of retries is approximately 4.4 times the number of messages that were put.
When there were more than 5,200 messages with the same CORRELID, each MQGET resulted in
6 re-drives. As less messages with the same correlation ID remain on the queue, the number of
re-drives per message reduces.

269

Why is cost of MQGET higher when more than 5,200 messages have com-
mon identifier?

Once more than 5,200 messages are on a queue with a common identifier, the number of retries per
MQGET for that specific identifier is restricted to 6, yet the MQGET cost has been shown to increase
until stabilising when there 25,000 or more messages sharing the same MSGID or CORRELID.

The data explained in the “MQ for z/OS - CF Statistics” blog can help explain this.

For example, where the MQGET task attempts to get 2000 messages with a common CORRELID,
MQ accounting data may show:

Get valid count 2000

Get valid destructive 2000

Get dest-specific 2000

CF time/verb 209 uS
CF Avg Sync elapsed time/verb 22 uS
CF Sync number of requests 4011

CF Avg Sync CF response time 11 uS
CF Avg Async elapsed time/verb 186 uS
CF Async number of requests 2834

CF Avg Async CF response time 131 uS
ReadList Avg Sync elapsed time/verb 17 uS
ReadlList Sync number of requests 2011
ReadList Avg Sync CF response time 17 uS
ReadList Avg Async elapsed time/verb 186 uS
ReadlList Async number of requests 2834
ReadList Avg Async CF response time 131 uS
Move Avg Sync elapsed time/verb 5 uS
Move Sync number of requests 2000
Move Avg Sync CF response time 5 uS

This data tells us that there were 2000 MQGETs, all of which were successful. As part of this
there were 4011 synchronous CF requests and 2834 asynchronous requests, for a total of 6,845 CF
requests.

Of these requests, 2000 were synchronous “move” requests (actually getting the message) and the
remainder were “readlist” requests (identifying the message(s) to return), of which 2011 were syn-
chronous and 2834 were asynchronous.

With regards to the “readlist” requests, the average asynchronous requests took 131 microseconds,
compared to 17 microseconds for each of the synchronous requests.

As the number of messages sharing the common CORRELID increased, we observed both the re-
sponse time for the synchronous requests increasing from 17 microseconds in the example to 150
microseconds, as well as the proportion of asynchronous “readlist” requests. This is despite the CF
being very lightly utilised, i.e. this type of CF request is expensive compared to an MQGET of the
next available message.

270

https://community.ibm.com/community/user/integration/blogs/anthony-sharkey1/2022/02/22/mq-for-zos-cf-statistics

Frequent opening of un-defined queues

When an MQOPEN of a queue is requested, the queue manager will perform a look-up of local
storage to get information about the queue. If successful, queue open processing will continue.

If the queue name is not found in local storage and the queue manager is part of a Queue Sharing
Group, the queue manager will look for the queue in the DB2 table CSQ.0BJ_B_QUEUE. This check can
be relatively expensive, of the order 8-10 times that of a successful queue open. There is cost incurred
both by the queue manager in its’ DB2 Server threads, plus in the DB2 master address space. The
costs in the DB2 master address space is accounted as CPU time consumed by pre-emptible SRBs
running on behalf of the master address space.

On our systems, 1 million attempts to open and close an undefined queue saw average costs of 59.4
CPU microseconds in the queue manager and 54.4 CPU microseconds in the DB2 address space.

As such, we would suggest that your applications do not attempt to open un-defined queues on a
frequent basis as this may incur cost to your Db2 subsystem as well as your queue manager.

Example: When a queue manager is configured with class 3 accounting trace and an application
attempts to open an MQ queue that has not been defined, an SMF 116 record may be written for
the task.

An example of this scenario is shown:

VKW1 Batch Jobname:VKW1PUT Userid:SHARKEY

Start time Feb 22 07:10:24 2018 Started this interval

Interval Feb 22 07:10:24 2018 - Feb 22 07:10:25 2018 : 1.042905 seconds
Other regs : Count 2

Other regs : Avg elapsed time 201 uS

Other regs : Avg CPU 31 uS

Other regs : Total ET 0.000402 Seconds

Other regs : Total CPU 0.000062 Seconds

== DB2 activity : 1 requests

> Average time per DB2 request-Server : 321 uS
> Average time per DB2 request-Thread : 321 uS
> Maximum time per DB2 request-Server : 321 uS
> Maximum time per DB2 request-Thread : 344 uS
> Bytes put to DB2 : O

> Bytes read from DB2 : O

In this example the DB2 request, with a response time of 321 CPU microseconds, can result in the
equivalent CPU cost being shared between queue manager and Db2.

SHAREDYN Model Queues

In the case of using SHAREDYN model queues, you may see Db2 activity - potentially once to check
for an existing queue and then again to create the queue definition. Subsequent uses of the resulting
queue should not require accessing Db2.

Given we would not expect SHAREDYN queues to frequently be defined and deleted, we would
expect the impact of SHAREDYN queue definition to be relatively small, however on our systems
the cost of the define was of the order of 8 CPU milliseconds that was charged to the queue manager
with additional cost to Db2.

271

Frequent opening of shared queues

With shared queue, there is a first-open and last-close effect which can increase the cost of opening
a queue.

When an application opens a shared queue, if no other application on the queue manager already
has the queue open, then the queue manager has to go to the coupling facility to register an interest
in the queue and to get information about the queue. This is the first-open effect. If the queue
manager already has the queue open, the information is already available and the queue manager
does not need to register.

When an application closes a shared queue, if no other application on that queue manager has the
queue open, then the queue manager has to go to the coupling facility to deregister an interest in
the queue. This is the last-close effect.

Some applications naturally have the queue open for a long time, for example a channel, a trigger
monitor, or long running applications. For high throughput, short-lived transactions, the queue may
always have at least one application with the queue open. In these cases, the first-open and last-close
effects are not seen.

If you have short running transactions with throughput such that the queue is not open all of the
time, there may be little or no overlaps, which can result in each transaction experiencing first-open
and last-close effects.

To compound this, if there are applications connected to different queue managers in the queue
sharing group, that are opening and closing the queues frequently, the CF response time can be
observed to increase due to each queue manager to attempting to register interest queue.

To further compound this, the type of open option can affect the first-open and last-close effect.

e With MQOO_ INPUT_ SHARED, the impact of the lock prior to registration increases ex-
ponentially as the number of queue managers attempting to obtain the lock increases. These
registrations will also present themselves in the form of increased latch times, specifically
DMCSEGAL (latch 11).

e Using MQOO _ OUTPUT with frequent opening and closing of a shared queue, particularly
when as the number of queue managers attempting to register/de-register the usage of the
queue increases, can result in increased CPU cost by the MQOPEN API, which manifests as
additional CPU usage in the application address space.

MQOO _ INPUT_ SHARED Example: In the following scenario we define 3 queue managers
in a QSG, where each queue manager is running on a separate LPAR.

A single application is connected to queue manager 1 and performs 1 million MQOPEN with option
MQOO _ INPUT SHARED and MQCLOSE calls of a single common shared queue.

The measurement is then repeated with the same application running against queue managers 1 and
2, and then finally against queue manager 1, 2 and 3.

The cost shown is that of the average of the 1 million MQOPENSs on queue manager 1 using class 3
accounting data.

272

MQOPEN of Shared Queue with increasing queue managers

Queue opened with: MQOO_INPUT_SHARED

mCPU © Wait

600
500
400
300
200

100
e
0 I &

1 2 3

Microseconds

CPU

Queue Managers

The costs are shown in the following table for clarity:

Queue Managers 1 2 3
MQOPEN CPU 21 31 51
MQOPEN Elapsed 27 122 520
Wait (Elapsed - CPU) 6 91 469

The CPU cost of the MQOPEN on queue manager 1, increased from 21 CPU microseconds by 47%
when applications on 2 queue managers attempted to open the same queue. This further increased
another 61% when the application on the third queue manager was introduced.

As the table indicates, the "wait" time shown in the chart is calculated from the elapsed time minus
the CPU time.

The wait time increases from 6 by 85 microseconds when running the workload against 2 queue
managers, and a further 378 microseconds with 3 queue managers.

This increase in wait time is largely due to waiting for lock.

Additionally, we saw increased DMCSEGAL (latch 11) times, for example in these measurements
the time spent waiting for DMCSEGAL increased from 7 to 16 microseconds per MQOPEN with
increased queue managers. With this latch being held across the CF access, a less responsive CF
may result in increased DMCSEGAL times.

273

MQOO _ OUTPUT Example: In the following scenario we again define 3 queue managers in a
QSG, where each queue manager is running on a separate LPAR.

A single application is connected to queue manager 1 and performs 1 million MQOPEN with option
MQOO_OUTPUT and MQCLOSE calls of a single common shared queue.

The measurement is then repeated with the same application running against queue managers 1 and
2, and then finally against queue manager 1, 2 and 3.

The cost shown is that of the average of the 1 million MQOPENSs on queue manager 1 using class 3
accounting data.

MQOPEN of Shared Queue with increasing queue managers

Queue opened with: MQOO_OUTPUT

ECPU © Wait

30
25
20
15
10

, I

1 2 3

Microseconds

CPU
wn

Queue Managers

The costs are shown in the following table for clarity:

Queue Managers 1 2 3
MQOPEN CPU 6 16 29
MQOPEN Elapsed 6 17 29
Wait (Elapsed - CPU) 0 1 0

The CPU cost of the MQOPEN on queue manager 1, increased from 6 CPU microseconds by 10
CPU microseconds when applications on 2 queue managers attempted to open the same queue. This
further increased another 13 CPU microseconds when the application on the third queue manager
was introduced.

As the table indicates, the "wait" time shown in the chart is calculated from the elapsed time minus
the CPU time.

In the case of MQOO OUTPUT, there was minimal wait time as additional queue managers were
added, and this was reflected with no increase in latch times for the MQOPEN.

Whilst opening the shared queue for output saw minimal wait time, the increased CPU cost also
resulted in additional load on the CF due to the queue manager attempting register the queue usage.
In some circumstances, particularly where many queue managers were attempting to register access
to the same shared queue, the MQOPEN can see “CF retries”. This can be seen in the MQSMF’s task
report (available as part the Performance SupportPac MP1B “Interpreting accounting and statistics
data”), for example:

274

http://www-01.ibm.com/support/docview.wss?uid=swg24005907

Open count

Open avg elapsed time

Open avg CPU time

Open CF access

Open no CF access

CF time/verb

CF Avg Sync elapsed time/verb
CF Sync number of request

CF Avg Sync CF response time
CF Retries

In this example, there were 337039 CF requests that had to be re-tried before the queue manager
was able to successfully register access to the SIXC01 shared queue.

Note that these are CF retries and not CF re-drives. CF re-drives tend to occur when the buffer
passed to the CF is not sufficiently large for the returning data, whereas a CF retry may occur
when the MQ queue manager is unable to complete its request due to another MQ queue manager

performing a similar request.

565020
17

16
565020
0

11

11

1591903

4
337039

usS
usS

usS
usS

usS

out of 1591903 (

275

SIXCO1
SIXCO1
SIXCO1
SIXCO1
SIXCO1

How can I tell if I am seeing first-open or last-close effects?

Performance SupportPac MP1B “Interpreting accounting and statistics data” provides a task report
that shows information like:

VKW1 Batch Jobname:VKW1PUT Userid:SHARKEY

Open CF access 73490
Open No CF access 0
Close CF access 73490
Close No CF access 0

These fields show that there were first-open and last-close effects, with each open and close resulting
in CF access.

If there is contention occurring due to other queue managers attempting to access the same MQ
resources, particularly when opening queues for output, there may be information like:

CF Retries 337039 out of 1591903 (21.2%)

In our measurements, CF retries were more frequent when opening the queues for output.

Can I reduce the impact from locking on my shared queues?

If you see a large number of first-open or last-closes, including from CF retries, then using an
application connected to each queue manager that opens the shared queue(s) and then goes into a
long sleep, can significantly reduce the time and cost of the frequent MQOPEN in your applications.

Note: In order to minimise the impact of first-open and last-close, the application connecting must
open the shared queue(s) using the same type of open as the applications performing the frequent
queue opens.

That is to say, if the frequently opened queue is opened for output, then the application used to
mitigate the effects of first-open and last-close should also open the queue for output.

Similarly if the frequently opened queue is open for input, then the application should also open the
queue for input.

If the application used to mitigate the first-open effect uses a different open-type, there will be no
benefit as the frequent opening task will still need to access the CF.

Using this long running application means that CF access is no longer required by the application
that is opening and closing the queues frequently, which significantly reduces cost and response time.

Example: Repeating the earlier measurements with an additional application connected to each
queue manager that MQOPENed the common shared queue and then went into a long sleep, the
average cost of the 1 million MQOPENS dropped to 1 CPU microseconds regardless of the number
of queue managers.

276

http://www-01.ibm.com/support/docview.wss?uid=swg24005907

The following table shows the total system cost when running the application to open / close a
common shared queue 1 million times using MQOO INPUT SHARED. Cost is CPU seconds for
LPAR 1.

Queue Managers 1 2 3

Baseline 63 137 180
With application holding
the queue open

14 15 14

This table shows that the cost of the workload running the MQOPEN and MQCLOSE was:
e Significantly reduced when the queue was already open

e Did not increase in cost as more applications and queue managers performed the same work-
load.

Is using an application to hold the queue open always appropriate?

In short, not all shared queue configurations will benefit from using an application that opens the
shared queue with the appropriate open option and then sleeps.

For example, if the shared queue is configured with TRIGTYPE(FIRST), then such an application
can prevent the triggering mechanism from initiating the triggered application.

It is worth noting that TRIGTYPE(EVERY) can benefit from the long running application - and
in a simple CICS environment, we measured a reduction in MQOPEN costs of up to 80% and
MQCLOSE costs reduced by up to 90%.

277

Using GROUPID with shared queues

Message grouping allows logical groups of messages to be associated together.

Comparing performance of GROUPID with CORRELID

Consider whether using a queue indexed by GROUPID is appropriate. The performance of a work-
load relying on GROUPID where the group size is 1 message, is worse than the equivalent perfor-
mance of CORRELID or MSGID, particularly with shared queues.

The following charts compare a workload where a message is randomly selected from a pre-loaded
queue with a fixed number of messages each with a unique identifier, where the unique identifier is
either a unique group or correlation ID. The selected message is then gotten, processed and replaced
on the queue. For simplicity and comparison purposes, the measurements using GROUPID use a
group consisting of 1 message.

When using the group identifier the application specified:
o MQGMO MatchOptions include MQMO _MATCH GROUP_ID
o MQGMO Options include MQGMO ALL MSGS AVAILABLE and MQGMO_LOGICAL_ ORDER

Chart: Compare transaction rate when using shared queue indexed by CorrellD and GrouplD:
Transactions / Second

®m CORRELID = GROUPID

100 1000 10000 100000

Queue Depth

40000
35000
30000
25000
20000
15000
10000
5000
0

Chart: Compare transaction cost when using shared queue indexed by CorrellD and GrouplD:
Transaction Cost - cost include CF

= CORRELID = GROUPID

100 1000 10000

Queuve Depth

-

CPU microseconds / transaction
coB8888IBES

100000

278

What these charts show is that using GroupID with a group size of 1 is more expensive than
CorrellD, with the additional cost in the MQGET processing. This additional cost directly impacts
the MQGET rate.

The depth of the queue also has a larger impact on the workload using GrouplID than CorrellD.

Comparing performance of GMO options

The performance of message grouping can be significantly affected by the MQGMO options specified,
particularly with volatile queue depths.

In the previous comparison, both MQGMO _ALL MSGS AVAILABLE and MQGMO _LOGICAL ORDER
were specified, but these are not enforced. However, despite not being enforced, the performance
characteristics can be significantly different.

The measurements shown in this section demonstrate the effect of different combinations of MQGMO
options when processing messages in groups of 1 message.

Configuration ALL MSGS AVAILABLE LOGICAL ORDER
Baseline Yes Yes
ALL MSGS_ AVAILABLE Yes No
LOGICAL_ ORDER No Yes
None No No

Chart: Impact of MQGMO options on transaction rate:

Queue indexed by GROUPID: Transactions / Second

m Baseline = ALL_MSGS_AVAILABLE
LOGICAL_ORDER = None

40000

o
g 35000 5 o 5
§ 30000 ~ 8 ©
% 25000 = -
2 20000
£ 15000
@© (<]
& 10000 g © =
£ 5000 = S 8
= o = = -
100 1000 10000 100000

Depth of queue

Note: There is a significant drop in performance in the “none” configuration as the queue depth
increases.

