
Exploring the Native HA messaging performance
of MQ as part of CP4I deployed on OCP 4.12

Objective

To illustrate the performance capability of MQ when deployed on OpenShift Cloud Platform (OCP) 4.12
as part of Cloud Pak for Integration (CP4I). This report focuses on the performance of Native HA which
increases MQ QM availability by replicating log data from the active QM to two replica QM.

Environment

A bare metal setup comprising 3 master nodes, 1 bastion node and 9 worker nodes, although for this
test only 3 worker nodes are used (1 for the active QM, 2 for the replica QM). An additional server is

used for the client running the containerized test harness.

Figure 1 - Test topology

The software versions tested against are included in the following table:

Component Version

OpenShift Cloud Platform (OCP) 4.12.35

Cloud Pak 4 Integration (CP4I) 2023.2.1

MQ Operator 2.4.5

MQ 9.3.3.0-r2

The persistent volume (PV) for each QM uses a Fibre channel connection to a 50GB LUN on a remote
SAN. The access mode required for Native HA storage is RWO (ReadWriteOnce) as each PV is only

referenced by a single QM instance. The QM is of type NativeHA.

Client Active QM

Replica QM

Replica QM

OCP Cluster

100GbE

100GbE

10GbE

External Server

Page 2

For more information on the supported configurations, please visit:

https://www.ibm.com/docs/en/ibm-mq/9.3?topic=openshift-release-history-mq-operator

The yaml used to deploy the QM is included in Appendix B. The QM configuration is controlled by mqsc
commands in ConfigMaps supplied to the MQ operator during QM creation and can also be found in the

same appendix.

The default cluster SDN (Software Defined Network) in this OCP cluster utilizes 1GbE networking. All
master and worker nodes are also connected by an additional 10GbE and 100GbE network. The

Multus additional network support has been used to allow the client and QM to communicate over the
10GbE network, please see separate guidance (https://github.com/ibm-messaging/mqperf/blob/gh-
pages/openshift/configuration.md) on how this was setup. There is a second Multus additional network

that utilizes the 100GbE interfaces; this is used for the replication data between the 3 QM instances.
To enable the updating of the service endpoints of the 3 QM instances, the multus-service component

is required. Please again refer to the above link for further details.

The number of threads supported in a container in this environment has been recently increased (in
OCP 4.10) to 4096 threads. This is sufficient for our test scenarios, so no further configuration was

required.

The first two sections in this report use a CPU limit of 32 cores for the QM. The last section of the
report demonstrates how Native HA performs across QM pods deployed with varying level of CPU

resources.

Although in this whitepaper we are comparing Native HA performance with SIQM performance, it

should be noted that Native HA removes the need to rely on more resilient replicated storage; adding
additional synchronous replication to the data featured here for SIQM would have significantly

impacted the throughput presented.

Please see Appendix A for the specification of the hardware used for the tests.

https://www.ibm.com/docs/en/ibm-mq/9.3?topic=openshift-release-history-mq-operator
https://github.com/ibm-messaging/mqperf/blob/gh-pages/openshift/configuration.md
https://github.com/ibm-messaging/mqperf/blob/gh-pages/openshift/configuration.md

Page 3

QM Config Changes

Several configuration changes were made via ConfigMaps to improve performance (see Appendix B):

• Enable FASTPATH bindings

• Increase number of MaxChannels/MaxActiveChannels to 5000

• Increased log configuration to 16 primary files (of 16384 4K Pages) although please note that
Native HA utilizes replicated logging

• IMGLOGLN set to 25000 which controls the taking of automatic media images

• Increase LogBufferPages to 4096

Scenario

The scenario that will be used in the testing for this whitepaper is the standard requester/responder

scenario as featured in our distributed performance reports. For more information on the containerized
test harness, please see https://github.com/ibm-messaging/cphtestp/

The MQ client runs in its own container with a fixed number of responders (up to 500) connecting to
the QM under test. The test then iterates through an increasing number of client requesters which

sends messages across 10 request queues. The responders consume the messages from the request
queues and place them on the reply queues where the requester clients obtain their specific reply (via
correlation ID) to their original message.

A full round trip as referenced in the results is 2 message puts and 2 message gets; If you are seeking
to compare to a base messaging rate of 1 put/1 get, the messaging rates shown should be doubled.

