
1

IBM MQ - RDQM HA Performance Report

Version 1.1 - August 2018

Paul Harris

IBM MQ Performance

IBM UK Laboratories

Hursley Park

Winchester

Hampshire

2

Please take Note!

Before using this report, please be sure to read the paragraphs on “disclaimers”,

“warranty and liability exclusion”, “errors and omissions”, and the other general

information paragraphs in the "Notices" section below.

First Edition, August 2018.

This edition applies to IBM MQ V9.0.4 (and to all subsequent releases and

modifications until otherwise indicated in new editions).

© Copyright International Business Machines Corporation 2018. All rights reserved.

Note to U.S. Government Users

Documentation related to restricted rights.

Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule

contract with IBM Corp.

DISCLAIMERS

The performance data contained in this report was measured in a controlled

environment. Results obtained in other environments may vary significantly.

You should not assume that the information contained in this report has been

submitted to any formal testing by IBM.

Any use of this information and implementation of any of the techniques are the

responsibility of the licensed user. Much depends on the ability of the licensed user to

evaluate the data and to project the results into their own operational environment.

WARRANTY AND LIABILITY EXCLUSION

The following paragraph does not apply to the United Kingdom or any other country

where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION

“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-

INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain

transactions, therefore this statement may not apply to you.

In Germany and Austria, notwithstanding the above exclusions, IBM's warranty and

liability are governed only by the respective terms applicable for Germany and Austria

in the corresponding IBM program license agreement(s).

3

ERRORS AND OMISSIONS

The information set forth in this report could include technical inaccuracies or

typographical errors. Changes are periodically made to the information herein; any

such change will be incorporated in new editions of the information. IBM may make

improvements and/or changes in the product(s) and/or the program(s) described in

this information at any time and without notice.

INTENDED AUDIENCE

This report is intended for architects, systems programmers, analysts and

programmers wanting to understand the performance characteristics of. IBM MQ

RDQM capabilities, in comparison to MIQM. The information is not intended as the

specification of any programming interface that is provided by IBM. It is assumed that

the reader is familiar with the concepts and operation of IBM MQ, and RDQM.

LOCAL AVAILABILITY

References in this report to IBM products or programs do not imply that IBM intends to

make these available in all countries in which IBM operates. Consult your local IBM

representative for information on the products and services currently available in your

area.

ALTERNATIVE PRODUCTS AND SERVICES

Any reference to an IBM product, program, or service is not intended to state or imply

that only that IBM product, program, or service may be used. Any functionally

equivalent product, program, or service that does not infringe any IBM intellectual

property right may be used instead. However, it is the user’s responsibility to evaluate

and verify the operation of any non-IBM product, program, or service.

USE OF INFORMATION PROVIDED BY YOU

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

TRADEMARKS AND SERVICE MARKS

The following terms used in this publication are trademarks of their respective

companies in the United States, other countries or both:

- IBM Corporation : IBM

- Oracle Corporation : Java

Other company, product, and service names may be trademarks or service marks of

others.

EXPORT REGULATIONS

You agree to comply with all applicable export and import laws and regulations.

4

Contents

1 Report Highlights ... 5

2 RDQM Introduction .. 5

3 RDQM Throughput Tests ... 6

3.1 Throughput Results for a Single Queue Manager .. 8

3.2 Throughput Results for 10 Queue Managers .. 9

4 How does HA perform over larger distances?... 10

5 Fail-over Tests .. 13

5.1.1 Fail-over Test Scenarios .. 13

5.1.2 Example Fail-over Timeline .. 15

5.1.3 Fail-over Results ... 16

Appendix A : Topologies and Machine Specifications ... 19

Single server, with SAN storage Topology ... 19

MIQM & RDQM Topologies ... 20

Machine Types ... 22

Appendix B : Workloads .. 23

Test Scenario 1 – Requester/Responder (Persistent messages) 23

Test Scenario 2 – Putter/Getter (Persistent messages) ... 23

Appendix C : Utilities .. 25

RDQM Related Commands... 25

Simulating Network latency (tc) ... 25

Simulating Network outage (iptables) ... 26

Appendix D : Glossary of terms used in this report ... 27

Appendix E : Additional Resources ... 28

5

1 Report Highlights
This report contains data points that illustrate the performance of the RDQM high

availability (HA) solution delivered in the V9.0.4 CD, and V9.1 LTS releases of MQ for

Linux. It is worth noting the following highlights:

• Over 43,000 round trips/second peak messaging rate in RDQM HA enabled

scenario (~86,000 messages produced and ~86,000 messages consumed).