In the first 3 configurations, MQ’s class(3) accounting data shows that the MQGETSs are resolved
as get-specific.

The “none” configuration results in the MQGET of the specific GroupID being processed as get-next,
i.e. MQ resorts to scanning the queue for the matching GrouplD.

Furthermore, the “none” configuration with a single application task caused 1 CF processor to be run
at just under 100%. Additionally there was an increasing proportion of asynchronous CF requests,
with the response times increasing from 4.3 microseconds (sync) to 500 microseconds (async) as the
depth of the queue increased.

279

When running with 4 tasks and their own set of message groups on the same queue, the 4 processor
CF showed utilisation at 92.6% which is far higher than we would typically recommend. There was
also a decrease in overall throughput despite having 4 times the number of applications running.

Avoiding Get-Next when specifying GrouplD

There are many ways to get a group of messages, but some are more optimal than others - particularly
when using shared queues.

For a known GrouplD of messages on shared queues, there are 2 better performing MQGMO options
combinations:

1. MatchOptions including MQMO _MATCH GROUP _ID plus
Options including MQGMO _ALL MSGS AVAILABLE and MQGMO LOGICAL ORDER.
2. If MQGMO _LOGICAL ORDER is not appropriate,
MatchOptions include MQMO MATCH GROUP_ID and MQMO MATCH SEQ NUMBER
and specify MQMDE MsgSeqNumber (default is 1).

e This will drive MQGET-specific processing, whereas if the MQMO _MATCH SEQ NUMBER
is not specified, get-next processing will be used. Get-next processing, particularly when
using GrouplID with shared queues can be costly in terms of CF usage in the event of
deep queues or many applications.

Chart: Impact of Get-next when specifying GroupID on deep queues:

Transaction Rate when randomly selecting from queue with depth 100,000

m MATCH_GROUP_ID, ALL_MSGS_AVAILABLE and LOGICAL_ORDER (Get-specific)
® MATCH_GROUP_ID (Get-next)
MATCH_GROUP_ID + MATCH_MSG_SEQ_NUMBER (Get-specific)

30000
27127

25000 23508

20000

15000

Transactions / Second

10000

5000

123.4

Note: If you are using GroupID with shared queues, check the class(3) accounting data to see if
the application is using get-specific or get-next.

Using GrouplD from a JMS application will mean the access will use get-next processing, which as
demonstrated earlier may see poor performance when the queue depth increases.

Private queues will use the GrouplD index even when the MQMO MATCH MSG_SEQ_ NUMBER
is not specified, which result in get-specific processing occurring. Shared queue is unable to mirror
this behaviour due to indexing limits on shared queue list structures.

280

Using Message Selectors

IBM MQ supports the use of message selectors to identify messages by specific properties. Generally
this is a relatively expensive process as the queue manager must scan each message to determine if
the current message has matching properties.

When the queue contains many messages to scan, the cost can be prohibitive.

A complex message selection criteria also may be expensive.

Who pays for the cost of message selection?

For private queues the cost will be incurred by the application, or if using client connections, this
cost will be charged to the channel initiator adaptor task.

For shared queues the cost will be incurred by both the application, or if using client connections
the channel initiator adaptor task, and the Coupling Facility.

Is there a good message selector to use?

The optimal message selectors to use are “select by correlation ID” and “select by message ID”,
particularly with the appropriate INDXTYPE defined.

In our measurements using “select by correlation ID” performs similarly to “get by correlation ID”.
“Select by correlation ID” requires the format of the selector to be:

JMSCorrelationID="ID:<lower case, hexadecimal correlation ID>’

How do I know if I am using a good message selector?

MQ does not offer any statistics to specifically show when message selectors are being used to identify
messages.

The use of class(3) accounting data for the task can indicate whether the MQGET is get-specific
and potentially able to use the index, or is scanning the queue.

If the application is scanning a private queue, you may see high numbers of “skips” in the task record,

particularly when accessing queues with many messages, e.g.

-MQ call- N ET CT Susp LOGW PSET Epages skip
Get : 541 43822 43610 0 0 0 0 48363579

By dividing the number of skipped pages by the number of messages, we can calculate the average
number of skips per MQGET.

In the above example, we are seeing an average of 43,610 skips per MQGET, where each MQGET
costs an average of 43.6 CPU milliseconds. Given this is a 2KB message, we would regard this as
an expensive MQGET.

In this example, the number of skipped message, particularly relative to each MQGET, causes this
high cost.

Also note that there is little difference between the average elapsed and CPU time. In this particular
interval the task used 23.7 seconds in MQGET (elapsed) of which 23.5 seconds were used in CPU.

281

Message selector performance

In this section we look at the performance of message selectors where there are increasing numbers
of messages to be checked for the desired message property.

The queue manager is configured with sufficiently sized buffer pools such that any workload is
not affected by page set 1/0.

The queue manager is configured with a sufficiently sized application structure such that the
messages are not offloaded to SMDS or Storage Class Memory.

The tests are configured with a fixed number of non-persistent messages on a single queue,
ranging from 1,000 to 100,000 messages.

All messages have 10 properties and a 2KB payload.

4

A varying percentage of messages are “valid”, i.e. we get all messages with a property of
“colour=red” and there may be between 0 to 95% of messages that do not contain a match-
ing property. This is based on the “colour=red” messages forming the following ratio of the
messages on the queue:

o 1:1 - all messages are red.

o

1:2 - 50% of messages are red.

[¢]

1:5 - 20% of messages are red.

[¢]

1:10 - 10% of messages are red.

o

1:20 - 5% of messages are red.

The application runs as a single threaded client, using a SVRCONN channel to get the MQ
messages and uses the following logic:

o Connect.
o Specify selection of all red messages as part of MQOPEN.
o MQGET until the desired number of messages are retrieved

MQCLOSE.

[¢]

o Disconnect.

282

Message selector performance with private queues
The following chart shows the average cost of a successful MQGET.

When the ratio is 1:1, i.e. all messages are valid, the depth of the queue does not detrimentally
impact the cost of the MQGET. As the proportion of valid messages decrease, the queue manager
needs to skip more messages to find the next valid message, which results in increased cost.

Chart: MQGET cost using message selectors on private queues with increasing depth:

Private Queue, single selector task: Cost per successful GET

Ratio of valid messages 1:n

—-—1 —e—2 5 —&—10 —p— 20
100000
10000
)
s
w
oD
= 1000
Fa
w
[&]
8 100
8 - —— — i L) = —0
8
2
= 10
1
1000 2000 5000 10000 20000 50000 100000

Depth of queue

Note: The lower cost observed with queue depth of 10,000 and a ratio of 1 in 20 valid messages
occurred as the valid messages were grouped together near the head of the queue. As such, there
were less skips required to find all of the desired messages.

There is little that can be done to influence the order of the messages on the queue such that the
number of “skips” is reduced, other than using the correlation ID to hold a property and the use of
“select by correlation ID”.

As mentioned previously, the number of skipped messages has a direct impact on the cost of the
MQGET when using message selectors on private queues.

When only a proportion of messages match the selection criteria and the depth of the queue increases,
MQ must scan (or skip) more pages to find the desired message.

Skips can be seen in the accounting class(3) data for the task running the message selection, which
would be a channel initiator adaptor task for a client connection.

283

Chart: Plotting number of skips against MQGET cost:

Impact of skip on MQGET cost

Linear trend line

CPU microseconds / MQGET

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

SKIPS per successful MQGET

The relationship between cost and number of “skips” is linear - and for best performance it is
preferable to minimise the number of messages skipped.

The increasing cost also directly affects the achievable transaction rate. If an MQGET takes 20
microseconds, theoretically the application could process 50,000 MQGETSs per elapsed second.

If that MQGET takes longer, for example a message that required 2500 “skips” cost 500 microsec-
onds in our measurements, would have a theoretical maximum MQGET rate of 200 per elapsed
second. Using additional tasks using MQGET would not necessarily improve the performance as
each application is already using 1 processor at 100% utilisation.

284

Message selector performance with shared queues

When using message selectors against messages on shared queues, MQ must retrieve each message
from the Coupling Facility, and potentially SMDS or Db2, scan the message, parsing for the desired
message property. This can be a CPU intensive request.

e The first request will start at the head of the queue and MQ will scan down the queue until a
match is found.

e Subsequent requests, within an MQOPEN handle, will typically scan from the next message.
e However if messages continue to arrive, the cursor may be reset to the head of the queue.

e Similarly if the queue is closed and then re-opened between requests, the cursor will reset to
the head of the queue.

As with private queues, when the ratio is 1:1, i.e. all messages are valid, the depth of the queue does
not detrimentally impact the cost of the MQGET. As the proportion of valid messages decrease,
the queue manager needs to retrieve and scan more messages to find the next valid message, which
results in increased cost.

Chart: MQGET cost using message selectors on shared queues with increasing depth:

Shared queue, single selector task: Cost per successful GET

Ratio of valid messages (1:n)

-1 —e—2 5 —A—10 —»—20

100000
W

10000 —— *

m s ~

g /"'

P 1000 2 -

€3 %8

S8 2

D w»

88 100

_gr— - a2 o Ll

=2

o

o 10

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Depth of Queue

Note: When the depth of the queue is low, the sample size of MQGETs is relatively low which
accounts for the slightly higher average cost. As the sample size grows the average cost initially
drops and then increases as the effect of the queue depth becomes more of a factor.

When only a proportion of the messages on the queue match the selection criteria, MQ must retrieve
and scan the messages to determine if the current message is a match. As with private queue, the
number of messages scanned and not matching, affects the cost of the successful MQGET.

Unlike the private queue configuration, there is not a specific “skipped” attribute reported but there
are alternatives:

e The class(3) accounting data has an attribute WTASCMEC, which counts the number of
IXLLSTM calls made by the task. This module is used to retrieve multiple messages in a
single call, and can be used to give an indication of the number of messages scanned.

285

e The RMF™ Coupling Facility Activity report can indicate how many CF requests occurred for
a particular structure. If the selector applications are the only users of the structure, this can
be used to determine the ratio of CF requests to MQGETs.

Chart: Plotting number of IXLLSTM calls per MQGET against MQGET cost:

Average number of IXLLSTM calls vs MQGET cost

20000
18000
16000
14000
12000
10000
8000
6000
4000
2000

CPU microseconds / MQGET

0 10 20 30 40 50 g0 70 80 90 100
IXLLSTM requests per MQGET

Using selectors on shared queue messages will result in increased CF usage. In our measurements,
the channel initiator adaptor task was typically 100% busy based on the elapsed time of which
50-90% was CPU. The difference between CPU and elapsed time was due to CF access times. Our
CF is local and highly responsive, yet even with a single selector task, the CF was driven at the
equivalent of 1 CF processor at 40% busy.

286

Checklist: Using client-based selectors

Selecting on message properties is more expensive than using Message ID or Correlation ID.

Selecting using one of the optimised message selectors, for example JMSCorrelationID is more
efficient on appropriately indexed queues, i.e. INDXTYPE(CORRELID).

Complexity of selection criteria may add cost to identifying the appropriate message.

Queue depth, as well as where the desired message is on the queue, is a significant factor in
the cost and time taken to identify the desired message.

Ensure there are sufficient CHIADAP (channel initiator adaptor) tasks available such that at
least 1 is unused even at peak times, to avoid waiting for an adaptor.

o An expensive MQGET request from a client, such as one using message selection will
block its’ adaptor task

o When using message selection on shared queues, the adaptor task in use may see signif-
icantly longer elapsed time than CPU time due to the time spent accessing data in the
CF. Waiting for the CF response still blocks the adaptor task.

The cost of the MQGET can be affected by the number of messages that have to be scanned
before finding the desired message.

o Private queue - check accounting class(3) data for the task, specifically look at the number
of skips required to satisfy all the MQGETS in the interval. The number of skips can have
a direct impact on the cost.

o Shared queues - check accounting class(3) data for the task, specifically looking at the
WTASCMEC variable (number of IXLLSTM calls) and calculate the ratio of calls to
MQGETs. A high ratio of WTASCMEC to MQGETSs may indicate many messages having
to be retrieved and scanned.

o Alternative for shared queues - if the only queues in the application structure are accessed
in the same way, the RMF™ Coupling Facility Activity report can help indicate whether
the number of CF requests corresponds to the number of messages gotten. Where there
are many requests to MQGETS, the queue manager is likely having to scan many messages
to find a match.

o Consider separate queues if frequently selecting particular properties, or store the message
property in the Correlation ID.

o MQ is not a database and as such database-type queries on message properties is not a
particularly efficient method to identify a desired message.

Adding more selector tasks may make performance worse. There will be additional load on the
CPU, and if accessing shared queues there may be higher CPU usage and increased serialisation
on the CF resources, which may affect the performance of the existing tasks. Additional client-
based selectors will also put further load on the channel initiator adaptor tasks.

Ensure the MQOPEN handle is retained as long as possible to get all messages, which may
avoid the cursor resetting to the head of the queue.

287

Temporary Dynamic (TEMPDYN) Queues

A temporary dynamic (TEMPDYN) queue is created when an application issues an MQOPEN API
call with the name of the model queue specified in the object descriptor (MQOD).

The defined queue is created in the STGCLASS as specified in the model queue definition, which will
ensure the TEMPDYN queue is defined in the associated page set. The MQSC command “DEFINE
PSID” command will determine which buffer pool is used to host the messages stored on the queue.

Note: The buffer pool used by the TEMPDYN queue may be reported inaccurately by Accounting
class(3) data.

The TEMPDYN queue will be deleted when the application that created the queue issues an
MQCLOSE against the queue. For a TEMPDYN queue, MQCO NONE, MQCO_DELETE and
MQCO_DELETE PURGE will all have the effect of deleting the queue and purging any messages
on it.

If the TEMPDYN queue is empty or has only committed messages, the messages will be purged and
queue will be deleted synchronously.

Should there be uncommitted messages, MQ will purge the messages and delete the queue asyn-
chronously.

TEMPDYN queues - MQOPEN

Opening a temporary dynamic queue is typically slower and more expensive than opening a pre-
existing queue.

The following is an extract of Accounting class(3) data for an application that opens a temporary
dynamic queue and a pre-existing queue.

Queue Type Elapsed CPU Suspended
Pre-existing queue 2 2 0
Temporary dynamic queue 225 14 211

In this example the additional 211 CPU microseconds of “suspend” time is largely spent in a single
log I/O request as MQ must harden the queue definition - even though it is temporary.

TEMPDYN queues - MQCLOSE

When the MQCLOSE is issued against the created TEMPDYN queue, MQ will attempt to purge
any messages and delete the queue. As mentioned earlier, provided any messages on the queue have
been committed, the messages and queue can be deleted synchronously.

Should there be any uncommitted messages on the queue, MQ will purge the messages and delete
the queue at a later stage via the use of an asynchronous task.

When running with a high turnover of temporary dynamic queues that are reliant on asynchronous
processing due to uncommitted messages, there can be a backlog of work for the asynchronous task
to complete. If there is sufficient backlog, the buffer pool may be insufficiently sized for the running
workload and I/0O to page set may occur.

One method to help determine whether the asynchronous task is performing a large number of
purge/deletes is to review the output from the MQSMF application, part of performance report
MP1B “Interpreting accounting and statistics data”, that generates the Data Manager report in the
DATA DD statement, e.g.

288

http://www-01.ibm.com/support/docview.wss?uid=swg24005907

MVAA,VTS1,2020/02/11,10:50:40,VRM: 914,
0Obj Cre 130656, 0bj Puts 0, Obj Dels 130655, 0bj Gets 130657

If the number of object deletes is similar to the number of object creates, the queues are mostly
deleted synchronously.

If the number of object deletes is approximately twice that of object creates, the queues are deleted
asynchronously.

To ensure the messages are purged and the queues are deleted synchronously, ensure the messages
are committed prior to the MQCLOSE API request. This can be achieved using MQCMIT in batch
or, if running in a CICS environment via the use of EXEC CICS SYNCPOINT.

289

Chapter 7

Queue Information

Tuning queues

There are a number of options that can be applied to queues that can reduce cost or help identify
problems in the appropriate environment.

Queue option ACCTQ

Specifies whether accounting data collection is to be enabled for this queue. In order for this data to
be collected, it is necessary to enable class 3 accounting data. Whilst setting the ACCTQ attribute
to a value other than QMGR can allow targeted analysis of costs, there is a risk that when evaluating
the data gathered, there will be incomplete data from access to queues where the ACCTQ queue
attribute is set to a different value.

Queue option DEFPRESP

Specifies the behaviour to be used by applications when the put response type, within the MQPMO
options, is set to MQPMO_ RESPONSE AS Q DEF.