The client runs on hardware external to the OCP cluster and connects to the QM using the address

allocated to the QM Pod on the additional 10GbE network and port 1414.

For this investigation, 2KB, 20KB and 200KB Non Persistent and Persistent messages are used. TLS is

used for all messaging data flows between the client and QM over the private 10GbE network, and for
all MQ replication traffic within the OCP cluster across the additional 100GbE network.

https://github.com/ibm-messaging/cphtestp/

Page 4

Non Persistent Results

The graph below shows how the MQ QM performs for a 2K message size. Although NP messaging data
is not persisted to disk or distributed to the replica Queue Managers; it serves as an illustrative

baseline for the messaging performance from remote clients to QM hosted in OCP.

Figure 2 – 2K Non Persistent

Note that the reported CPU is based on the full capacity of the worker node, which in this case is 64
Hyperthreaded cores; a pod restricted to 32 cores would report as having used up to 50% of the
available capacity. There are additional pods running on that Node to support the management and

configuration of the OCP cluster which is why the maximum reported value is approximately 55%.

The above graph shows that the QM can achieve a peak throughput of over 120,000 round trips/s;

and with just 16 requester client threads, the QM can achieve over 50,000 round trips/s.

0

10

20

30

40

50

60

70

80

90

100

0

20000

40000

60000

80000

100000

120000

140000

0 50 100 150

R
o

u
n

d
 t

ri
p

/s

Requester clients

2K NP - 32 Cores

Msg rate (rt/s)

Client CPU

QM CPU

Page 5

The graph below shows how the MQ QM performs for a 20K message size.

Figure 3 - 20K Non Persistent

The above graph shows that as we increase the message size to 20K, the QM CPU is no longer the

limiting factor and we are now limited by our 10GbE workload network at nearly 27,000 round
trips/sec, achievable with 32 or more requester clients.

0

10

20

30

40

50

60

70

80

90

100

0

5000

10000

15000

20000

25000

30000

0 50 100 150

R
o

u
n

d
 t

ri
p

/s

Requester clients

20K NP - 32 Cores

Msg rate (rt/s)

Client CPU

QM CPU

Page 6

The graph below shows how the MQ QM performs for a 200K message size.

Figure 4 - 200K Non Persistent

The above graph again shows that we are limited by the network when the throughput has reached

over 2,800 round trips/s from 16 threads and the QM CPU is ~13% utilised.

0

10

20

30

40

50

60

70

80

90

100

0

500

1000

1500

2000

2500

3000

0 50 100 150

R
o

u
n

d
 t

ri
p

/s

Requester clients

200K NP - 32 Cores

Msg rate (rt/s)

Client CPU

QM CPU

Page 7

Native HA Persistent Results

The graph below shows how the MQ Native HA QM performs for a 2K message size. The results for a

Single Instance Queue Manager (SIQM) are also presented.

Figure 5 - 2K Persistent

The above graph shows that the Native HA QM can achieve a peak throughput of over 25,000 round
trips/s. This is more than 50% of the SIQM performance whilst replicating data across 3 QM.

The CPU of the active QM wasn’t saturated in this test and the node utilisation peaks at 42%. The CPU

utilisation of the replica QM are much less and both nodes reported less than 10% CPU utilisation. It
should be noted that the active and replica QM are deployed with matching CPU and RAM
request/limits – as the higher thresholds would be required if the QM were to switchover/failover from

the active instance.

0

10

20

30

40

50

60

70

80

90

100

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 100 200 300 400 500 600

R
o

u
n

d
 t

ri
p

/s

Requester clients

2K P - 32 Cores

Native HA msg rate (rt/s) SIQM msg rate (rt/s)

Client CPU QM CPU

Page 8

The graph below shows how the MQ Native HA QM performs for a 20K message size.

Figure 6 - 20K Persistent

The above graph shows that as we increase the message size to 20K, the Native HA QM is capable of

over 5,000 round trips/s. The CPU is not saturated and as the report will show in the following section,
this rate is achievable with 16 cores of CPU resources.

The CPU of the active QM peaks at 20%. The CPU utilisation of the replica QM are again much less and

both nodes reported less than 5% utilisation.