See section 3.2.

• Peak messaging rate for RDQM HA is faster than MIQM equivalent. See

section 3.

• RDQM HA scenarios with SSD backed DRBD storage, run up to 82-90% of rate

achieved by a stand-alone QM, logging to SAN. See section 3.

• RDQM recovery from fail-over is faster for RDQM than MIQM in all scenarios

tested (see section 5).

2 RDQM Introduction
Replicated Data Queue Managers (RDQM) are an MQ Advanced capability available on

RedHat Linux x86-64. They provide high availability of MQ queue managers through

direct replication of the MQ data and automatic restart of the queue manager across a

set of three servers configured in an HA group. The queue manager data between

servers is persisted to a file system on each server. This file system was hosted on local

SSDs for the purposes of the paper, giving optimum performance. An important

distinction between the RDQM HA approach and previous MQ HA software solutions is

that there is no dependency of external systems such as HA Clusters or highly available

network file systems.

https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.0.0/com.ibm.mq.con.doc/

q130280_.htm

If separate networks and switches (if required) are used to connect the three servers,

then they can also continue to operate in the event of a partial network outage due to

the three systems working to a quorum model.

To ensure clients reconnect to the newly active QM on another server, the clients could

be made aware of the IP addresses assigned to the workload interfaces of all three

systems; or a Virtualised IP address in the case that a suitable load balancer component

is employed. Alternatively, RDQM HA has a "floating IP" feature that means that a client can be

configured with a single IP address for an RDQM without the need for a load balancer or similar, if

RDQM is employed in an environment where that could be used.

https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.0.0/com.ibm.mq.con.doc/q130280_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.0.0/com.ibm.mq.con.doc/q130280_.htm

6

3 RDQM Throughput Tests

All the scenarios featured in this section utilise Requester/Responder messaging

scenarios and the published messaging rate is measured in Round Trips/sec, which

involves 2 message puts and 2 message gets. If you are only utilising one-way

messaging (using a message sender, queue and message receiver to perform 1 message

put and 1 message get), and you can avoid queue-lock contention, then you may

achieve up to double the published rates.

The Requester/Responder test is detailed in : Workloads, and is presented here with

results from running tests against three deployments of MQ:

• One or ten stand-alone queue manager(s), logging to SAN.

• One or ten MIQM queue manager(s) (with the NFS filesystem deployed on

enterprise class SSDs on a server connected to the primary/standby, via 10Gb

links).

• One or ten RDQM queue manager(s), where the three RDQM nodes are connected

via 10Gb links and the filesystems are all deployed on enterprise class SSDs.

The SAN and MIQM configurations are simple, non-replicated deployments, whereas

RDQM provides three-way replication for data redundancy. The table below summarises

the capabilities of the three tests.

 Automatic restart Data Replication

SAN No No

MIQM Yes No

RDQM Yes Yes

The IBM knowledge center provides a more detailed summary of the HA options

available to you.

https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.con.doc/

q017820_.htm

Whilst other option like HA clusters are available, these can be complicated to setup and

are historically slower in fail-over times. The three scenarios above can be setup easily

out of the box (Linux has NFS support built in).

Appendix A details the machine configurations and specifications, used in these tests.

The version of the MQ tested in this section is V9.0.4.

Each test was conducted using a 2K (2048 byte) message size and this data is shown in

the graphs included below. Additional tests were conducted using 20K and 200K to

provide further data points.

https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.con.doc/q017820_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.con.doc/q017820_.htm

7

8

3.1 Throughput Results for a Single Queue Manager
Results are presented for various numbers of requester application threads distributed

across the 10 pairs of queues, 300 fixed responder application threads (30 responders

per request queue) will send the replies to the appropriate reply queue, and the report

will show the message rates achieved (in round trips/second) as the number of

requesters is increased.