Using asynchronous puts can improve message put rate and reduce the round-trip time when putting
messages using an MQ client application. If your messaging requirements allow it, running with
asynchronous puts from a client application can reduce the cost of the put on the z/OS queue
managers and channel initiator by between 18% and 55% for messages ranging in sizes 100,000 to
1000 bytes.

Queue option DEFREADA

Specifies the default read ahead for non-persistent messages delivered to the client. Enabling read
ahead can improve the performance of client application consuming non-persistent messages. In a
queuing model, where the client application is just getting messages from a queue and not putting
messages, we have seen the get rate improve 4 times over synchronous gets and costs drop by between
12 and 55%.

High-latency networks, where the time to respond to a request is extended due to a long time in
the network can see significant improvements in MQGET — however a request/reply model will not
benefit in this way.

Queue option MONQ

Controls the collection of online monitoring data for queues and is supported on local and model

290

queues only.

Queue option PROPCTL

This attribute specifies how message properties are handled when the messages are retrieved from
the queue. Specifying a value of V6COMPAT can reduce the amount of parsing the queue manager
has to complete and can reduce the cost.

291

Maximum throughput using non-persistent messages

What factors affect non persistent throughput
Throughput for non-persistent messages in private queues:

e Is ultimately limited by CPU power assuming messages can be contained within a buffer pool
without spilling to DASD page sets.

e Where messages do have to be read from page sets then the I/0 rate sustainable to that DASD
will be the constraining factor for MQGET.

e In practise, the limiting factor for non-persistent throughput is likely to be in business logic
IO rather than anything internal to IBM MQ.

Throughput for non-persistent messages in shared queues depends on:
e For messages up to 63KB (64512 bytes)
o z/0S heuristics which can change CF calls from synchronous to asynchronous.
o The type of link(s) between individual z/OS’s and the CF(s).
o This affects the elapsed time to complete CF calls and so influences the heuristics.
o The CF machine type and CF CPU %BUSY.
e For messages > 63KB

o As above for up to 63KB messages plus, the throughput performance of the Shared
Message Data Set (SMDS) or the DB2 data sharing group tablespace used to store these
messages.

292

Private queue

What is the maximum message rate through a single private queue ?

Using a 3 processor MVS image on a 3931-7K0 system running z/0S 2.5 and IBM MQ for z/OS 9.3

we could sustain the following non-persistent message rates to a private queue.

MQ for z/0OS 9.3 on 8561-7G1
Message size Message rate / sec
1,000 114,060
5,000 107,230
10,000 102,600
30,000 82,720
100,000 49,520

Sustained means, in this case, that messages are MQPUT/MQCMIT and MQGET/MQCMIT at
about the same rate so that the queue does not get very large.

We run four MQPUT/MQCMIT jobs in parallel with a four MQGET/MQCMIT jobs to obtain
these results. Each job has 400,000 iterations.

NOTE: When running in a WLM controlled environment, it is advisable to ensure that the getting
application has equal or higher priority than the putting application otherwise there is a risk that

the queue depth will increase, resulting in page set I/O as bufferpools fill.

293

Throughput for request/reply pairs of private queues
The following message rates are for locally driven request/reply scenarios.
Each request/reply scenario uses:
e One or more request/reply applications, each of which uses
o A pair of queues (a common server queue and a common ‘indexed by Msgld’ reply queue)
o One or more reply programs using that pair of queues using MQGET, MQPUT, MQCMIT

o One or more requester programs per reply program using out-of-syncpoint MQPUT and
MQGET by Msgld for the reply message specific to that requester.

o Queue depths were always low, as is usual for request/reply applications. Thus no page
set 10 is required.

Locally driven Request/Reply on 3931-7KO0 using 1000 byte non-persistent mes-
sages. Measurements on 6-way LPAR unless otherwise stated.

Repliers | Requesters CPU Microsec

Q pairs / Q pair | / Q pair Msgs/sec Txns/sec transaction
1 1 1 66664 33332 34
1 4 1 65196 32598 35
1 4 2 107973 53986 41
1 4 3 134330 67165 41
1 4 4 153845 76923 44
1 1 4 97295 48647 34
2 2 4 134528 67264 37
3 3 4 156725 78362 41
4 4 4 158538 79269 42

Following measurements are on 3-way LPAR

1 1 1 57691 28846 33
2 1 1 101227 50613 37
3 1 1 144079 72039 38
4 1 1 144970 72845 38

The following chart shows how running non-persistent workload with increased numbers of processors
can improve the throughput.

294

Running 1 requester/server pair for each queue pair, increasing queue pairs

Comparing throughput with varying numbers of processors. Transactions / second and %busy, using IBM MQ 9.3

160,000 100.00
140,000 20.00
B0.00
120,000
70.00
E 100,000 o
£ 2
‘g 80,000 50.00 2
g £
o
5 S0.000 40.00]
£
30.00
40,000
20.00
20000 10.00
[} 0.00

1 2 3 4 5 =] 7 8 9 10

Number of queue pairs

= 3 processors e 6 processors = 8 processors
——— 3 processors %busy ——— 6 processors %busy ——— B processors Y%busy

NOTE: When there are 3 processors available, the rate at which the throughput peaks corresponds
directly with the number of processors available on the above chart. As the number of processors
equals or exceeds 6, the transaction rates still increase accordingly but the peak rate is less marked.

Transaction cost can be affected by the number of processors available. The following chart compares
the transaction costs observed for the previous measurement.

Running 1 requester / server pair for each queue pair, increasing queue pairs

Comparing transaction cost with varying numbers of processors

40
2
15
0
1 2 3 4 5 [7 8 9 10

Number of gueue pairs

B R 8 &

-
=1

Cosgt / Transaction (cpu microseconds)

w

m 3 pro w6 pr w8 pr

It may be worth noting that the 8 processor configuration transaction costs are higher than when
similarly configired measurements on IBM z15. This is because on the IBM z15, the 8 processors
were allocated on a single chip, whereas on IBM z16 we are seeing a maximum of 6 processors per
chip. As a result, allocating 8 processors on IBM z16 meant that the workload was spread over 2
processor units and in those circumstances we observe the transaction cost can increase. This is
discussed in more detail in the “What’s new or changed on IBM z16” section of the “MQ for z/OS
on z16” performance report.

295

http://ibm-messaging.github.io/mqperf/MQ_for_zOS_on_z16.pdf
http://ibm-messaging.github.io/mqperf/MQ_for_zOS_on_z16.pdf

Shared queue
Throughput for non-persistent messages in shared queues is dependent on
For messages up to 63KB (64512 bytes):
e 7/0S heuristics which can change CF calls from synchronous to asynchronous.
e The type of link(s) between individual z/OS’s and the CF(s).
o This affects the elapsed time to complete CF calls and so influences the heuristics.

o The CF CPU %BUSY

For messages > 63KB that are stored in DB2:

e As above for up to 63KB messages plus the throughput performance of the DB2 data sharing
group tablespace used to store these messages.

The performance effect of these factors can vary significantly from one machine range to another.
For messages > 63KB that are stored in shared message data sets (SMDS):

e Refer to MQ for z/OS 9.3 shared queue - non-persistent server-in-syncpoint workload section
in the Regression Appendix.

296

https://ibm-messaging.github.io/mqperf/MQ for zOS 9.3 Performance.pdf

Maximum persistent message throughput - private queue ex-
amples

Using a request /reply workload with no business logic where

e Requester application(s) use a commit for each MQPUT to a server queue and each MQGET
from a reply queue

e Reply application(s) use a commit for each MQGET from the server queue and each MQPUT
to the reply queue.

e A request/reply ‘round trip’ uses 2 persistent messages (a request message and a reply message
of the same size)

e Thus there is 1 log force for each MQPUT and each MQGET.

We have achieved the following on our 3931-703 z/0OS system with DS8900F DASD. On different
systems, particularly with different DASD, you may get different results.

As a comparison with older type DASD such as 2105-F20, see “Maximum Request/Reply throughput
(DS8900F)”.

Strict ordering - single reply application
The following chart shows how many persistent transactions can be processed by a single reply

application with an increasing number of requester applications.

Persistent Message Throughput
MQ for z/OS 9.3 Queue Manager with logs on DS8900F with zHPF enabled

Single reply program driven by multiple requesters,
1 commit for each MQGET and each MQPUT

3500

2969 2980
3000 = -
2500 -850 et 2535
= »
-]
E 2000 2164 2216
i 1702
2
L=
5 1500
2
5 1339
= 1000
500
0
1 2 4 8 12

Concurrent Reguester Jobs

—m— 1KB —+—5KB —¥— 10KB

By reviewing the class(3) accounting data for the reply application we can see that it is the limiting
factor, as can be seen in data taken from the run using 12 requester tasks with 10KB messages e.g.

== Commit : Count 133915, Avg elapsed 425, Avg CPU 2
-MQ call- N ET CT Susp LOGW
Put : 133915 10 9 0 0
Get : 133915 7 6 0 0

297

Since the reply transaction is “get, put, commit” we can see that the elapsed time per transaction
is: 425 + 10 + 7 = 442 microseconds.

As the reply application is single threaded, it can process a maximum of 2262 transactions per
second (1,000,000 CPU microseconds per second divided by elapsed time of a transaction).

The chart shows 2216 transactions of 10KB were processed with 12 requester tasks running — which
shows that the single server is running at nearly 100% of the maximum possible transaction rate -

and also shows that the single reply application is spending a significant proportion of its processing
time in MQ.

Increasing number of reply applications
The following chart shows persistent message throughput with an increasing number of reply appli-

cations and many (12) requester applications.

Persistent message throughput
V930 queue manager with logs on DS8900F with zHPF enabled

Multiple reply programs driven by 12 requesters,
1 commit for each MQGET and each MQPUT

12000 @
10701 10619
.
10000
49144
2 8000 <
—
3 7704
w
@ 6000
5
5 40005
£ g%
2000
2149
0@
1 2 4 8 12

Concurrent Reply Jobs

—8—1KB —e—5KE —¥— 10KB

298

Maximum persistent message throughput - shared queue ex-
amples

We have processed more than 84000 1KB persistent messages per second with three queue managers,
each on a separate z/0S, using a pair of shared queues when zHPF is enabled.

Persistent message throughput is limited by the rate at which data can be written to the log. Having
multiple queue managers each with its own log allows a many times increase in the throughput.
Using shared queues means that this many times increase is available through a single queue or set
of queues.

The subsequent measurements were run using queue managers running CFLEVEL(5), using default
offload thresholds. Due to the size of the messages and the depths of the queues, no offload ca-
pacity was required, so the offload medium is irrelevant in these measurements. In all following
configurations, zHPF is not enabled.

Scalability - Shared Queue persistent messages

Local Request/Reply - transactions/second
3-way z/OS v2r5 LPARs on 3931-7KO0 with ICP links to 4-way CF

40000
36608
35000
29561
30000 H Private queue (dual log + arc)
o 26053 = 1 queue manager (dual log +
§ 25000 arc)
2 21734 = 1 queue manager
E 20000 = 2 queue managers
% 3 queue managers
2 15000
&
=
10000
5000
0
1KB 5KB
Message Size (2 jes per transaction)

NOTE: Dual logging and no archiving used unless otherwise stated.

These results were obtained on a parallel sysplex LPARed out of one 3931-7K0 box with a connected
DS8900F DASD subsystem. Real production parallel sysplexes would need, and might reasonably
be expected to have, sufficient log DASD I/0 rate capacity for the required number of logs and
archives.

Results on 3931-7K0 systems were obtained using IBM MQ for z/0S 9.3.

“Local Request/Reply” is a set of identical request applications and a set of identical reply applica-
tions running on each queue manager such that requesters MQPUT a message to a common server
shared queue and MQGET their specific reply message from a common reply shared queue that is
indexed by MSGID. The reply applications MQGET the next request message from the common
queue, MQPUT the specific reply message to the indexed shared queue and MQCMIT. Thus there
are two messages completely processed (that is created with MQPUT and consumed with MQGET)
for each request/reply transaction.

The preceding chart demonstrates the following.
e More than 72000 messages per second (two messages per transaction) with 1KB messages.

e More than 58000 messages per second with 5KB messages.

299

e Single queue manager workload for shared queue saw the machine running at 72% of capacity
compared to 40% of capacity for private queues.

e Archiving versus no archiving can have an effect on throughput of up to 12% for 1 queue
manager (dual logging and archiving) versus 1 queue manager.

e Scalability for 1 to 3 queue managers, where there is sufficient:
o log DASD capacity
o CF link connectivity

o CF processing power.

Shared queue persistent message - CPU costs

CPU costs for shared queue are more than usually difficult to estimate from measurements of indi-
vidual IBM MQ operations. These measurements are the most representative of likely costs for real
workloads. This is because they include the interactions between the CF and the queue managers in
real life queue sharing under load including waiting MQGET situations. These CPU milliseconds are
derived from RMF reported ‘MVS BUSY TIME PERC’ for each total system. Thus they include
all system overheads and are larger than would be found from adding ‘WORKLOAD ACTIVITY’
reported CPU usage by address space.

Scalability - Shared Queue persistent messages

Local Request/Reply - cost per transaction
3-way z/08 v2r5 LPARs on 3931-TKD with ICP links to 4-way CF
Excludes CF cost

200
188
179 181 4q7g 182

180 172
164 189

B Private quaue (dual log + arc)
= 1 guaus manager (dual log + arc)
B 1 queus manager
N 2 quaus managers
3 queus managers

CPU Mcroseconds | ransaction
g B

1KB SKB

Message Size (2 messapes per ransaction)

NOTE: Unless otherwise specified, dual logging and no archiving are used.

Based on the preceding chart, a rule of thumb may be derived that shared queue persistent CPU
costs compared to ‘best case’ private local queue:

e Of the order 225% more than for 1000 byte persistent messages. Each extra queue manager
adds 3% to the CPU cost.

e Of the order 200% for 5000 byte persistent messages. Each extra queue manager adds 2% to
the CPU cost.

On IBM z16, the percentage increase of shared queue over private queue has increased. This partic-
ular private queue configuration cost has decreased by 20% over IBM z15, whereas the shared queue
costs have largely remained the same between z15 and z16.

300

‘Best case’ means all messages remain within the buffer pool. One of the advantages of shared queue
is that there can be enough capacity to keep going even when there is an application instance outage.
With private local queues any such outage could severely restrict throughput and/or cause buffer
pools to fill with consequently more expensive performance until any backlog is cleared.

Shared queue persistent message - CF usage

MQ calls to the CF are mainly to the application structures. There is no difference in the number
and type of calls between persistent and non-persistent messages. There are more calls to the
CSQ__ADMIN structure for persistent messages.

The following chart shows the RMF reported ‘CF UTILIZATION (% BUSY)’ matching the persistent
message local request/reply charts above.
Scalability - Shared Queue persistent messages

Local Request/Reply - CF Utilization (% busy)
3-way 2/08 v2r5 LPARs on 3931-7KD with ICP links to 4-way CF

&0
50
o Private gueue (dual log + arc)
40 ® 1 quews manager (dual log + arc)
¥ 1 queus manager
ﬁ‘ B 2 queus managers
@ 30
F 3 queus managers
&
20

10

1KE BKB

Message Slze (2 messages [fransachon)

As discussed in “When do I need to add more engines to my CF?”, the CPU “% Busy” figure of
the CF remains below 60%, therefore we would surmise that there is sufficient CF capacity for this
workload. Were more queue managers to be added driving the workload above 60% we would advise
activating an additional engine to the CF. The number of asynchronous calls increases as the CPU
usage increases, causing a slower response from the CF.

A rule of thumb for CF cost is about 28 CF microseconds per message (56 CF microseconds per
transaction) for 1000 byte messages when using ICP links.

For 5000 byte messages the CF cost is 30 CF microseconds per message when using ICP links. CF
costs per message do not change significantly with increasing number of queue managers unless the
proportion of asynchronous requests increases as a result of adding additional queue managers.

301

The following chart shows the cost in the CF per transaction.

Scalability - Shared Queue persistent messages

Loecal RequestiReply - Coupling Facility cost per transaction
Fway /05 v2r5 LPARs on 3931-TKD with ICP links to 4-way CF

7O
w60
g 50 B Private gquause (dual log + arc)
g B 1 queuvs manager (dual log + arc)
E 40 ® 1 queus manager
i N 2 quaus Managers
5 a0 3 queus Managers
E
E 20
i 10
Q

1]
1KBE 5HB
Message Slze (2 ges / trar)

Note: Were there insufficient CPU capacity in the CF, the number of asynchronous requests would
have increased which would also result in an increase to the CF cost per transaction.