0

10

20

30

40

50

60

70

80

90

100

0

2000

4000

6000

8000

10000

12000

14000

16000

0 100 200 300 400 500 600

R
o

u
n

d
 t

ri
p

/s

Requester clients

20K P - 32 Cores

Native HA msg rate (rt/s) SIQM msg rate (rt/s)

Client CPU QM CPU

Page 9

The graph below shows how the MQ Native HA QM performs for a 200K message size.

Figure 7 - 200K Persistent

The above graph shows that as we increase the message size to 200K, the Native HA QM is capable of

over 500 round trips/s. The CPU utilisation is low and as the report will show in the following section,
this rate is achievable with 4 cores of CPU resources.

The CPU of the active QM peaks at 8%. The CPU utilisation of the replica QM are again much less and

both nodes reported less than 4% utilisation.

0

10

20

30

40

50

60

70

80

90

100

0

200

400

600

800

1000

1200

1400

1600

1800

0 100 200 300 400 500 600

R
o

u
n

d
 t

ri
p

/s

Requester clients

200K P - 32 Cores

Native HA msg rate (rt/s) SIQM msg rate (rt/s)

Client CPU QM CPU

Page 10

Scaling Results

The results presented so far have been with a CPU limit of 32 cores, which is greater than we expect
most scenarios to use. 32 cores have been used to show the peak throughput achievable in the
specified environment. To illustrate how MQ performs in the OpenShift environment with varying

levels of CPU resources, the 2K, 20K and 200K message tests have been run against the MQ QM in
multiple CPU configurations and the peak throughput noted.

The active and replica QM are each deployed with the same CPU request/limits; the CPU cores
referenced below are allocated to each of the QM.

The graph below shows how the MQ QM scales across varying CPU cores with a 2K message size.

Figure 8 - 2K Scaling

The chart above shows how we can support nearly 800 round trips/s at a single CPU core right up to
over 25,000 round trips/s at 32 CPU cores for Native HA Persistent messaging. For messaging against

a SIQM the respective values are approximately 1,000 and 44,000 round trips/s. The performance is
comparable between Native HA and SIQM up to and including 8 cores.

1 2 4 8 16 32

2K NP 5506 11073 18454 37794 82051 121166

2K P NativeHA 783 1682 3759 9650 14715 25669

2K P SIQM 992 2143 4415 10820 21407 44639

0

20000

40000

60000

80000

100000

120000

140000

160000

R
o

u
n

d
 t

ri
p

/s

CPU Cores (Limit)

2K Message Scaling

Page 11

The graph below shows how the MQ QM scales across varying CPU cores with a 20K message size.

Figure 9 - 20K Scaling

The chart above shows how we can support 500 round trips/s at a single CPU core right up to over

5,000 round trips/s at 16 CPU cores for Native HA Persistent messaging. For messaging against a
SIQM the respective values are approximately 650 and 9,900 round trips/s.

1 2 4 8 16 32

20K NP 2864 5417 10681 19415 26816 26818

20K P NativeHA 508 1060 2201 4087 5114 5074

20K P SIQM 667 1388 2774 5454 9902 13504

0

5000

10000

15000

20000

25000

30000

R
o

u
n

d
 t

ri
p

/s

CPU Cores (Limit)

20K Message Scaling

Page 12

The graph below shows how the MQ QM scales across varying CPU cores with a 200K message size.

Figure 10 - 200K Scaling

The chart above shows how we can support nearly 150 round trips/s at a single CPU core right up to

550 round trips/s at 4 CPU cores for Native HA Persistent messaging. For messaging against a SIQM
the respective values are approximately 220 and 850 round trips/s.

Conclusions

In this whitepaper we have looked at the performance of the Native HA QM in the OpenShift
environment when driven by a client outside of the OCP cluster and shown the effect of varying

message size, requester clients and CPU cores have on the performance of the QM.

As a comparison point, we have included SIQM data. It should be noted that Native HA has a few

advantages over SIQM that are worth highlighting:

• Faster failover in a wide set of failover/switchover scenarios
• Less downtime due to ability to apply rolling updates

• Increased availability across availability zones

Its been shown that Native HA QM can offer both high performance and availability as you deploy QM

into the OCP environment and to performance levels comparable with SIQM topologies (particularly at

smaller core utilisations).

This data should help you size your solutions to support your intended workload as you deploy your

highly available MQ scenarios into the OCP environment.