FIGURE 1 – PERFORMANCE RESULTS FOR 2KB PERSISTENT MESSAGING

Figure 1 shows that by enabling RDQM HA capability, the maximum throughput achieved

with a 2K message size is reduced by approximately 18%, compared to a standalone

QM, logging to SAN. There is a similar reduction in CPU utilisation. There is a greater

disparity for larger messages (where the log writes become larger, offsetting the higher

latency of the SAN filesystem), but RDQM out-performed the equivalent MIQM test in all

cases.

TABLE 1 - PEAK RATES FOR PERSISTENT MESSAGING

0

10

20

30

40

50

60

70

80

90

100

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

0 30 60 90 120 150 180 210 240 270 300

C
P

U
%

R
o

u
n

d

T

ri
p

s
/s

e
c

Requester Applications

2K Persistent Messages (Single QM)

RDQM round trips/sec MIQM round trips/sec SAN round trips/sec RDQM CPU% MIQM CPU% SAN CPU%

Test RDQM MIQM SAN

Max Rate* CPU% Clients Max Rate* CPU% Clients Max Rate* CPU% Clients

2K Persistent Messages (Single QM) 35,379 71.13 300 31,134 62.38 300 43,351 87.05 300

20K Persistent Messages (Single QM) 10,756 28.64 300 7,102 20.38 240 19,110 45.56 300

200K Persistent Messages (Single QM) 1,140 9.58 30 815 6.7 30 1,937 11.4 30

*Round trips/sec

9

3.2 Throughput Results for 10 Queue Managers
This test repeats the one run in section 3.1, but spreads the load across 10 queue

managers.

Results are presented for various numbers of requester threads distributed across the 10

Queue Managers who each host 10 pairs of queues (representing 10 applications per

QM), 300 fixed responder threads (3 responders per request queue) will send the replies

to the appropriate reply queue which are subsequently received by the originating

requester threads, and the report will show the message rates achieved (in round

trips/second) as the number of requesters is increased.

FIGURE 2 - PERFORMANCE RESULTS FOR 2KB, 10QM PERSISTENT MESSAGING

Figure 2 shows that when we have multiple QMs performing 2KB persistent messaging,

the messaging rate is approximately 10% less than when distributed across a set of non-

HA Queue Managers. Once again, there is a greater disparity for larger messages (where

the log writes become larger, offsetting the higher latency of the SAN filesystem), but

RDQM out-performed the equivalent MIQM test in all cases.

TABLE 2 - PEAK RATES FOR 10QM PERSISTENT MESSAGING

0

10

20

30

40

50

60

70

80

90

100

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

0 30 60 90 120 150 180 210 240 270 300

C
P

U
%

R
o

u
n

d

T

ri
p

s
/s

e
c

Requester Applications

2K Persistent Messages (10 QMs)

RDQM round trips/sec MIQM round trips/sec SAN round trips/sec RDQM CPU% MIQM CPU% SAN CPU%

Test (Name : Type) RDQM MIQM SAN

Max Rate* CPU% Clients Max Rate* CPU% Clients Max Rate* CPU% Clients

2K Persistent Messages (10 QMs) 43,721 87.57 300 38,879 72.1 300 48,491 89.42 300

20K Persistent Messages (10 QMs) 13,370 55.28 270 11,618 57.31 90 22,719 59.12 300

200K Persistent Messages (10 QMs) 1,377 30.31 30 887 15.81 9 2,253 28.87 30

*Round trips/sec

10

4 How does HA perform over larger distances?

The previous section shows how the MQ HA capability, utilising RDQM might perform if

all three of the RDQM nodes were in the same data centre (in our case, connected to the

same local 10Gb switch for data replication). How would the HA performance differ if the

nodes were located a larger distance apart? Due to testing limitations, we need to

simulate the additional network delay that might be experienced as the distances

between the nodes grows.