302

Message ordering - logical groups

Messages on queues can occur, within each priority order, in physical or logical order.
e Physical order is the order that in which the messages arrive on a queue.

e Logical order is when all of the messages and segments within a group are in their logical
sequence, adjacent to each other, in the position determined by the physical position of the
first item belonging to the group.

These physical and logical orders can differ because:

e Groups can arrive at a destination at similar times from different applications, therefore losing
any distinct physical order

e Even with a single group, messages can get arrive out of order because of re-routing or delay
of some of the messages in the group.

There are 2 main reasons for using logical messages in a group:
e You might need to process the messages in a particular order

e You might need to process each message in the group in a related way

Does size of group matter?

When a message group consists of large numbers of messages, there is the potential for deep queues,
with many uncommitted messages.

Should the transaction fail, there is the potential for a longer back-out time.

We found that there was no significant overhead associated with putting messages in logical groups.

Large groups of small messages OR small groups of large messages?

Purely from an MQ perspective it is more cost-efficient and faster to transport small logical groups
containing large messages than it is to transport large groups with small messages.

To show a comparison, the following example demonstrates a transaction that moves 5MB of data.
In this example, a transaction is:

e An application that puts the specified number of persistent messages in a logical group, com-
mits the group and then waits for a single reply message.

e The costs include the application that puts the messages in a logical group and the application
that processes the logical group and sends a reply message.

e All measurements were performed on a queue manager using WebSphere MQ v7.0.0 on a single
z/0S 1.9 LPAR with 3 dedicated processors from a z10 EC64.

303

. . Message volume transported
Message Size Group Size (message size * group size)
1KB 5000 4.88MB
16KB 320 5MB
32KB 160 5MB
64KB 80 5MB
1MB 5 5MB
Transaction Rate for moving SMB of message data
whilst varying message size and size of logical group
14
12
=
< 10
2
w g
P
S 6
g .
&
=2
0 =S5
1024 16384 32768 65536 1048576
Message Size

Notes on preceding chart:

e Using a logical group of 5000 with 1KB persistent messages, the achieved transaction rate was
0.3 transactions per second.

e Using 16KB persistent messages with a logical group of 320, the transaction rate increased to
4.5 per second, an increase of 15 times.

e Using 1MB messages with logical groups of 5 messages, the transaction rate increasesd to 11.5
per second, an increase of 38 times.

304

Transaction Cost for moving 5SMB of message data
whilst varying message size and size of logical group
_ 700 -
] o
= 600 iz
=
2
& 500
E 400
=
2 300
o 200 <
g = = S =
_ o o o] (1]
= 100 < = ~ 2
et ™ [} [}
E 04 : 1 — 0/ == =
1024 16384 32768 65536 1048576
Message Size

Notes on preceding chart:

e From an MQ perspective, it is clearly less expensive to process fewer large messages in a logical
group than many smaller messages.

DASD Logging Rate for moving SMB of message daia
whilst varying message size and size of logical gmup
S{] r_l
=
70
B0 o
cn
[
- 50 = =
= =
w -
2 G
20
10 =
o
0 —a ,
1024 16384 32768 65536 1048576
Message Size

Notes on preceding chart:

e When using small (1KB) messages, the rate at which the queue manager can write the logs is
much lower (around 16MB/second).

e By contrast, when using large messages, the queue manager can log much faster (70+ MB /second
for IMB messages) and in the above measurements that limit is being reached.

e When batching the application messages into fewer MQ messages, there are less MQ overheads
— for example there are only 5 MQMDs logged rather than 5000 MQMDs for a group containing
1KB messages.

305

Application tuning

How much extra does each waiting MQGET cost?

The cost of an MQGET with wait is insignificant - approximately 1 microsecond on a 2817-703.
This cost is not dependent on message length, persistence, or whether in or out of syncpoint.

If you have more than one application waiting for a message on a particular queue then every such
application will race for any newly arriving message. Only one application will win this race, the
other applications will have to wait again. So if you have, for example, five applications all waiting
for a message on a particular queue the total cost to get the message is the cost of a successful
MQGET, (which does depend on message length, persistence, and whether in or out of syncpoint),
plus 5 times 1 CPU microsecond (2817-703).

NOTE: Multiple applications in a get-with-wait can ensure processing throughput even if the cost
is slightly higher at low-volume periods.

How much extra does code page conversion cost on an MQGET?

Code page conversion from one single byte character set to another using MQFMT STRING costs
about the same as a basic MQGET out of syncpoint for the same non persistent message size.

DBCS to DBCS conversion costs are of order 4 times a basic MQGET out of syncpoint for the same
non-persistent message size.

Event messages

The cost of creating each event message is approximately the same as MQPUT of a small persistent
message.

Triggering

For shared queue, there can be a trigger message generated on all queue managers in the QSG. If
there are many trigger monitors, only one will get the message, so there may be multiple unsuccessful
gets.

Trigger EVERY is suitable when there are low message rates. You should consider having long
running transactions to drain the queue.

If trigger every is used with a high message rate, this can add significantly to the CPU cost due
to all of the trigger messages generated and any additional processing, for example starting CICS
transactions.

What is the cost of creating a trigger or event message?

The cost of creating one trigger message is approximately the same as an MQPUT of a small non-
persistent message (less than 100 bytes).

When evaluating the cost of triggering, remember to include the cost of the process initiation.

306

Chapter 8

Two / Three Tier configurations

A typical two-tier configuration is shown in the following diagram. It shows a number of IBM MQ
clients connecting using SVRCONN channels directly into the queue manager’s channel initiator
address space.

Two-Tier: Client - Server
Client || Client || Client || Client || Client

SYRCONN channels -
4 4 Y » 4
Channel Initiator
Queue Manager

A typical three-tier configuration is shown in the following diagram, which uses a concentrator
queue manager to accept the SVRCONN connections from the clients and use a single pair of MCA
channels to send the messages onto the target queue manager.

307

Three-Tier: Client - Concentrator — Server
Client Client Client Client Client

é'V,RCOPs‘E;'N charinels

|
“Concentrator”
Queue Manager

MCA Channels
Channel Initiator
Queue Manager

‘

Why choose one configuration over the other?

There are several performance factors that should be considered when deciding whether to use a 2
or 3 tier configuration.

e Cost on the z/0S platform
e Achievable rate (latency / persistence / maximum throughput for a channel)
e Number of connecting tasks (footprint)

It should be noted that performance is not the only reason to choose between a 2 or 3 tier configu-
ration. For example if high availability (HA) is a key concern, using a 3 tier model may make the
configuration more complex.

Cost on the z/0S platform

The cost of transporting data onto the z/OS platform is often a key criteria when deciding whether
to use a two or three tier model.

The cost of connecting directly into a z/OS queue manager via SVRCONN channels can be higher
than accessing the z/OS queue manager via MCA channels, from a distributed queue manager,
particularly with short-lived connections, where the high connect cost forms a larger proportion of
the total cost.

As the number of messages processed during a connection increases, the relative cost of the MQ
connect decreases in relation to the total workload. For example:

e If the client connects, puts a 2KB message and then disconnects, the relative cost of the connect
is high.

e If the client application were to follow this connect-put-disconnect model but the message is
much larger, e.g. a 1MB message, the relative cost of the connect would be much lower.

e Similarly if the client application were to connect, perform many puts and gets, then disconnect,
the relative cost of the connect is low.

The key factors relating to cost would be:

308

e How much work is processed under a single connection, i.e. are the clients long-lived or short-
lived?

e The size of the messages.

With very long running transactions or where connection pooling is used resulting in long SVRCONN
instances, the costs on z/OS of servicing a SVRCONN connection may be similar to a pair of SDR-
RCVR channels.

With regards to MCA channels, as can be seen in the section “Costs of moving messages to and
from z/0OS images”, achieving larger batch sizes can reduce transaction cost. This means that more
efficient batch sizes can be achieved when multiple clients are putting messages to the distributed
queue manager.

Achievable Rate

Volume of data — at channel capacity

The volume of data that each client is likely to send/receive may influence any decision on two or
three tier configurations.

A channel, whether a SVRCONN or an MCA channel will have a maximum capacity on any partic-
ular network and this will depend on a number of factors including network capacity and latency.

If the combined messaging rate of the clients exceeds the maximum capacity of a single channel,
using a 3-tier model may result in reduced throughput, however this can be alleviated by using
multiple MCA channels between the distributed and z/OS queue managers.

Latency

Adding the third tier in the form of a distributed queue manager may add latency to the time to
transport data from client to z/OS or vice versa. In a low latency network or one with short distance
between distributed queue manager and z/OS queue manager this may not be a significant amount.

The transport time between distributed and z/OS queue managers may be further reduced if the
distributed queue manager is in a zLinux LPAR and the connection is configured to use HiperSockets.

Persistent Messaging

In the case of persistent messages, adding in a second queue manager will mean that the messages
are logged twice, once on the intermediate queue manager and again on the z/OS queue manager,
which will add latency to the message flow.

In addition with persistent messages that flow over an MCA channel, each one will be processed
serially by the channel initiator adaptor tasks, whereas multiple SVRCONN channels could exploit
separate adaptor tasks which in turn can drive the queue managers logger task more efficiently.

309

Number of connecting tasks

The channel initiator on z/OS has a limit of 9,999 channels, as defined by the MAXCHL attribute,
however the number of channels that can be run will depend partially on the size of the messages
being used. For further information, please refer to the section “What is the capacity of my channel
initiator task?”

A distributed queue manager is not subject to the same 2GB storage limit as a z/OS channel initiator
and as such can be configured to support many times the number of client connections that a z/OS
channel initiator can support.

As has been documented in the performance report MQ for z/OS 9.3, the footprint of a SVRCONN
channel is 83KB when a 1KB message is being sent and received over a channel configured with
SHARECNV(0).

By contrast an MCA channel that sends or receives a 1KB message uses 90KB — however if the
connecting task requires a message to be sent and received, it will require 2 channels, with a combined
footprint of 180KB.

This suggests that the SVRCONN has a lower footprint, however when multiple clients need to
attach, it can be more efficient from a storage usage perspective to use an intermediate queue
manager as a “concentrator”, allowing the MCA channels to support multiple clients concurrently.

Measurements
The following configurations were measured:
e Local bindings — requesting application running on z/OS.

e Requesting application uses bindings connection to distributed QM and then use SDR-RCVR
channels to interact with z/OS QM.

e Client connection directly to z/OS QM, using SHARECNV(0) and SHARECNV (non-0)

e Client connection to local distributed QM and then use SDR-RCVR channels to interact with
z/0S QM.

e Client connection to remote distributed QM and then use SDR-RCVR channels to interact
with z/0OS QM.

For each of these configurations, two models of requesting application were used:
1. Requesting applications use model of: connect, [put, get]*100,000, disconnect.

2. Requesting application use model of: [connect, put, get, disconnect]*100,000.

In each case:
e Messages used were 2KB non-persistent.

e There was a set of long-running batch tasks on z/OS that got the input messages and generated
a reply message.

The following 2 charts show the costs of these configurations and include the queue manager, channel
initiator, TCPIP and server application costs per message put and got.

310

https://ibm-messaging.github.io/mqperf/MQ for zOS 9.3 Performance.pdf

Chart: Transaction cost with model: connect, [put, get]*100,000, disconnect

Transaction cost on z/0S - Client task connects once

Client to remaote distributed QM then SD-RC channels to z/0S
Client to local distributed QM then SO-RC channels to z/0S
Client directly /05, using SHARECNV (non-zem)

Client directly to 2’05 using SHARECNV/(D)

Bindings to distibuted QM then SD-RC channels to z/0S

Local Bindings

=

20 40 60 80 100 120 140 160 180 200

CPU microseconds per transacfion

In the preceding chart, the cost of using the SVRCONN channel with SHARECNV/(0) in a 2-tier
model is similar to that of an application connecting either using bindings or client to a distributed
queue manager and that queue manager then using MCA channels into the z/OS queue manager.

Chart: Transaction cost with model: [connect, put, get, disconnect]*100,000

Transaction cost on z/OS - Client task connects every time

Client to remote distributed QM then SD-RC channels to z/0S -

Client to local distributed QM then SD-RC channels to z/0S -

Client directly to 2/0S using SHARECNV (D)
Bindings to distributed QM then SD-RC channels to z/0S

Local Bindings

[=]

200 400 600 800 1000 1200 1400 1600

CPU microseconds per ransaction
The preceding chart shows that when a client is connecting to the z/OS queue manager for a short
period of time, the costs increase significantly.

In each case, connecting a SVRCONN channel with SHARECNYV greater than 0 results in additional
CPU cost, however this configuration does offer other benefits including asynchronous gets.

Regarding round-trip times (latency of the workload), the configurations achieved the shortest round-
trip time were as per the order they were described earlier i.e. local bindings had shortest round-trip

311

time and “client to remote distributed queue manager and then use SDR-RCVR channels to z/0S”
had the highest round-trip times.

When using shared conversations (SHARECNV larger than 1), the cost of frequently connecting
applications can be reduced when there is already 1 or more active conversations when the new
connection is requested and there is capacity available (a difference between SHARECNYV and the
value of CURSHCNYV - from a “DISPLAY CHSTATUS” command).

The number of messages processed during the life-span of a channel can affect the cost of a trans-
action. The following chart provides an example when the number of messages is increased from 1
to 50 messages between connect and disconnect:

Chart: Varying the number of messages processed within connect to disconnect

Increasing number of messages Put'Got per connection

Cost per Message (Got+Put, on z/OS

w1l w2 =10 m50

Client to remote distributed QW then SD-RC channels to 2/0S
Client to local distributed QM then SO-RC channels to z/0%
Clien: directly /05, using SHARECNV (non-zem)

Client direcily to 2/0S using SHARECNV(D)

Eindings to dstributed QM then SD-RC channels to z/0S

B
5
g
g
g

1200 1400

CPU microseconds pertransacion

The preceding chart shows that for a SHARECNV(0) channel, as the number of messages processed
between the connect and disconnect increases, the cost per message got and put on z/OS drops
significantly, from 905 microseconds when only 1 message is got and put, to 165 microseconds when
50 messages are got and put.

312

Chapter 9

IMS Bridge: Achieving best
throughput

The IBM MQ IMS bridge, known as the IMS Bridge, provides the capability to schedule IMS trans-
actions directly on IMS from an IBM MQ message without the need to use an IMS trigger monitor.
The IMS Bridge, which is a component of the IBM MQ for z/OS queue manager, communicates
with IMS using the IMS Open Transaction Manager Access (OTMA) service: The IMS bridge is an
OTMA client.

When an IMS transaction is driven from a 3270-type screen, any data entered on the screen is made
available to the transaction by the IMS GU call. The transaction sends its response back to the
terminal using the IMS ISRT call.

An IBM MQ application can cause the same transaction to be scheduled by using the IMS Bridge.
An IBM MQ ’'request’ message destined for IMS, typically with an MQIIH header, is put to an
IMS bridge queue. The message is retrieved from the IMS bridge queue by the queue manager and
sent to IMS over OTMA logical connections called transaction pipes or tpipes, where the IBM MQ
message data becomes input to the IMS GU call. The data returned by the ISRT call will be put into
the reply-to queue, where the IBM MQ application can retrieve it using a standard MQGET call.
This sequence of events is a typical use of the IMS Bridge and forms the basis of the measurements
presented in this section. The IBM MQ request message and its associated reply are referred to as
a message-pair or transaction in the rest of this chapter.

This chapter will also provide:
1. Further information on how the IMS Bridge works
2. Suggestions on tuning the IMS subsystem for use with IBM MQ
3. Impact of using Commit Mode 0 or 1

4. How to identify when additional resources are required

313

Initial configuration

The measurements have been performed using:
e An IMS subsystem
e 3 queue managers in queue sharing group.

e 3 z/OS LPARs running on a 2084-332. Measurements were run on LPAR 1 unless otherwise
stated.

o LPAR 1 and LPAR 2 are configured with 8 dedicated processors (each LPAR rated as
approzimately 2084-303)

o LPAR 3 configured with 5 dedicated processors, rated as 2084-305.
o An internal CF with 8 processors.

e All jobs run were managed using WLM service classes such that the execution velocity is 50%
or higher.

e Batch applications were run to drive the workload. Unless otherwise stated, 1KB non-
persistent messages were used.

e Unless otherwise stated, the IMS was on the same image as the queue manager and has a
varying number of MPRs to process the workload.

e The IMS transaction run issues a “GU” to get the message, then sends the reply using “ISRT”
and then if there is another message will issue the “GU” and repeat, otherwise the transaction
will end.

e Since the default behaviour of the IMS Bridge is to copy the requester’s message id to the
reply messages’ correlation id, it is advisable to define the reply queue with an index type of
CORRELID, and perform the get by correlation id.