1 2 4 8 16 32

200K NP 598 1389 2059 2828 2829 2826

200K P NativeHA 142 297 554 571 626 567

200K P SIQM 220 440 849 1596 1657 1647

0

500

1000

1500

2000

2500

3000

3500

R
o

u
n

d
 t

ri
p

/s

CPU Cores (Limit)

200K Message Scaling

Page 13

Appendix A

Hardware specification for Worker Nodes and external client:

System ThinkSystem SR630

CPU 2x16 Core 2.8Ghz Xeon Gold 6242 Hyperthreaded

RAM 96GB RAM RDIMM TruDDR4 2933MHz

RAID 930-16i 4GB Flash PCI 12Gb RAID Adapter

Disks 800GB SSD (2x400GB) SS530 Performance SAS 12Gbp/s

SAN Connectivity Dual Port HBA 16Gb

10GbE Network Dual Port 10GbE Broadcom Network Adapter

100GbE Network Dual Port 100GbE Mellanox ConnectX-4 Network Adapter

https://lenovopress.com/lp1049-thinksystem-sr630-server-xeon-sp-gen2

Hardware specification for Master, Infrastructure and Bootstrap nodes:

System ThinkSystem SR530

CPU 1x8 Core 2.1Ghz Xeon Silver 4208 Hyperthreaded

RAM 32GB RAM (2x16GB) RDIMM TruDDR4 2666MHz

RAID 530-8i PCI 12Gb RAID Adapter

Disks 480GB SSD (2x240GB) S4610 Mainstream SATA 6Gbp/s

10GbE Network Dual Port 10GbE Broadcom Network Adapter

https://lenovopress.com/lp1045-thinksystem-sr530-server-xeon-sp-gen2

https://lenovopress.com/lp1049-thinksystem-sr630-server-xeon-sp-gen2
https://lenovopress.com/lp1045-thinksystem-sr530-server-xeon-sp-gen2

Page 14

Appendix B

QM Yaml:

apiVersion: mq.ibm.com/v1beta1

kind: QueueManager

metadata:

 name: perf0

 annotations:

 k8s.v1.cni.cncf.io/networks: default/tengig,default/hundredgig

 k8s.v1.cni.cncf.io/service-network: default/hundredgig

 labels:

 service.kubernetes.io/service-proxy-name: multus-proxy

spec:

 version: 9.3.3.0-r2

 license:

 accept: true

 license: L-YBXJ-ADJNSM

 use: Production

 pki:

 keys:

 - name: default

 secret:

 secretName: mqcert

 items:

 - tls.key

 - tls.crt

 trust:

 - name: app

 secret:

 secretName: mqcert

 items:

 - app.crt

 web:

 enabled: false

 queueManager:

 name: "PERF0"

 availability:

 type: NativeHA

 tls:

 secretName: mqcert-internal

 cipherSpec: ANY_TLS12

 storage:

 defaultClass: san

 queueManager:

 mqsc:

 - configMap:

 name: perf-mqsc-ini

 items:

 - disable-tls.mqsc

 - nha.mqsc

 - queues.mqsc

 ini:

 - configMap:

 name: perf-mqsc-ini

 items:

 - fastpath.ini

 recoveryLogs:

 logFilePages: 16384

 resources:

 limits:

 cpu: '32'

 memory: 16Gi

Page 15

 requests:

 cpu: '32'

 memory: 16Gi

 securityContext:

 initVolumeAsRoot: true

 template:

 pod:

 containers:

 - name: qmgr

 env:

 - name: MQSNOAUT

 value: "yes"

MQSC ConfigMap yaml:

apiVersion: v1

kind: ConfigMap

metadata:

 name: perf-mqsc-ini

data:

 disable.mqsc: |

 alter qmgr chlauth(disabled)

 alter qmgr maxmsgl(104857600)

 alter channel(SYSTEM.DEF.SVRCONN) chltype(SVRCONN) sharecnv(1) mcauser('mqm')

maxmsgl(104857600) SSLCAUTH(OPTIONAL) SSLCIPH('')

 alter qlocal(SYSTEM.DEFAULT.LOCAL.QUEUE) maxmsgl(104857600)

 alter qmodel(SYSTEM.DEFAULT.MODEL.QUEUE) maxmsgl(104857600)