If the RDQM nodes are located 100Km apart, you might expect the smallest increase in

packet transmission latency for each leg to be calculated as follows:

 distance / speed = time

 100,000m / 300,000,000m/sa = 0.000333s = 333 microseconds

There must also be an allowance for the refraction index of the

cable

333 * 1.5 = 500 microseconds

Switching hardware and non-linear cable routing will likely further increase the latency

between the nodes. The current advice to customers is that the network latency of the

data replication links between RDQM nodes should be no greater than 5ms (though your

own tolerance may be lower than this).

https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.0.0/com.ibm.mq.con.doc/

q130980_.htm

A delay can be inserted into the sending network layer of each node’s data replication

link, to simulate such latency, allowing us to examine how this impacts the RDQM

performance. The following chart repeats the test in section 3.2, and shows the effect of

an additional 2ms round trip delay introduced into the network layer between the three

RDQM nodes.

a Assuming speed of light to be 3x10⁸m/s

https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.0.0/com.ibm.mq.con.doc/q130980_.htm
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.0.0/com.ibm.mq.con.doc/q130980_.htm

11

FIGURE 3 – RDQM PERFORMANCE RESULTS FOR 2KB, 10QM PERSISTENT MESSAGING

WITH 0, 1MS, 2MS, & 5MS BASE NETWORK LATENCY (ROUND TRIP), ON DATA

REPLICATION LINKS.

Figure 3 shows that an additional 1ms delay on the round-trip time of the HA data

replication link results in a significant reduction in performance, when compared with the

direct connection (no additional latency) between the RDQM nodes. As the delay

increases, the impact becomes greater, as expected (a base 2ms delay on the data

replication links reduces peak throughput from 43,721 round trips/sec to 15,041, for

instance). Note that MQ will attempt to aggregate log data into larger disk writes, as the

latency of the underlying file system increases, but this is dependent on higher levels of

concurrency (more applications).

The data in the following tables show the full results for tests with an additional network

delay of 1ms, 2ms & 5ms, across the range of message sizes tested.

The latency number in the charts below shows the average response time of each round

trip (i.e. the time between sending a request and receiving a reply. This latency is

dependent on the network delay, and the time it takes to write the log records for the

transaction (which will increase with the size of the message).

0

10

20

30

40

50

60

70

80

90

100

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

0 30 60 90 120 150 180 210 240 270 300

C
P

U
%

R
o

u
n

d

T

ri
p

s
/s

e
c

Requester Applications

2K Persistent Messages (10 QMs)

No net Delay round trips/sec 1ms Net Delay round trips/sec 2ms Net Delay round trips/sec 5ms Net Delay round trips/sec

No net Delay CPU% 1ms Net Delay CPU% 2ms Net Delay CPU% 5ms Net Delay CPU%

Test No net Delay 1ms Net Delay

Max Rate* CPU% Clients Max Rate* CPU% Clients Latency # Delta †

2K Persistent Messages (10 QMs) 43,721 87.57 300 25,077 65.22 300 6.3 57%

20K Persistent Messages (10 QMs) 13,370 55.28 270 11,724 50.65 270 6.7 88%

200K Persistent Messages (10 QMs) 1,377 30.31 30 1,279 31.88 27 8.9 93%

*Round trips/sec

Single thread round-trip latency

† Percentage of 'no delay' rate.

12

TABLE 3 - PEAK RATES FOR 10QM PERSISTENT MESSAGING WITH ADDITIONAL 1MS

SIMULATED NETWORK DELAY

TABLE 4 - PEAK RATES FOR 10QM PERSISTENT MESSAGING WITH ADDITIONAL 2MS

SIMULATED NETWORK DELAY

TABLE 5 – PEAK RATES FOR 10QM PERSISTENT MESSAGING WITH ADDITIONAL 5MS

SIMULATED NETWORK DELAY

Test No net Delay 2ms Net Delay

Max Rate* CPU% Clients Max Rate* CPU% Clients Latency Delta †

2K Persistent Messages (10 QMs) 43,721 87.57 300 15,041 52.66 300 11.2 34%

20K Persistent Messages (10 QMs) 13,370 55.28 270 9,986 46.13 300 11.9 75%

200K Persistent Messages (10 QMs) 1,377 30.31 30 1,012 29.82 30 14 73%

*Round trips/sec

Single thread round-trip latency

† Percentage of 'no delay' rate.