How does the IMS bridge work?

There are 2 components to the IMS Bridge:
1. Putting messages from IBM MQ into IMS.
2. IMS putting reply messages back to MQ.

Putting messages from IBM MQ into IMS

For each IMS Bridge queue there is a task running in the queue manager. This task gets the message
from the MQ queue and puts them into IMS via XCF. The task is effectively issuing an MQGET
followed by a put to IMS and then commit.

If the messages are being put to this queue at a high rate, i.e. many applications putting to the
queue concurrently, the task may not be able to keep up, resulting in increased queue depths.

When using a shared queue, each additional queue manager often will also have a task per IMS
Bridge queue, and will be able to get messages from the queue and send them to IMS.

IMS putting reply messages to IBM MQ

IMS notifies the queue manager that a reply is available and MQ schedules an SRB to process this
message. This SRB essentially does an MQOPEN, MQPUT of the reply and an MQCLOSE. If there
are multiple replies coming back from IMS, then multiple SRBs can be scheduled and provided there
are sufficient processors on the image, these can be run in parallel.

314

When using shared IMS Bridge queues and multiple queue managers are connected to the IMS
Bridge, IMS will usually, but not always, send the reply back to the queue manager that sent the
original request.

When an application puts a message to a shared IMS Bridge queue, the queue manager that the
application is connected to will not necessarily be the same queue manager that sends the request
to IMS. IMS will always put the reply message to the queue manager that put the original message.
As a result, this reply message needs to be made available to the original application. By default,
IGQ or the mover is used to send the message to the original system.

Using the queue manager option SQQMNAME (IGNORE) resolves the shared queue directly to the shared
reply queue rather than to any particular queue manager (which would require the message to be
moved).

Tuning the IMS subsystem

The IMS subsystem has been configured as described below:

e Checkpoint frequency has been adjusted so that checkpoints are not taken more than once
every 10 to 20 minutes. This is controlled using the CPLOG keyword on the IMSCTF system
definition macro. Supported values are 1000 to 16,000,000 (default 500,000). To override,
modify the DFSPBxxx member of the PROCLIB DD, e.g. “CPLOG=16M".

e The IMS subsystem has the QBUF attribute set to 256. When the QBUF value was less than
the number of MPRs started, there was a significant degradation in throughput.

e Ensure the primary and secondary online logs for the IMS subsystem are large enough to avoid
constant log switching and also to avoid being affected by the IMS archive job. Logs have been
defined at 1500 cylinders each.

e Only define shared queues to the IMS storage class when they are needed. A fix was applied
for PK14315 that wakes up unused IMS Bridge queues every 10 seconds. This is not a large
overhead but if there are 100 shared queues defined with the IMS bridge storage class that are
not actively being used, there is a small degradation in performance (around 1%).

e Check the IMS attribute QBUF. The IMS trace report provides a field “NUMBER OF WAITS
BECAUSE NO BUFFER AVAILABLE”. When this is non-zero, this may be a hint that there
is a lack of buffers.

e Check the IMS attribute PSBW. When reviewing some IMS workloads, it was observed than
not all of the available MPRs were processing workload. This was because there was insufficient
storage set aside to run all of the MPRs concurrently.

e Increase the size of the online datasets. Our default sizes of the DFSOLP* and DFSOLS*
datasets meant that they were switching frequently. By increasing them from 50 to 1500
cylinders we reduced the frequency of switching.

e Increase the number of online datasets. When increased throughput occurs, the IMS archive
jobs were attempting to process multiple logs in each step. We reached a point where no logs
were available. By increasing the number of logs, we were able to prevent waiting for active
logs to become available.

e The use of zHPF should be considered in the IMS environment as IMS always logs to disk. In
our measurements we saw up to a 20% improvement in throughput.

e A single IMS transaction type defined INQUIRY (YES,NORECOV) for use with non-persistent
messages.

e A single IMS transaction type defined INQUIRY (NO,RECOVER) for use with persistent mes-
sages.

315

e Both IMS transaction types are defined with
o SCHDTYP=PARALLEL
o PARLIM=0
o WFI=Y

This will allow the IMS transactions to run concurrently on multiple message processing regions,
removing a serialization bottleneck.

Note: Using the command “/DIS TRAN tranName” will show the value for “PARLM” — and NONE
is not the same as 0. NONE means do not allow multiple instances of the transaction.

The message processing regions (MPRs) are started using the IMS performance related options!

including:
e DBLDL=<null> which minimizes the cost of program loading by increasing program di-

rectory entries maintained in the MPR. This reduces I/O to program library to obtain the
direct address of the program. Default is 20.

e PRLD=TS results in PROCLIB DD being searched for member DFSMPLTS. This contains
a list of the recommended preloaded MQ modules plus the IMS transactions to be run e.g.

CSQACLST,CSQAMLST ,CSQAPRH, CSQAVICM, CSQFSALM, CSQQDEFV,
CSQQCONN, CSQQDISC,CSQQTERM, CSQQINIT,CSQQBACK,CSQQCMMT,
CSQQESMT, CSQQPREP,CSQQTTHD, CSQQWAIT,CSQQNORM, CSQQSSOF,
CSQQSSON, CSQQRESV, CSQQSNOP, CSQQCMND, CSQQCVER,
CSQQTMID,CSQQTRGI,CSQBAPPL,IBO2INQ, IBO2INR

e PWFI =Y (pseudo wait-for-input) which can potentially reduce CPU time by eliminating
the termination and re-scheduling of resources

NOTE: WFI=Y (Wait-For-Input) will keep the program loaded and ready for input. This reduces
program start costs but will result in the MPR being dedicated to this transaction. The benefits of
WFI=Y are seen when the workload driving the IMS is low and there would be frequent program
starts, for example when running with WFI=N and using only 1 batch requester to drive workload
using a single shared queue, there were 75 transactions per second. By specifying WFI=Y, the same
batch requester was able to drive workload at 880 transactions per second.

When the driving the workload harder, the queue depth for the TPIPE typically is greater than 0
so when the IMS transaction issues a “GU” to get the next message, it is successful. This means
that the transaction does not end and have to be restarted for subsequent messages and the MPR
does not have to be dedicated to this particular transaction.

IThese options are discussed at IMS performance options

316

https://www.ibm.com/support/knowledgecenter/en/SSEPH2_15.1.0/com.ibm.ims15.doc.sdg/ims_a3h3fpd.htm

Use of commit mode

The choice of IMS commit mode specified on the MQIIH structure can affect the performance of
the IMS Bridge. Whether to use “Commit-Then-Send” (commit mode 0) or “Send-Then-Commit”
(commit mode 1) is dependent on a number of factors, for example, if the application is putting a

persistent message (i.e. an “importan

7

message) it may be beneficial to use “Send-Then-Commit”

(commit mode 1) — where the IMS message is not committed until the transaction completes. This
will ensure that in the event of a failure, the transaction will either have completed successfully or
will not have committed the work.

The flows involved for these commit modes are shown below:

Commit Mode 0 (Commit-Then-Send)

® N e g W e

IMS Bridge puts message to TPIPE

IMS acknowledges

MPR runs application that issues GU + ISRT, then issues syncpoint
IMS output is enqueued to TPIPE

MPR transaction completes

IMS output sent (with response requested)

MQ acknowledges

IMS output de-queued

Commit Mode 1 (Send-Then-Commit)

1
2
3
4.
)
6

. IMS Bridge puts message to TPIPE

. MPR runs application that issues GU + ISRT
. MPR starts syncpoint
IMS output is sent to TPIPE, no response requested
. IMS confirms commit, and completes the syncpoint
. MPR transaction completes

For commit mode 0 (CMO), the message processing region (MPR) is able to process the next message
before IMS sends the response to the MQ queue manager.

For commit mode 1 (CM1) case, the MPR is only available to process the next message when the
transaction completes — i.e. step 6, which is after IMS has sent the output. This means the MPR is
involved in each transaction for longer and this may mean additional MPRs are required sooner.

317

The following chart compares the transaction rate when increasing the number of batch requesters
putting 1K non-persistent messages to a single local queue that has been defined with the IMS
Bridge storage class. The commit mode is varied to show how CM1 can restrict the transaction rate
when there are insufficient message processing regions.

Comparing Commit Mode
Transaction Rate - 1 TPIPE (local queue)
3000
2500
£ 2000
e
S 1500
[z}
£ 1000
=
500 -
0 - L
1 2 3 4 5 6 7 8 9 10
Number of Requesters
@m1MPR, CM(1) B2 MPR, CM(1) B1MPR, CM(0) @2 MPR CM[[}}|

Notes on chart:
e In none of the above measurements is the machine running at 100% capacity.

e When there is only 1 MPR servicing the workload, a peak transaction rate of 2000/second is
seen for the applications using CM1. By contrast, when running with 1 MPR and CMO, the
peak transaction rate is 2750/second.

e By adding a second MPR for the CM1 workload, the peak transaction rate is able to track the
CMO workload.

e The chart also shows that in this environment?, adding a second MPR for the CM0 workload
gave little benefit.

2 These measurements were run on a 2084-303 and the machine was running at approximately 90% of capacity.

318

Understanding limitations of the IMS bridge

There are a number of components involved when using the IMS bridge that need to be considered
when attempting to achieve the best transaction rate for an application.

Consider the scenario where the achieved transaction rate does not match the required rate. All of
the following components could be affecting the transaction rate:

o IMS

o Are the message processing regions running at capacity? There may not be sufficient
message processing regions available.

o Can the transaction process multiple requests? When the transaction finishes without
checking for subsequent requests, there can be a significant effect on the transaction rate
if the next transaction has to be loaded.

e IBM MQ

o Is there a build up of messages on the IMS Bridge queues? This may be for a number of
reasons including:

o Either the IMS subsystem or message processing regions are not being given sufficient
priority.

o The MQ task is unable to get the messages fast enough. Using more IMS Bridge queues
may help — alternatively if using shared queues, additional queue managers in the queue
sharing group may help.

o Is there a build-up of messages on the reply-to queue? Is the reply-to queue indexed
appropriately, e.g. if getting using the CORRELID, verify that the queue isindexed by
CORRELID.

e CPU

o Is the machine running at peak capacity? A quick indication can be seen from the “Active
Users” panel in SDSF — e.g. via “S.DA”. For a longer term view, the “LPAR Cluster
Report” report from RMF can be used to determine whether the machine is running at
or close to 100% capacity.

LPAR CLUSTER REPORT®

z/0S V1R9 SYSTEM ID MV25

RPT VERSION V1R9 RMF TIME 22.12.13

—————— WEIGHTING STATISTICS ------ ---- PROCESSOR STATISTICS ----
--- DEFINED --- ---- NUMBER --- -- TOTALY% --
CLUSTER PARTITION SYSTEM INIT MIN MAX DEFINED ACTUAL LBUSY PBUSY
PLEX3 MVS2A MV2A DED 3 3 99.97 9.67
MVS2B MV2B DED 5 3 97.52 9.44
MVS25 MV25 DED 3 3 100.0 9.68

% Some detail has been removed from the LPAR cluster report shown since the system is using dedicated processors.

e Coupling Facility

o Is the coupling facility running at an optimum level — use of the RMF III reports will
show how utilised the coupling facility CPUs are.

319

o What type of links between the z/OS image and the coupling facility are in place — are
they ICP links or are they a physical cable?

o Are the coupling facility structures duplexed and how far apart are they located?

o For more information on coupling facility considerations, refer to the “Coupling Facility”
chapter.

e XCF

o Since the IMS Bridge function in the queue manager uses XCF to pass requests to the
IMS, there will is a requirement to ensure the XCF address space is running optimally.
The XCF address space allocates the Couple Datasets (XCF, Logger, CFRM, WLM,
ARM and OMVS). The document “Parallel Sysplex Performance: XCF Performance
Considerations”, gives guidelines on tuning XCF which may be of benefit to improving
the IMS Bridge throughput.

The following sections aim to help to identify where the constraints may lie by giving guidance on
how to determine:

e When the constraint is due to the message processing region.

e When the constraint is due to the IBM MQ task that puts the message onto the IMS Bridge
queue.

320

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100743
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100743

When do I need more message processing regions?

By providing a message processing region (MPR) that has the IMS transaction to be run pre-loaded
and in a wait-for-input (WFI), there is a significant reduction in the time taken to schedule the IMS
transaction.

The following trace examples are taken when the following environment is used:

e A single 2084-303 image

A single queue manager in a queue sharing group

A single IMS control region

e 2 MPRs configured as detailed at the top of this section, i.e. the transactions being run are
set to be WFI=Y.

6 batch applications each putting to a single IMS Bridge shared queue and getting a reply
message using the CORRELID from a corresponding reply-to shared queue that is indexed by
CORRELID.

Commit Mode 1 — “Send then Commit” was specified in the MQITH data structure.

The machine was seen to be running at 92% capacity and the overall transaction rate was 1803
transactions per second.

The following shows where the work was done in achieving the throughput mentioned above.

XCF
MPRs 104

17%

IMS
11% Qmgr
52%

Requester
20%

To identify whether the workload was constrained by lack of MPRs, the IMS trace function was
enabled using “/TRACE SET ON MONITOR ALL INTERVAL 60” and the IMS program DFSUTR20 was
used to print the records e.g.

//JOBLIB DD DISP=SHR,DSN=IMS.VXX.DBDC.SDFSRESL
// EXEC PGM=DFSUTR20,REGION=512K
//SYSPRINT DD SYSOUT=x

//SYSUT1 DD DISP=SHR,DSN=IMSDATA.IMXX.IMSMON
//ANALYSIS DD *

DLI

/%

321

This produced a number of useful reports® including:
1. Run Profile
2. Call Summary
3. Region Summary Report
4. Region IWAIT (IMS Wait)
5. Program Summary
6

. Program 1/0

Understanding the trace reports - run profile

IMS MONITOR *** RUN PROFILE x*x*x*

TRACE ELAPSED TIME IN SECONDS.............. 59.9
TOTAL NUMBER OF MESSAGES DEQUEUED........ 107692
TOTAL NUMBER OF SCHEDULES..................... 2
NUMBER OF TRANSACTIONS PER SECOND........ 1794.8
TOTAL NUMBER OF DL/I CALLS ISSUED........ 215380
NUMBER OF DL/I CALLS PER TRANSACTION........ 1.9
NUMBER OF OSAM BUFFER POOL I/0°S.............. 0, 0.0 PER TRANSACTION
NUMBER OF MESSAGE QUEUE POOL I/0’S.......... 115, 0.0 PER TRANSACTION
NUMBER OF FORMAT BUFFER POOL I/0°S............ 0, 0.0 PER TRANSACTION

Notes on ‘run profile’ report
e The number of “messages dequeued” is the number of scheduled PSBs.

e The number of schedules (2) indicates that only 2 transactions were started during the moni-
toring period — this is as expected since the transactions are defined with WFI=Y and there
were 2 MPRs started

e The “transactions per second” is the number of PSB schedules per second, so in the above
example there are 1794.8 PSBs being scheduled each second for the lifetime of the monitoring
period (59.9 seconds). This is close to the previously reported transaction rate of 1803 trans-
actions/second — which was calculated using figures output from the application programs.