 alter qmodel(system.jms.tempq.model) maxmsgl(104857600)

 alter qlocal(system.dead.letter.queue) maxmsgl(104857600)

 alter authinfo(SYSTEM.DEFAULT.AUTHINFO.IDPWOS) authtype(IDPWOS) chckclnt(OPTIONAL)

 refresh security(*) type(CONNAUTH)

 disable-tls.mqsc: |

 alter qmgr chlauth(disabled)

 alter qmgr maxmsgl(104857600)

 alter channel(SYSTEM.DEF.SVRCONN) chltype(SVRCONN) sharecnv(1) mcauser('mqm')

maxmsgl(104857600) SSLCAUTH(REQUIRED) SSLCIPH('ANY_TLS12_OR_HIGHER')

 alter qlocal(SYSTEM.DEFAULT.LOCAL.QUEUE) maxmsgl(104857600)

 alter qmodel(SYSTEM.DEFAULT.MODEL.QUEUE) maxmsgl(104857600)

 alter qmodel(system.jms.tempq.model) maxmsgl(104857600)

 alter qlocal(system.dead.letter.queue) maxmsgl(104857600)

 alter authinfo(SYSTEM.DEFAULT.AUTHINFO.IDPWOS) authtype(IDPWOS) chckclnt(OPTIONAL)

 refresh security(*) type(CONNAUTH)

 nha.mqsc: |

 alter qmgr IMGLOGLN(25000)

 queues.mqsc: |

 define qlocal(queue) maxdepth(5000) replace

 define qlocal(request) maxdepth(5000) replace

 define qlocal(reply) maxdepth(5000) replace

 define qlocal(request1) maxdepth(5000) replace

 define qlocal(request2) maxdepth(5000) replace

 define qlocal(request3) maxdepth(5000) replace

 define qlocal(request4) maxdepth(5000) replace

 define qlocal(request5) maxdepth(5000) replace

 define qlocal(request6) maxdepth(5000) replace

 define qlocal(request7) maxdepth(5000) replace

 define qlocal(request8) maxdepth(5000) replace

 define qlocal(request9) maxdepth(5000) replace

 define qlocal(request10) maxdepth(5000) replace

 define qlocal(request11) maxdepth(5000) replace

 define qlocal(request12) maxdepth(5000) replace

 define qlocal(request13) maxdepth(5000) replace

 define qlocal(request14) maxdepth(5000) replace

Page 16

 define qlocal(request15) maxdepth(5000) replace

 define qlocal(request16) maxdepth(5000) replace

 define qlocal(request17) maxdepth(5000) replace

 define qlocal(request18) maxdepth(5000) replace

 define qlocal(request19) maxdepth(5000) replace

 define qlocal(request20) maxdepth(5000) replace

 define qlocal(reply1) maxdepth(5000) replace

 define qlocal(reply2) maxdepth(5000) replace

 define qlocal(reply3) maxdepth(5000) replace

 define qlocal(reply4) maxdepth(5000) replace

 define qlocal(reply5) maxdepth(5000) replace

 define qlocal(reply6) maxdepth(5000) replace

 define qlocal(reply7) maxdepth(5000) replace

 define qlocal(reply8) maxdepth(5000) replace

 define qlocal(reply9) maxdepth(5000) replace

 define qlocal(reply10) maxdepth(5000) replace

 define qlocal(reply11) maxdepth(5000) replace

 define qlocal(reply12) maxdepth(5000) replace

 define qlocal(reply13) maxdepth(5000) replace

 define qlocal(reply14) maxdepth(5000) replace

 define qlocal(reply15) maxdepth(5000) replace

 define qlocal(reply16) maxdepth(5000) replace

 define qlocal(reply17) maxdepth(5000) replace

 define qlocal(reply18) maxdepth(5000) replace

 define qlocal(reply19) maxdepth(5000) replace

 define qlocal(reply20) maxdepth(5000) replace

 fastpath.ini: |

 Channels:

 MQIBindType=FASTPATH

 MaxActiveChannels=5000

 MaxChannels=5000

 Log:

 LogPrimaryFiles=16

 LogSecondaryFiles=2

 LogBufferPages=4096

 TuningParameters:

 DefaultPQBufferSize=10485760

 DefaultQBufferSize=10485760