Test No net Delay 5ms Net Delay

Max Rate* CPU% Clients Max Rate* CPU% Clients Latency Delta †

2K Persistent Messages (10 QMs) 43,721 87.57 300 6,436 37.52 300 25.6 15%

20K Persistent Messages (10 QMs) 13,370 55.28 270 4,932 35.04 300 27.2 37%

200K Persistent Messages (10 QMs) 1,377 30.31 30 512 28.51 30 40 37%

*Round trips/sec

Single thread round-trip latency

† Percentage of 'no delay' rate.

13

5 Fail-over Tests

How long does it take before the secondary QM node in an HA deployment becomes

available, and how long will it be before the application(s) recover to their previous

stable state?

Some scenarios were run to compare a MIQM with RDQM for idle QMs, versus busy QMs,

and for QMs hosting deep queues.

First, some terminology:

The following section considers and compares fail-over times in an HA environment

configured with either RDQM, or MIQM. We will use the following terms in either case.

Primary QM: The primary queue manager. This is the primary RDQM queue manager,

or the ‘active’ MIQM queue manager.

Secondary QM: A secondary queue manager. This is a secondary RDQM queue

manager, or the ‘standby’ MIQM queue manager.

When we talk about applications re-connecting to a secondary QM, we really mean the

newly promoted QM (i.e. a secondary RDQM QM, that has now become the primary QM,

or a standby QM in MIQM that has now become the active QM).

5.1.1 Fail-over Test Scenarios

Our JMS test application was configured to attempt to reconnect to the secondary QM,

when any errors were received whilst communicating with the primary QM. How quickly

the application detects an error depends on how the fail-over is triggered.

The test scenario is described in section 0, whilst : Topologies and Machine

SpecificationsAppendix A describes the HA topologies, and machine specifications.

In our testing we triggered the fail-over in two ways, detailed in the following sections.

• Controlled ‘Switch-over’

The primary queue manager was switched to the secondary, by executing the

appropriate command:

For MIQM, executing the endmqm -s command will switch the queue manager

over to the stand-by

For RDQM, executing the rdqmadm -p -m <QM> command on a node hosting

the secondary QM in the RDQM HA group, will switch the primary queue manager

over to that node.

Connected applications, will get an immediate error response to any outstanding

MQ API calls (e.g. JMSWMQ2007 for ‘send’). This test case was measured for:

1. An idle queue manager (simplest case)

2. Persistent message workload running at a total, target fixed rate of 50,000

PUT/GET pairs/sec against 10 ‘empty’ queues (i.e. there are no messages

14

on the queues apart from those being put and got off the queue during the

execution of this workload (busy case).

Note that each RDQM node only hosted a single HA queue manager. In other

deployments an RDQM node might host, a primary HA QM for one RDQM HA group, and

one or more secondary/tertiary QMs for other HA groups.

15

• Network failure

A loss of the machine hosting the primary node/QM was simulated, by dropping

all inbound/outbound packets for the links to the applications, the RDQM data

replications link (or NFS link, in the case of MIQM), and the pacemaker link,

effectively stopping all communications to the host. Iptables rules were used to

control this.

RDQM will fail-over the QM, when the broken data replication link, and loss of

quorum is identified, whilst the JMS application may now be subject to longer

delays, waiting on outstanding responses from MQ, which will not arrive (our

application will now be dependent on heart-beating, controlled by HBINT to react

to the loss of the primary QM). HBINT will trigger errors such as JMSWMQ2007

(MQPUT), JMSWMQ2002 (MQGET) or JMSCMQ0002 (MQCMIT), with a linked

exception of:

JMSCMQ0001: IBM MQ call failed with compcode '2' ('MQCC_FAILED') reason '2009'

('MQRC_CONNECTION_BROKEN').