3 Information on these reports can be found at
IMS Monitor Reports

322

https://www.ibm.com/support/knowledgecenter/en/SSEPH2_15.1.0/com.ibm.ims15.doc.sag/ims_reports/ims_imsmonrpt.htm

“YIom I0] SUIjrem j0U sem)1 Je1) Yons YSnouo prey
WOATIP Sutoq sem YJIN 92 1T} S91edIpul S[[ed 169‘L0T 9Iom dIT[) 9UIS YOIYM ‘()T ST U0Iounj) oY) I10j (sirem SINT) SIIVAI JO Ioqunu oyJ, e

-o8essowr Ajdol o)

pues 03 TSI, ® Sonsst pue adessowl ()N oY} 108 09 [[8D ()5),, B SONSSI 11 — ST UoIjoesURI) QN o) o[duwrs moy smoys j10dol Arewrwuing [rey),, UL,

q10doa Arewrwuns [[e2, UO S9)ON

67€

6%€
¥.88C 989
0%9¢ 1T
WOANIXVIK NVIN

*TAWIL LIVMI ION®

6%€

6%€
¥.88C 189
0%9¢ 1T
WONIXVI NVIN

©UHWIL @ISdvVIA

00°0 ot
00°0 0T
00°0 ot
00°0 0
TIVDO SLIVMI
/SLIVMI

08€STC

08€STC

689.0T

T69.L07
STIVD

TVIOL dSd
TV1014d0S 9dd 0/1

........) o

........ (") 1¥SI d90d 0/I DbNIZOdI
4400 INAWDIS ON ONNA dWVN dDd dWVN gSd
LVIS AT TIVD

*kx AHVWIWAS TIVD *%% YOLINOW SWI

Arewruns [[ed — sjiodoa ooeay a9y} ISurpue)siopu)

323

‘o1reu9ds siy} 103 ndysnoay) o) saoxdwil AJIIesse9U j0u pinom s JIN Surppe 1eys
§15933ns osfe 9] -o[durexe SIY) Ul URY) JOPIRY PRO[NIOM ST} SALIP 0} 9[qIssod oq pInoys 31 a10joler) pue Ajeded Jo y4eg je Juruunl are SYJIN
oY} yey} s1so83Ns SIYJ, ‘[eAIDUT 90BI} 9} O} dAIIOR SI pealy} oy} uaym owr} pasded oy} JO OIyel dY) S9}edIPUI UOIPs Louednoo() uorday, oy, e

‘oguetd 0) Aouanbaiy jurodypeyd o) asned prnoys
anfea HOTJD, SINI o2 sursuey) -A[puenbaiy 003 sjutodypeyo Suryr) oI om ‘o[durexa sAOQe 9} UL OS ‘SAINUIUIL () PUR ()] UsOM)9(q 9] [[Im
Kouenboy yurodsooto o) A[[eop] ‘(MO[oq U0ds sk) poliod SULIOTUOW o1} SULINP UL} SIUIOANOYD § 9Iom 9I0Y) S9JRIIPUL UO01100S Jutodsooy)),, oy, e

110dax Arewrmuns [[ed, U0 S9J0N]

%S €9 %4 NOIDIY**

%L €9 T NOIDIU**

ADNYdNOD0 NOIDAY

96£6C 8T6ET TLSETT 96£6C 8T6ET TLSEVT 9 INIOdMOHHD

ANON INIINI 404 F1dI

00°0 6%¢ $3€9€TS . 6%¢ 009TSCS. 08€STC STVIOL**
00°0 ¥.88¢C 6%¢e 8%0895.¢ $.,88¢C 6%¢€ L18T.LG.E 655,07 4 NOIDHYU**
00°0 $92.LT 6%¢ 90£899.¢ $¥92.T 6%¢ €81619.€ 128107 T NOIDTY**
TIVD/IMI STIVD I/71d
9G988918¢ €TLLEE9L 4 STVIOL**

G9..718€ G9..178€ G9..118¢€ T 74 NOIDHYU**

8766TC8E 8¥66128¢ 8766TC8E T T NOIDTY**

NOILNDAXA AISdVTH

114%4 (47447 4 STVLOL*x*
L00T L,00T L,00T T 14 NOIDIH**
gece GETE GECE T T NOIDHY**

TIVD LSYIA 01 JTNAIHDS

NOILVNIWYAL ANV DNITNAAHOS
WOANIXVI NVARN TVIOL WANTIXVI NVAIN TVI0OL SIONIHYNDD0

(LIVMI-Q4SdVTE)dWIL LIVMI ION @ " 70 AWIL @ISdvTd: " """

j10doa Arewrwuns uoi3ad — sjiodad 9ded) ay) Surpuelsiopup)

324

" Joday Arewrmng uoi8ey,, snorasid o) Ul Usds sk SUrIojruow Jo porred oY) SuLInp uaye) sjurods[dayd g aIom 9197} JeY) SWLIUOD JORIJXD SIY T, :SOION

V6NWI

V6NWI

VENWI

V6NWI

V6NWI

V6NWI

€C50CT/96280
V6WI O

€2S0CT/96280
Y6WI 0

€250CT/96280
V6WI O

€250C1/96280
VeWI O

€C50C1/96280
VNI O

€2S0CT/96280
Y6WI 0

V6WI (QESdVYTH TVAYAINI HAWIL) - (J3dd0LS HOLINOW DA IETCTSAd
:LdMHO DA1INg ISALVT ‘THSTTT/96280 :I1dMHO I¥VISHY ISALVT I¥08€S4d
*dI LVLSAOW VIVWY0d VEOVSWI VSMTIFAOW :SAWVNAA HAILOV I66%€SAd
VEWI +TTdWIS**x0SSCCT/96280 LdMHO* I¥66S54d

V6WI NAMVLI ILNIOdXOdHD ddSW ON - dNAOd SIdSW ON I9T.LTSAd

(1dYHD DQIING LISALVT ‘T€STTT/96T80 :IJ¥HD I¥VISAY ISALVT IL08€SAd
‘dI LVLSAOW VIVWY0d VEOVSWI VSMTIEAOW :SAWVNAA HAILDV I66%€Sd4d
VEWI *TTdNIS**xT¥SCCT/96280 LdMHO* I¥66S54d

VEWI NAMVI INIOdMOHHD ddSW ON - dNNOd S9dSW ON I9T7.2S4Ad

(1dYHD DA1INg LISALVT ‘TZTSTTT/96280 :IAMHD I¥VISAY ISALYT I¥08€S4d
‘I LVLISAOW VIVWYOA VEDVSWI VSMTHAOW :SHWVNAd JAILOV I66%€SAd
VOHI *ITIWIS**TE€SCCT/96C80 LdMHD* I¥66S4d

V6WI NAMVLI INIOdMOHHD ddSW ON - aNNOd S9dSW ON I9T.LZSAd

(IdYHD DAIING LISALVT ‘€1S2ZT/96280 :IdMHD I¥VISAY ISALYVT I¥08€S4d
*dI LVLSAOW VIVWY0d VEOVSWI VSMTIIAOW :SAWVNAd HAILOV I66%ESAd
V6WI *dTdWIS**CCSCCT/96C80 LdMHO* I¥66S4d

V6WI NAMVLI INIOdXOHHD ddSW ON - dNAOd SIdSW ON I9T.LTSAd

:LdYHO DAIINg ISALVT ‘€0STZT/96280 :I1dMHO I¥VISHY ISALVT I¥08€S4d
*dI LVLISAOW VIVWY0d VEOVSWI VSMTIEAOW :SAWVNAA HAILOV I66%€SAd
VEWI +TTdWIS**ETSCCT/96C80 LdMHO* I¥66S54d

VEWI NAMVLI LNIOdXOdHD ddSW ON - dNAOd SEdSW ON I9T.LTSAd

(1dYHD DQIING LISALVT ‘9€¥TZT/96T80 :Id¥HD I¥VISAY ISALVT IL08€SAd
*dI LVLISAOW VIVWY0d VEOVSWI VSMTIEAOW :SAWVNAA HAILDV I66%€Sd4d
VEWI *TTINIS**E0SCCT/96280 LdMHO* I¥66S54d

VEWI NAMVI INIOdMOHHD ddSW ON - daNNOd S9dSW ON I9T7.2S4Ad

VEWI (JdL¥VIS YOLINOW Dd IZTccSdd

1,66000LS
1,6600DLS
,660001S
1,66000LS
1,6600DLS
1,6600DLS
1,6600D0LS
,66000LS
1,66000LS
1,660001S
1,6600DLS
1,6600DLS
1,6600DLS
1,660001S
1,660001S
1,66000LS
1,6600DLS
1,6600DLS
,66000LS
1,660001S
1,6600D0LS
1,6600D0LS
1,6600DLS
,66000LS
1,66000LS
1,66000LS

¥6°92°CT
0S§°GC°'¢C1
0§°GC¢°'¢C1
0§°G¢'¢C1
0§°§C°¢T
¥ 'S¢ CT
¥°sc ¢t
¥°"sc ¢t
¥v°"sc ¢t
Te"sc ¢l
T€°§C°CT
T€°92°¢C1
T€°92°¢C1
[4N<IaNa!
¢gcsc'cl
(AR IARAY
(AR IARAY
€1°gc'¢1
€1°sc'¢1
€1°6c'¢1
€1°'g¢ ¢t
€0°GC°¢CT
€0°GC'¢CT
€0°GC°CT
€0°GC°¢CT
vS'vect

Suruuna Suriojruou Is[iym sjutodspayo Suinssi uoi3ay [01juo)) SINI

325

“jese)ep HSINDT oY) I0] oIom Sirem oY) Jo [[B 1Y) s3s033ns osTe 9] *(sewly ()T JO [@0} &)
JTeM @ UI 918 SUOLFOI o[} Je([} SUOISRID0 MdJ 9} UO J UOL3AI URY[} IOSUO[SOUWII} G oFeIoAR UO JUIjreM SI T UOLSAI ey} 15083Ns $910doI 98T], :S9)0N

T TVIOL

LNTOd¥OHHD

8¢9 69.€ 9 CUUIVIOLT T

DD DSWDT=ad S566 829 69.€ 9 STIVD I/71d

S TYIOL”

TVI0L-9nS" "~

NOILVNIWYAL + DNITAdIHDS

JdINdON NOILONNA WANTXVI NVARN TVI0OL SAONIYYNDD0 ¥ NOIDHY**
.......... AWIL LIVMI " """

%% LIVMI NOIDHY *** YOLINOW SKWI

YIOL

LNIOd¥DEHD

698¢ LLVTT 14 TUUIVLIOLT T

) DSWDT=ad €L6 698¢ LLVTT 14 STIVD I/71d

e TYIOL:

TUIVIoOL-9nst e

NOILVNIWYAL + DNITAAIHDS

dTNA0N NOILONNA WONIXVIK NVAN TV.LIOL SIONHYYNOO0 T NOIDIH**
.......... AWIL LIVMI " """

*kk LTVMI NOIDHY *xx YOLINOW SWI

‘spr0dor g oq [[Im o107) o[durexs SIyj} Ul OS ‘UOLSI [Pes I0] 310dor TTYAA] UOIS9Y,, ® 9 [[IM 9101 T,
110doy LIVAAI uoi3eoy — syiodad aoedf, 9y} Suipuejsispu)

326

"SUOT3aI SUISS9001d 93RSSOUL g O} IOAO UNI dIoM

suorjoesuel) g69‘ .07 ‘ported SULIOJTUOW oY) UT JeT[) ST S[[9 os[e 1] "(HSINDT=AJ I0J) O/ 10} sirem ()] oIom 9I9Y] JeT[) WLIYU0D $310doI ST, :S9JON]

804
80.L

"SNVYL/
ANIL

AISdvVTa"

|14%4
114%4

*@aHDS/
TIVD ILST
0l dHOS

9G88918€
9988918¢

*@dHDS/
ANIL
aasdyv1d

9¢C
9¢

*@aHDS/
ANIL
ndo

0°9%8€ 0°0 0T 6°T 08€ESTC C69.L0T ¢ STVIOL*x*
0°9%8¢€ 0°0 ot 6°T 08€STC 269.0T ¢ ONIZOdI
"HOS/ TI¥D/ SLIVMI NV4l/ STIVD gl ‘SAIHDS HWVNASd
"abEa SIIVMI 0/1 STIVD *SNVYL ‘0N
"NVHL 0/I

*kx AHVWWNS WVHDOUd **x* YOLINOW SWI

110doy Arewrwung weidold — syaiodad aoed) oY) Surpurisiopu)

327

‘HUdIdL oures
oy} Sursn suorjeordde yojeq 97 YHm SUIUUNI USYM UNR) olom s)I0dol g SUrmo[oj oy} ‘paImbal oq Aewr SYJIN [RUOIIppPR Usym Jo sjdurexs ue sy

‘Ay1oeded Je JIN U} OALIP 0} pPRO[{IoM
JUQIOIPNSUT SeM 919} JBY} A[OSIOATUO0D IO ‘peOTIom TN Y3 j1oddns 03 SYJIN TUSIIPNS 918 9107} JeY) S)so83ns urede SIYJ, "SPUOIISOINW CCH-GTT
jo oy ofeIoae e YIm (6L6°00T) Siem QNI Jo Ioqunu jueoyrusdis © pey sey HNIG0dL, Uomoesuer) NI oY) ey} s3s083ns y10dor sy, :S9j0N

1744°) 9%ZST (0] TVIOL ANVYD
144°) 9%CST 0T TVLIOL 9S8d
¥CST 9¥CST 0T TVIOL 9dd
DD DSWDT ¥EL6 ¥CsT 9%CST 0T
I d Mkx GESET €EY 7¥0858TC 6.,€0S
I d Mxx §TS8¢ 6C¥ C¥SESLTIC 0090S g0d 0/I BNIzodl
IINAOW ONNA/NAd WAWIXVH NVAW TV10L SLIVMI dWVN dd0d HWVNISd
S T ITYMTC

%% 0/I WYYD0Ud »** YOLINOW SWI

1rodeyy /1 wreadoad — syrodaa soer) Yy Iurpue)siepu)

328

“Ay1oeded oreds st o101} $95083NS OIYM S9SRIIOUT ST VAL JO Ioquunu oy} ‘peo[s{iom oY) SUMIAILS SYJN G oI8 29I} UAYA

“19sRIRP HSINDT oY) U0 () SHTem JO IOQUINT [[RIS B OS[R ST 21D], "IJoua(Jo oq ArvuI SYJIN [RUONIpPe Sulppe pue ‘Asnq siemye
A[Teou aIe SYJIN oY} ¥Yey) 9)edIpul pnom SIYJ, Uess aq Ued STIVAAI JO Ioqunu MO[AIoA & ‘PRO[YIOM ()N oY) SUIAISS SYJIN T oI 9197} USYA

"9A1}0® SuoIdal 3urssanolad aFessowt
JO Ioquunu o1} 0} PuodsselIod aNnjq Ul SIoquINU oY, ‘o[durexs [RUISLIO oY} Ul R} SSO[A[JUROYIUSIS ST sjrem QN[JO JoquuNU oY) ‘Sosed 1[j0q U] :S930N]

789 £¥89 0T TYI0L ANVHD
789 £¥89 0T TVI0L 9Sd
789 £¥89 (0] V101l 90d
DD DSWOT ¥TIT 789 £¥89 (0}
I 4 Mx*x GOGH 1SS 6¥2668 €197
I d Mxx G89G 955 99%.88 96ST
I 4 Mxx €018 185 076988 gzsT
I d Mxx T6EE 8GG 796€38 0€ST
I d Mxx €TES 595 0E¥006 €697 g0d 0/1 ONIzodl
ITINA0N DNNA/NAd WANIXVI NVARN TVIOL SLIVMI HWNVN 90d HWVNASd
.......... GHIL LITYMI - -
sk 0/I WYUD0Ud *%* YOLINOW SKWI
SUdIN ¢ ‘UdIdL T ‘suonjeoriddy ysjeq 91
€161 98.GT 8 TYI0L ANVYD
€161 98.GT 8 TVI0L 9Sd
€161 98.GT 8 TV10L 90d
DD 9SHOT 0T00T €161 98.GT 8
I d Mxx TE6T 08¥ G86CT 1z
I d Mxx €90T 66S €9.5C ¥
I d Mxx PIEE €18 oveee 15%
T 4 M*x* 8C9T S09 0€8%C 157 gdd 0/I DNIzZodI
JIINA0N ONNA/NAd WNANIXVIN NVAN TVI0L SLIVMI HWNVN 90d HJWVNISd
.......... GHIL LTUMI -

*xk 0/1 WVYD0Ud ***

YOLINOW SWI

SUdIN ¥ ‘ddIdL T ‘suoiyedriddy yojeqg 91

329

“Ay1oeded dreds ‘gonw J0U JN(‘OWOS ST 9I9) SUIMOYS UTRFR - 0/C°QF 1B UWRI SUOISAI o) ‘SYJIN G YIIM SUTUUNT USYM SRIIOYM U/) 66

ye Suruunit sem uoi3al yoed ‘SYJIN ¥ I0J ey} smoys ‘p1odax

4

Aremiing woI8eY,, 9y} JO UOI30S

4

Louednod() UOISAY, S IR JOO[® ‘SI} ULIGUOD O,

330

When do I need more TPIPEs?

At some point, the task running in the queue manager that is getting messages from the request
queue and putting to IMS cannot run any faster. At this point, additional throughput may be
achieved by using multiple IMS Bridge queues (which will each have a separate queue manager
task).

Alternatively, if shared queues are in use, the addition of another queue manager in the QSG will
provide another task to get the message from the queue and pass to IMS.

To determine whether more TPIPEs will benefit the throughput, the IMS region will again need to
be monitored to determine whether the MPRs are working efficiently. In addition, the MQ queues
need to be checked to see if a backlog is building either on the request or the reply queue.

This example is based on 2 sets of measurements:

Both measurements used local IMS Bridge queues with the workload running on LPAR 1 (rated as
a 2084-303).