This test case was measured for:

1. Persistent message workload running at a total, target fixed rate of 50,000

PUT/GET pairs/sec against 10 ‘empty’ queues (i.e. there are no messages

on the queues apart from those being put and got off the queue during the

execution of this workload (same busy case as for the manual switch-

over).

2. Persistent message workload running at a total, target fixed rate of 50,000

PUT/GET pairs/sec against 10 deep queues (500,000 x2K messages on

each queue). Deep queues, trigger queue loads on the queue manager

switched to, which can have a significant impact on the start-up time.

5.1.2 Example Fail-over Timeline

There are several phases to consider when evaluating the time, it takes for an

application to failover to a secondary queue manager:

i. Detection by RDQM, or MIQM that the primary QM is no longer responding.

ii. Making a secondary QM available, this involves replaying the transaction log to

bring the queue files up to date (this will depend on the current persistent

messaging rate and the time since last log checkpoint), and some queue loading.

iii. Time for client to notice disconnection (iiia) and reconnect to the secondary QM

(iiib).

iv. Time to recover the prior message rate. Once the applications are re-connected,

some additional queue loading may be triggered, if there were deep queues which

were not involved in transactions recovery.

As an example, if a network failure occurred on a primary QM which was busy, and

hosted deep queues, including live transactions, the timeline shown in Figure 4 might be

typical. The green parts of the timeline are when the application is connected and

running at its peak, steady state. The red parts indicate the time during which the

messaging rate is 0 (QM is unavailable, or the application is waiting on HBINT/re-

connection. The yellow part indicates a phase where applications are connected, but the

16

peak rate has not been achieved due to additional queue loading being caused by the

application accesses.

 It can be seen that, different phases of the failover may be taking place concurrently

(such as the RDQM heartbeat timeout, and the HBINT, heartbeat timeout. In the

example shown, HBINT causes the application to attempt connecting to the secondary

QM before it is ready. If there are no deep queues then the secondary QM may well be

open for business before the client has recognised that the connection to the primary QM

has been lost, i.e. phase (ii) may occur before phase (iii). In this case, HBINT becomes

the main factor in determining the overall time it takes from network failure to recovery

of the peak, steady state.

FIGURE 4 - EXAMPLE FAIL-OVER TIMELINE

5.1.3 Fail-over Results

For each of the tests detailed in the sections above, a QM re-start time was calculated

from the MQ errors logs (basically the time from when the QM switch command, or

Iptables command was issued, to the time the queue manager was connectable to

again).

For ‘busy’ scenarios, where a workload was running, an application re-start time was

calculated as the time taken from the client rate dropping to 0 to the rate recovering to

pre-switch levels.

Results for all tests can be seen in Figure 5 and Table 6, below.

Switch-over tests are those triggered by the rdqmadm -p, or endmqm -s commands.

17

Fail-over tests are those where packets on the network link are dropped. Note that in the

fail-over test, the initial part of the QM re-start time is dependent on the HA mechanism

(RDQM, or MIQM) detecting that the primary QM is no longer available. For RDQM, this is

controlled by the underlying clustering technology (Pacemaker/Corosync), and results in

a 10 second time-out. For MIQM, the time-out is dictated by the loss of the NFS lease on

MQ files. For the tests run in this report, the default NFS lease (on the NFS server) was

changed from 90 seconds to 10 seconds, to be more comparable to RDQM, as follows:

echo 10 > /proc/fs/nfsd/nfsv4gracetime

echo 10 > /proc/fs/nfsd/nfsv4leasetime

NB: Setting the NFS lease time will affect all applications using the NFS server, not just

MQ, so this may not be appropriate in your environment.

FIGURE 5- RE-START TIMES FOR QM AND APPLICATIONS

Figure 5, above shows the re-start times for the applications and queue manager for a

controlled switch-over and a fail-over, when the queue manager is busy. Re-start times

for for RDQM are much faster then MIQM, particularly when the queue manager is busy

(log replay time is a big factor in this case, and reading the logs from a local file SSD

based filesystem is much more efficient then reading the data from NFS, in the case of

MIQM). The full results can be see in Table 6 below.