Commit Mode Commit-’ghen-Send Send-Theil-Commit
MPR 2 2

TPIPEs 1 1
Requester Tasks 6 6
Persistent Messages No No
Transaction Rate 2700 / sec 2747 / sec
CPU Utilisation 82.5% 8%

Cost / Transaction 917 microseconds 950 microseconds

What information can we get from the above table?
e The workload is not CPU-constrained.

e Whilst CM1 is achieving a higher transaction rate, the cost per transaction is also higher than
for CMO.

The following chart shows where the costs are incurred in these 2 measurements.

Compared to commit mode 0 “Commit-Then-Send”, the commit mode 1 “Send-Then-Commit” mea-
surements show:

e 10% increase in the cost of the queue manager processing the transaction over commit mode
0 “Commit-Then-Send”

e 13% increase in the cost of the MPR processing the transaction.
e 20% decrease in the cost to the IMS control region

e A 3.5% overall increase in cost per transaction.

331

Breakdown of cost per transaction
by Commit Mode type
1000

200 =

800 225 =3
oy
= 700
=]
L
-] B00 200 160 m XCF
= o MPR
= — oiMs
E B Reguesters
E o oOMGR
- 400 —
=
=
T 300
z
[=]

200 3T 394

100

D T
o 1
Commit Mode

Looking at the trace reports for these 2 measurements shows the Region Occupancy for the MPRs
at:

e 31.2% and 29.9% for the commit mode 0 “Commit-Then-Send” measurement.

o 72.3% and 72.3% for the commit mode 1 “Send-Then-Commit” measurement.

Looking at the “Program 1/0” report for the Commit Mode 0 measurement:

IMS MONITOR **x PROGRAM I/Q **x*

......... IWAIT TIME..........
PSBNAME PCB NAME IWAITS TOTAL MEAN MAXIMUM DDN/FUNC
IBO2INQ I/0 PCB 82718 41191904 497 192534 *xW F I
79081 42015547 531 168595 *xW F I
52 111728 2148 25744 LGMSG

This above extract shows that there are a significant number of IMS waits for each MPR, average
0.5 milliseconds.

Similarly the “Program I/0” report for Commit Mode 1 shows:

IMS MONITOR *** PROGRAM I/0 ***

......... IWAIT TIME..........
PSBNAME PCB NAME IWAITS TOTAL MEAN MAXIMUM DDN/FUNC
IBO2INQ 1I/0 PCB 79882 16582118 207 29985 *xW F I
79855 16592048 207 29200 *xW F I
10 17574 1757 13233 LGMSG

This extract shows that there are a significant number of IMS waits for each MPR, average 0.2
milliseconds.

This suggests that the MPRs have the capacity to be driven at higher transaction rate.

Since we also know that there is more capacity available on the LPAR, something else is causing the
constraint.

332

By issuing the queue manager command “RESET QSTATS” against the request and the reply queues,
firstly to reset and then secondly (a period of time later) to review, it was seen that the request
queue has a HIQDEPTH of 6 for both commit modes. The reply queue had a HIQDEPTH of 1 for
commit mode 0 and 4 for commit mode 1.

That the request queue had a HIQDEPTH of 6 suggests that the queue manager task that gets
the message from the request queue and put to the IMS Bridge is not able to keep pace with the
workload.

In the case of the reply queue, the values for HIQDEPTH show that for commit mode 0, the replies
are being gotten by the batch applications as quickly as the messages are put.

The tests were re-run using 2 TPIPEs, to see if allowing the queue manager a second task to get
messages from the request queues will help drive the workload at a higher rate.

Commit Mode Commit-’(l)‘hen-Send Send-Theil-Commit
MPR 2 2
TPIPEs 2 2
Requester Tasks 6 6
Persistent Messages No No
Transaction Rate 2852 / sec 3017 / sec
CPU Utilisation 89.5% 92.57%
Cost / Transaction 941 microseconds 920 microseconds

Looking at the trace reports for these 2 measurements shows the Region Occupancy for the MPRs
at:

e 33.6% and 34% for the Commit Mode 0 “Commit-Then-Send” measurement.
e 99.7% and 99.7% for the Commit Mode 1 “Send-Then-Commit” measurement.

Looking at the “Program I/0O” report for the Commit Mode 0 (Commit-then-Send) measurement:

IMS MONITOR **x PROGRAM I/0 **x*
......... IWAIT TIME..........
PSBNAME PCB NAME IWAITS TOTAL MEAN MAXIMUM DDN/FUNC
IBO2INQ 1I/0 PCB 85064 39500980 464 13979 *W F I
84605 39736498 469 86560 W F I
82 167153 2038 37939 LGMSG

This shows a slight increase in the number of IMS waits (from 161,799 to 169,669) but the average
time has also decreased slightly (from 500 microseconds to 467 microseconds).

For Commit Mode 1 (Send-then-Commit), there is a marked improvement —which can be seen in
the “Program I/O” report following:

IMS MONITOR ***x PROGRAM I/0 **x*

......... IWAIT TIME..........
PSBNAME PCB NAME IWAITS TOTAL MEAN MAXIMUM DDN/FUNC
IBO2INQ 1I/0 PCB 713 166333 233 14037 W F T
693 158148 228 13302 *xW F I
16 48000 3000 14989 LGMSG

333

Compared to the previous run that used 1 TPIPE, the number of IMS waits has dropped significantly,
from 159,737 to 1406, whilst the average wait is still approximately 0.2 milliseconds. This suggests
that the workload is potentially constrained by the MPRs.

Checking the information reported by the “RESET QSTATS” command, for both commit mode 0
and commit mode 1, the HIQDEPTH is now 3 for each of the two IMS Bridge Queues and 2 for
each of the reply queues.

In summary, for Commit Mode 0 there has been a 5.6% increase in the transaction rate simply by
using a second TPIPE. The MPRs are not running at capacity, which suggests that using further
TPIPEs will help drive the workload faster.

For Commit Mode 1, simply by using a second TPIPE, there has been 9.8% increase in the through-
put. Since the MPRs are now nearing 100% occupancy, the next step would be to add a further
MPR and re-evaluate.

334

Chapter 10

Hardware Considerations

CPU cost calculations on other System z hardware

CPU costs can be translated from a measured system to the target system on a different zSeries
machine by using Large Systems Performance Reference (LSPR) tables. These are available at:
Large Systems Performance Reference for IBM Z.

The LSPR workload is now calculated on a workload’s relative nest intensity. For general IBM MQ
workload, it is recommended to use the AVERAGE relative nest intensity value as this is similar
to the previous mixed workload levels and is expected to represent the majority of production
workloads.

This example shows how to estimate the CPU cost for a IBM z15 8561-708 where the measurement
results are for a 3906-705 (IBM z14):

e The LSPR gives the 3906-705 an average relative nest intensity (RNI) of 14.44
e As the 3906-705 is a 5-way processor, the single engine RNT is 14.44 / 5 = 2.888
e The “average” RNI of the target 8561-708 used for the measurement is 24.97.
o The 8561-708 is a 8-way processor.
o Its single engine ITR is 24.97 / 8 = 3.121
The 3906-705 / 8561-708 single engine ratio is 2.888 / 3.121 = 0.92 approximately

o This means that a single engine of a 8561-708 is approximately 8% more powerful than a
single engine of a 3906-705.

Take a CPU cost of interest from this report, e.g. x CPU microseconds (3906-705) per message,
then the equivalent on a 8561-708 will be x * 0.92 CPU microseconds per message

e To calculate CPU busy, calculate using the number of processors multiplied either by 1,000
(milliseconds) or 1,000,000 (microseconds) to find the available CPU time per elapsed second.

Example: A 3906-705 has 5 processors so has 5,000 milliseconds CPU time available for every elapsed
second. So, for a CPU cost of interest from the report of 640 milliseconds on a 3906-705, the CPU
busy would be: 640 / (56%1000) * 100 (to calculate as a percentage) = 12.8}

335

https://www-01.ibm.com/servers/resourcelink/lib03060.nsf/pages/lsprindex?OpenDocument

Caveat

Such CPU cost calculations are useful for estimating purposes. However, extrapolation of throughput
potential from one system to another is much more risky because limitations other than CPU power
may easily become significant. For instance:

e Inadequate BUFFERPOOL size could mean that page set I/O becomes the limiting factor.
e For persistent messages IBM MQ log data rate is often the limiting factor.

e There may be other limitations beyond the scope of IBM MQ whatever the message persistence
used. For instance,

o Network bandwidth when transmitting messages or using IBM MQ thin clients.

o You also need to factor in all business logic costs and constraints as there are none in our
workloads.

Example: LSPR compared to actual results

An initial set of measurements were run by the IBM MQ Performance group comparing MQ workload
on a IBM z15 with workload on an IBM z14 that has been configured in a similar manner.

The following section provides detail of those measurements.

For the set of measurements completed, the z15 out-performed the expectations that were set based
on the z14 numbers and the data obtained from the LSPR charts available from:

Large Systems Performance Reference for IBM Z.

In order to ensure that the tests run on both platforms were directly comparable, only CPU bound
tests were run. In conjunction with the relative simplicity of the applications in use, this means that
the actual results obtained on the z15 were significantly better than the LSPR may suggest.

Since these tests were CPU bound and the LSPR measurements are based on a mixed type of
workload, it is still the recommendation that for production MQ workload estimations, the average
relative nest intensity (RNI) value is used.

Overview of Environment: Workload

e A set of batch measurements were run against a single WebSphere M(Q version 9.1.4 queue
manager.

e Only private queues were used.

o The set of tests incorporated a request/reply model. This took the form shown in the
diagram below. Tests were run using 2KB non-persistent messages, with an increasing
number of queue pairs in use.

o For each queue pair in use, there was 1 batch requester and 1 batch server task.

336

https://www-01.ibm.com/servers/resourcelink/lib03060.nsf/pages/lsprindex?OpenDocument

Request / Reply model

Queue manager

App.

Reguester

reply queues

_—
\?

=
T
’b/

A transaction is:
1) Requester application puts a message to the input queue
2) Server application gets the message
3) Server application puts the rephy to the known reply queue
4) Requester application gets the message using the MSGID from the

Server
App.

Batch Applications

The batch applications used for the measurements are relatively simple and do not include any

business logic.

e The requester application is written in PL/X

e The server application is written in C

e All applications are self-monitoring and determine their costs of interest accordingly.

Hardware systems under test

IBM z14 (3906-7H1)

e LPAR with 8 dedicated CPs — 3906 708 (LSPR)

IBM z15 (8561-7G1)

e LPAR with 8 dedicated CPs — 8561 708 (LSPR)

LSPR tables

The information below is an extract of the relevant machines’ information from the LSPR website
for z/OS v2r3 for “IBM processors running multiple z/OS images”.

Machine Processor #CP PCI MSU Low Average | High
IBM z14 3906-708 8 12283 1487 24.21 21.91 19.18
IBM z15 8561-708 8 13980 1687 27 24.97 22.19

337

https://www-01.ibm.com/servers/resourcelink/lib03060.nsf/pages/lsprITRzOSv2r3?OpenDocument

Non-persistent in-syncpoint messages

This scenario used 1 requester application per request queue that put a non-persistent in-syncpoint
message that is subsequently being served by 1 application that gets the message and puts a reply
message to a pre-opened queue. This reply message is then gotten by MSGID by the original
requester task.

As the workload progresses, the test increments the number of queue pairs in use by 1 until there
are 10 pairs in use.

The following chart shows the achieved transaction rates on the z14 and the z15 under test for this
scalability benchmark test.

Comparison of 2KB Non-Persistent In-Syncpoint Messages

Achieved Transaction Rate - on 8 CPU z/OS v2r3 LPAR

mz14 @z15

160000

140000

120000
o

§ 100000
L
(2]

2 80000
kS

§ 60000
=
£

40000

20000

]

1 2 3 4 5 6 7 8 9 10
Queue Pairs

Note: In the type of measurement shown in the previous chart, the IBM z15 has processed the
transactions between 10% and 37% faster than the equivalent z14, for an overall average of 23%.

The following chart shows the average cost per transaction based on the achieved (or external)
transaction rate and compares it to the expected costs calculated using the LSPR numbers for the
machines under test and the algorithm detailed in the section “CPU Cost calculations on other
System Z hardware”.

338

Actual vs Expected Costs of 2KB Non-Persistent In-Syncpoint Workload

1 2 3 4 5 6 7 8 9 10

Queue Pairs

70

60

[4)]
o

4

o

N
o

CPU Microseconds / transaction
[N
o

1

o

]

Wz14 mz15 Expected mz15

Note: In this previous chart, it can be seen that processing the 2KB workload with 5 queue pairs,
the transaction cost on z14 was 55 microseconds, whereas on z15 the similar configuration saw a
transaction cost of 44 microseconds, with the predicted cost of 48 microseconds.

339

Chapter 11

MQ Performance Blogs

MQ Performance Blogs and white papers

The IBM Integration Community and Middleware User Community websites are good places to look
for some of the latest performance information, but we recognise that sometimes it can be difficult
to find the particular item you may be interested in. The purpose of this section is to provide a
hint to the performance blogs that might be of interest on the when using IBM MQ on the z/0S
platform.

With MQ for z/OS 9.3 introducing the ability to capture statistics and accounting data on separate
intervals that are more frequent than previous releases, a short series of blogs discussing SMF options
and costs is available:

e “MQ and SMF - Why, which and how?” discusses why you might want to collect the SMF
data, how to enable data collection and which SMF destination to choose.

e “MQ and SMF - What, when and how much?” discusses the costs of enabling MQ statistics
and accounting data collection.

e “MQ and SMF - How might I process the data?” discusses how you might process the poten-
tially large volumes of SMF data.

Additionally the following blogs may be of interest:

e Page set performance and best practice discusses the configuration of page sets, how MQ uses
page sets and how you can monitor the usage.

e Moving messages between IBM MQ for z/OS queue managers in a sysplex discusses the con-
figuration options and the performance of those configurations when moving messages between
z/0S queue managers in a sysplex. The configurations include Sender /Receiver channels using
TCP/IP, SMC-R and SMC-D, as well as the performance of Intra-Group Queuing and using
Shared Queues.

e The cost of an MQCONNX is relatively high, so in the following blog we discuss some of the
factors in that cost: The cost of connecting to a z/OS queue manager.

e Message selection using message properties, which is of interest particularly when using JMS
applications to access MQ messages, can be impacted with the use of inefficient message
selectors - the blog “Message selector performance” discusses the best ways to achieve good
performance, particularly when accessing messages on shared queues.

340

https://community.ibm.com/community/user/integration/home
https://community.ibm.com/community/user/imwuc/blogshome
https://ibm-messaging.github.io/mqperf/MQ for zOS 9.3 Performance.pdf
https://community.ibm.com/community/user/integration/blogs/anthony-sharkey1/2021/11/17/mq-and-smf-why-which-and-how
https://community.ibm.com/community/user/integration/blogs/anthony-sharkey1/2021/11/22/mq-and-smf-what-when-how-much
https://community.ibm.com/community/user/integration/blogs/anthony-sharkey1/2021/11/25/mq-and-smf-how-might-i-process-the-data
https://community.ibm.com/community/user/integration/blogs/anthony-sharkey1/2022/02/08/mq-for-zos-page-set-performance-and-best-practice
https://community.ibm.com/community/user/imwuc/viewdocument/moving-messages-between-ibm-mq-for
https://developer.ibm.com/messaging/2018/07/23/cost-connecting-z-os-queue-manager/
https://community.ibm.com/community/user/integration/blogs/anthony-sharkey1/2023/10/05/mq-for-zos-message-selector-performance

IBM announced that support for data set encryption (DSE) was available from z/0S V2.2
and there are some benefits when using MQ. The blog MQ and the use of DSE for IBM z/0S
v2.2 offers some guidance to the cost of encrypting your archive logs. Subsequently in MQ
V914 CD, MQ has implemented support for data set encryption for active logs and page sets,
and the blog MQ for z/OS V914 CDR - Data set encryption discusses the performance of this
support.

With security becoming more important, we have created a blog that discusses the impact of
TLS ciphers on MQ channels and offers some guidance as to how the latency might increase
when protecting your MQ channels.

We have also created a blog that discusses “Impact of certificate key-size on TLS-protected
MQ channels” and suggests when you may require additional crpytographic hardware.

Curious about Dedicated Memory, introduced in z/OS 3.1, and how it might your applications
(including MQ)? See “z/0S 3.1, Dedicated Memory and MQ for z/OS”.

Blogs may be added at a higher frequency than MP16 updates, so make sure you check back at the
IBM Integration Community and Middleware User Community websites.

For MQ for z/OS performance white papers, check the Repository for MQ performance documents,
which has recently been updated to include:

e Our performance evaluation of the IBM z16 - “MQ for z/OS on z16”.

e Guidance on when to use MQ channel compression as well as the potential benefits - Channel

compression on MQ for z/0OS.

341

https://developer.ibm.com/messaging/2017/08/30/mq-use-dataset-encryption-ibm-zos-v2-2/
https://developer.ibm.com/messaging/2017/08/30/mq-use-dataset-encryption-ibm-zos-v2-2/
https://community.ibm.com/community/user/imwuc/blogs/anthony-sharkey1/2020/01/13/mq-for-zos-v914-data-set-encryption-performance
https://developer.ibm.com/messaging/2018/09/04/impact-tls-ciphers-mq-z-os-channel/
https://developer.ibm.com/messaging/2018/09/04/impact-tls-ciphers-mq-z-os-channel/
https://community.ibm.com/community/user/integration/blogs/anthony-sharkey1/2024/02/09/mq-for-zos-impact-of-key-size-on-tls-channels
https://community.ibm.com/community/user/integration/blogs/anthony-sharkey1/2024/02/09/mq-for-zos-impact-of-key-size-on-tls-channels
https://community.ibm.com/community/user/integration/blogs/anthony-sharkey1/2024/05/13/zos-31-dedicated-memory-and-mq-for-zos
https://community.ibm.com/community/user/integration/home
https://community.ibm.com/community/user/imwuc/blogshome
https://ibm-messaging.github.io/mqperf/
http://ibm-messaging.github.io/mqperf/MQ_for_zOS_on_z16.pdf
https://ibm-messaging.github.io/mqperf/MQforZOS_ChannelCompression.pdf
https://ibm-messaging.github.io/mqperf/MQforZOS_ChannelCompression.pdf

	Queue Manager
	Queue manager attributes
	Log data set definition
	Should your archive logs reside on tape or DASD?
	How to minimize recovery time
	Should your installation use single or dual logging?
	How large can your active logs be?
	Striped logs
	Striped archive logs
	8-byte log RBA
	Should I use zHyperLink to write to MQ active logs?
	How much log space does my message use?
	What is my logging rate?
	How much log space do I need when backing up a CF structure?
	How can we estimate the required log data rate for a system?

	Page sets
	Page set usage
	Size of page sets for a given number of messages
	Number of page sets
	Recovering page sets
	How often should a page set be backed up?
	Why WebSphere MQ for z/OS changed how it manages small messages in V7.0.1

	Buffer pools
	Buffer pool default sizes
	Buffer pool usage
	Using buffers allocated in 64-bit storage
	Page fixed buffers
	Why not page fix by default?
	The effect of buffer pool size on restart time
	Deferred Write Process
	What changed in version 8.0?
	Oversized buffer pools
	How many DWP tasks are there?
	How much data could DWP write at checkpoint?
	What impact is there when DWP writes large amounts of data?

	Recovery
	Restart
	How long will my system take to restart after a failure?
	What happens during a checkpoint
	What happens during the recovery phase of restart
	How long will each phase of the recovery take?
	What happens during the recovery phase of restart when in a QSG
	Worked example of restart times

	Tuning
	Performance implications of very large messages
	Queue Manager attribute LOGLOAD
	What is LOGLOAD?
	What settings are valid for LOGLOAD?
	What is an appropriate value for LOGLOAD?
	When might a lower LOGLOAD be appropriate?
	What happens at checkpoint
	Impact of LOGLOAD on workload
	Impact of LOGLOAD on log shunting
	Impact of LOGLOAD on restart

	Use of MQ Utilities
	IBM MQ Utilities: CSQUTIL

	Queue Manager Trace
	Accounting Trace Costs
	Storage Usage
	Who pays for data collection?
	Who pays for writing to SMF?
	How much data is written?

	Statistics Trace Costs
	Global Trace Costs

	Performance / Scalability
	Maximum throughput using persistent messages
	What factors affect persistent message throughput ?
	Application syncpoint specifics
	Message size and number of messages per commit

	Indexed Queues
	Indexed queue considerations
	Private indexed queue rebuild at restart
	How long will it take to restart a queue manager with deep indexed local queues
	The effect of a single deep indexed queue upon Queue Manager restart
	The effect of a multiple deep indexed queues upon Queue Manager restart

	Queue manager initiated expiry processing
	Queue manager security
	How much storage is used?
	The environment being measured
	The data
	What can we gather from the chart?

	Virtual storage usage
	Object sizes
	Page set 0 usage
	Virtual storage usage by object type

	Initial CSA (and ECSA) usage
	CSA usage per connection
	Buffer Pool Usage
	Storage for security information
	Impact of number of objects defined
	Use of indexed queues
	Object handles
	Number of pages in use for internal locks
	Shared queue
	Using BACKUP CFSTRUCT command
	Clustering

	Coupling Facility
	CF link type and shared queue performance
	How many CF structures should be defined?
	What size CF structures should be defined?
	CSQ_ADMIN
	How large does my admin structure need to be?
	Application structures
	How many messages fit in a particular CF application structure size?
	CF at CFCC levels 17 and later
	Sizing structures at CFLEVEL(5)

	Increasing the maximum number of messages within a structure
	Use of system initiated alter processing
	User initiated alter processing

	How often should CF structures be backed up?
	Backup CFSTRUCT limits
	Administration only queue manager
	When should CF list structure duplexing be used?
	How does use of duplexed CF structures affect performance of MQ?
	CPU costs
	Throughput
	CF Utilization (CF CPU)
	Environment used for comparing Simplex versus Duplex CF structures
	Duplexing the CSQ_ADMIN structure
	Duplexing an application structure

	Non persistent shared queue message availability
	Coupling Facility
	What is the impact of having insufficient CPU in the Coupling Facility?
	When do I need to add more engines to my Coupling Facility?
	What type of engine should be used in my Coupling Facility?
	CF Level 19 - Thin Interrupts
	CF Level 25 - Thin Interrupts
	Why do I see many re-drives in the statistics report?
	What is a re-drive?
	Why do I see many re-drives in the statistics report?
	Effect of re-drives on performance
	Batch delete of messages with small structures - CFLEVEL(4) and lower

	Shared Message Data Sets - CFLEVEL(5)
	Tuning SMDS
	DSBUFS
	DSBLOCK

	CFLEVEL(5) and small messages
	Who pays for messages stored on Shared Message Data Sets?

	Db2
	Db2 universal table space support
	Is Db2 tuning important?
	Why does IBM MQ produce more Db2 rollbacks than I expect?

	Shared queue messages > 63KB
	Shared queue persistent message throughput after 63KB transition
	Shared queue persistent message request/reply CPU costs
	Shared queue persistent message request/reply CF costs

	Storage Class Memory (SCM)
	Using SCM with IBM MQ
	Impact of SCM on Coupling Facility capacity
	How much SCM is available?
	How do I know I am using SCM and how much?
	ALLOWAUTOALT(YES) usage with SCM
	Useful guidelines:

	Impact of SCM on Application performance
	Non-Sequential gets from deep shared queue
	RMF data
	Example use cases for IBM MQ with SCM
	Capacity – CFLEVEL(4 and less) – no offload available - ``Improved Performance''
	Capacity – CFLEVEL(5) Offload - ``Emergency Storage''
	Capacity – CFLEVEL(5) – no offload - ``Improved Performance''

	Performance / Scalability
	Does the CF Structure attribute ``CFLEVEL'' affect performance?
	The impact on MQ requests of the CURDEPTH 0 to 1 transition
	When would I need to use more than one structure?
	When do I need to add more Queue Managers to my QSG?
	What is the impact of having Queue Managers active in a QSG but doing no work?
	What is a good configuration for my shared queues?
	Shared queue persistent messages
	Shared queue performance affecting factors

	CFRM Attributes

	Channel Initiator
	What is the capacity of my channel initiator task?
	Channel initiator task storage usage
	What limits the maximum number of channels?
	How many channels can a channel initiator support?
	How many SVRCONN channels can a channel initiator support?
	MQ 9.4: 64-bit private storage usage for SVRCONN channels
	MQ 9.4: 64-bit storage usage for SVRCONN channels
	MQ 9.4: Limiting 64-bit memory usage
	MQ 9.4: How many SVRCONN channels can be run unlimited 64-bit storage?

	Does SSL make a difference to the number of channels I can run?
	Channel initiator buffer pools
	What happens when the channel initiator runs out of storage?
	Channel Initiator Scavenger Task

	Defining channel initiator - CHINIT parameters
	CHIADAPS
	CHIDISPS and MAXCHL
	Checking the OMVS Environment
	Effect of Changing CHIDISPS

	Tuning Channels
	Channel option BATCHHB
	Channel option BATCHINT
	Channel option BATCHLIM
	Channel option BATCHSZ
	Channel option COMPHDR
	Channel option COMPMSG
	Channel option DISCINT
	Channel option HBINT
	Channel option KAINT
	Channel option MONCHL
	Channel option NPMSPEED
	SVRCONN channel option SHARECNV

	Tuning channels - BATCHSZ, BATCHINT, and NPMSPEED
	How batching is implemented
	Setting NPMSPEED
	Determine achieved batch size using MONCHL attribute
	Setting BATCHSZ and BATCHINT

	Channel Initiator Trace
	Why would I use channels with shared conversations?
	Performance / Scalability
	Channel start/stop rates and costs
	TLS channel start costs
	Factors affecting channel throughput and cost

	SSL and TLS
	When do you pay for encryption?
	How can I reduce the cost?
	Will using cryptographic co-processors reduce cost?
	TLS 1.3 cipher support
	Why use TLS 1.3?

	Deprecated CipherSpecs
	Starting TLS channels using aliases
	Stopping TLS channels
	Secret key negotiation costs
	Cost of encryption using TLS ciphers
	Can I influence which cipher is chosen?
	SSLTASKS
	How many do I need?
	Why not have too many?
	Why not have too few?
	SSLTASK statistics

	SSL channel footprint
	SSL over cluster channels
	SSL over shared channels

	Using AT-TLS to encrypt data flowing over IBM MQ channels
	Who pays for AT-TLS
	Limitations
	Performance comparison
	Is the reduced cost reflected in a throughput improvement?
	Why is there no improvement to transfer rate despite the transport cost being reduced?

	Starting and stopping MQ channels protected by AT-TLS
	AT-TLS start channel performance
	AT-TLS stop channel performance

	Should I use AT-TLS to provide encryption of my MQ channels?

	Costs of Moving Messages To and From zOS Images
	Non-persistent messages - NPMSPEED(FAST)
	Persistent messages

	System
	Hardware
	DASD
	Maximum request/reply throughput (DS8900F)
	Upper bound on persistent message capacity - DASD log data rate

	What is the effect of dual versus single logging on throughput?
	Will striped logs improve performance?
	Should MQ for z/OS use log striping?

	Will striped logs affect the time taken to restart after a failure?
	Benefits of using zHPF with IBM MQ
	When can it help with IBM MQ work?

	Network

	IBM MQ and zEnterprise Data Compression (zEDC)
	Reducing storage occupancy with zEDC
	Can I use zEDC with MQ data sets?
	What benefits might I see?
	What impact might I see?
	How we set up for testing
	What to watch out for
	Measurements

	IBM MQ and zEnterprise Data Compression (zEDC) with SMF

	Data set encryption
	Why use data set encryption
	Data set encryption with the MQ queue manager
	Active and Archive log encryption
	Page set encryption
	Shared message data set encryption
	MQPUT to SMDS
	MQGET - When the messages are read from SMDS buffers
	MQGET - When the messages are read from local SMDS
	MQGET - When the messages are read from remote SMDS
	Comparing the cost of MQGETs from shared queue
	Why are unencrypted gets more expensive than encrypted?

	Summary of data set encryption costs with the MQ queue manager

	zHyperWrite support for active logs
	What is zHyperWrite?
	Why does my log performance matter?
	zHyperWrite test configuration
	Reduced I/O time
	Reduced elapsed time for MQ commit
	Improved sustainable log rate
	Impact to MQ queue manager costs
	Impact of I/O limitations on dual active and dual archive logs on older hardware

	Summary of zHyperWrite benefits

	zHyperLink support for MQ active logs
	What is zHyperLink?
	Asynchronous (Traditional) I/O:
	Synchronous (zHyperLink) I/O:
	zHyperLink and striped active logs
	Single Page I/O Response Times

	Why might you use zHyperLink?
	Requirements
	Monitoring your environment
	System commands
	RMF
	MQ Statistics

	Getting best performance out of your zHyperLink environment
	Do I have enough write sessions?
	What is the impact of zHyperLink cable length?
	Are there sufficient zHyperLink paths to the DASD?

	Performance Measurements
	Measurements in performance environment
	Measurements in ``real-world'' environment

	Cost of zHyperLink
	Cost of zHyperLink is all relative

	Checklist

	How It Works
	Tuning buffer pools
	Introduction to the buffer manager and data manager
	The effect of message lifespan
	Understanding buffer pool statistics

	Definition of buffer pool statistics
	Interpretation of MQ statistics
	Observations on the problem interval
	What was happening
	Actions taken to fix the problem

	Log manager
	Description of log manager concepts and terms
	Illustration of logging
	When does a write to the log data set occur?
	How data is written to the active log data sets
	Single logging
	Dual logging
	Interpretation of key log manager statistics
	Detailed example of when data is written to log data sets
	MQPUT example
	MQGET example

	Interpretation of total time for requests
	What is the maximum message rate for 100 000-byte messages?

	Advice
	Use of LLA to minimize program load caused throughput effects
	Frequent use of MQCONN/MQDISC - for example WLM Stored Procedures
	Frequent loading of message conversion tables
	Frequent loading of exits - for example, channel start or restart after failure
	Frequent loading of CSQQDEFV

	System resources which can significantly affect IBM MQ performance
	Large Units of Work
	Application level performance considerations
	Common MSGID or CORRELID with deep shared queues
	Why is cost of MQGET higher when more than 5,200 messages have common identifier?

	Frequent opening of un-defined queues
	Frequent opening of shared queues
	How can I tell if I am seeing first-open or last-close effects?
	Can I reduce the impact from locking on my shared queues?
	Is using an application to hold the queue open always appropriate?

	Using GROUPID with shared queues
	Comparing performance of GROUPID with CORRELID
	Comparing performance of GMO options
	Avoiding Get-Next when specifying GroupID

	Using Message Selectors
	Who pays for the cost of message selection?
	Is there a good message selector to use?
	How do I know if I am using a good message selector?
	Message selector performance
	Message selector performance with private queues
	Message selector performance with shared queues

	Checklist: Using client-based selectors

	Temporary Dynamic (TEMPDYN) Queues
	TEMPDYN queues - MQOPEN
	TEMPDYN queues - MQCLOSE

	Queue Information
	Tuning queues
	Queue option ACCTQ
	Queue option DEFPRESP
	Queue option DEFREADA
	Queue option MONQ
	Queue option PROPCTL

	Maximum throughput using non-persistent messages
	What factors affect non persistent throughput
	Private queue
	What is the maximum message rate through a single private queue ?
	Throughput for request/reply pairs of private queues

	Shared queue

	Maximum persistent message throughput - private queue examples
	Strict ordering - single reply application
	Increasing number of reply applications

	Maximum persistent message throughput - shared queue examples
	Shared queue persistent message - CPU costs
	Shared queue persistent message - CF usage

	Message ordering - logical groups
	Does size of group matter?
	Large groups of small messages OR small groups of large messages?

	Application tuning
	How much extra does each waiting MQGET cost?
	How much extra does code page conversion cost on an MQGET?
	Event messages
	Triggering
	What is the cost of creating a trigger or event message?

	Two / Three Tier configurations
	Why choose one configuration over the other?
	Cost on the z/OS platform
	Achievable Rate
	Number of connecting tasks
	Measurements

	IMS Bridge: Achieving best throughput
	Initial configuration
	How does the IMS bridge work?
	Putting messages from IBM MQ into IMS
	IMS putting reply messages to IBM MQ

	Tuning the IMS subsystem
	Use of commit mode
	Commit Mode 0 (Commit-Then-Send)
	Commit Mode 1 (Send-Then-Commit)

	Understanding limitations of the IMS bridge
	When do I need more message processing regions?
	Understanding the trace reports - run profile
	Understanding the trace reports – call summary
	Understanding the trace reports – region summary report
	IMS Control Region issuing checkpoints whilst monitoring running
	Understanding the Trace reports – Region IWAIT Report
	Understanding the trace reports – Program Summary Report
	Understanding the trace reports – Program I/O Report

	When do I need more TPIPEs?

	Hardware Considerations
	Example: LSPR compared to actual results
	Overview of Environment: Workload
	Batch Applications
	Hardware
	LSPR tables

	Non-persistent in-syncpoint messages

	MQ Performance Blogs