0:00

0:30

1:00

1:30

2:00

2:30

3:00

3:30

Busy Switch-over Busy Fail-over (low HBINT)

El
ap

se
d

 T
im

e
 (

m
m

:s
s)

Application and Queue Manager Re-Start Times

RDQM(QM) RDQM(Application) MIQM(QM) MIQM(Application)

18

TABLE 6 - RE-START TIMES FOR QM AND APPLICATIONS (FULL RESULTS)

RDQM out-performs MIQM in all tests, largely because transaction recovery and queue

loading are quicker from a local filesystem, than across the NFS link. The following

patterns can be observed in the results:

Idle Switch-over The secondary QM was available within 3 seconds of

the switch being issued for both RDQM and MIQM.

Busy Switch-over Application recovery was similar for RDQM & MIQM

(14 & 16 seconds respectively).

Busy Fail-over RDQM QM availability was established a lot faster

(11 seconds, compared to 2minutes 36 seconds).

With the default setting of 300 for HBINT however,

the application recovery times were very similar,

being dominated by the time taken to detect the

network outage.

Busy Fail-over (low HBINT) Reducing the value of HBINT to 20 enabled the

applications to respond faster to the network fault

(40 seconds), so the RDQM recovery time now

benefits much more from the faster QM fail-over.

Busy Fail-over (deep queues) With a lot of data on the queues, associated with

outstanding transactions that occur when a sudden

failure occurs (like the network outage simulated

here), there is a lot more work to do to bring the

system back to the same steady state. Much of this

involves log replay and loading data from the queue

files, which favours RDQM, with its local, fast

storage. Note that the MIQM recovery time is less

here than, with the previous test, but there will be

less transactions to recover, due to the target rate

of 50K/second PUT/GETs being unachievable, using

such deeply populated queues.

RDQM MIQM

Re-start times (mm:ss) Re-start times (mm:ss)

Msg Rate QM Application Msg Rate QM Application Q Depth HBINT

Idle Switch-over n/a 00:02 n/a n/a 00:03 n/a 0 n/a

Busy Switch-over ~50K/sec 00:04 00:14 ~50K/sec 00:13 00:16 0 300

Busy Fail-over ~50k/sec 00:11 06:03 ~50K/sec 02:36 06:05 0 300

Busy Fail-over (low HBINT) ~50K/sec 00:10 00:45 ~50K/sec 03:06 03:09 0 20

Busy Fail-over (deep queues) ~50K/sec 01:21 01:23 ~12K/sec 01:39 02:08 500,000 20

19

Appendix A : Topologies and Machine Specifications

Single server, with SAN storage Topology

The non-HA SAN tests used an IBM Storwize V7000 populated with 10,000 rpm disks

configured in a RAID 10 array, and fronted by an IBM SAN Volume Controller (SVC) with

20GB of RAM.

The svc was connected to the MQ server via a dual-port 8Gb fibre channel adapter.

FIGURE 6 - SAN TEST TOPOLOGY

IBM Storwize V7000

QM Host

IBM SAN Volume Controller

Application Server 1 Application Server 2

40Gb Network Link:

8Gb Fibre Link:

20

MIQM & RDQM Topologies

The same 5 machines were used for both the RDQM and MIQM testing.

FIGURE 7 - RDQM TEST TOPOLOGY

For RDQM testing, all three RDQM nodes were of type 1 (see machine types, below), and

the two application hosts were of type 2. The DRBD volume groups were deployed on a

RAID0, enterprise SSD volume. Links between the applications and the RDQM nodes

were 40Gb, whilst the RDQM data replications links were 10Gb. Each RDQM node had a

single Pacemaker address (HA_Primary), utilising the 40Gb link. For failover testing, only

one application host was used.

Primary QM/RDQM Node

Tertiary QM/RDQM NodeSecondary QM/RDQM Node

Application Server 1 Application Server 2

40Gb Network Link:

10Gb Network Link:

21

FIGURE 8 - MIQM TEST TOPOLOGY

For MIQM testing, the two MIQM QM hosts, and the NFS server were of type 1 (see

machine types, below), and the two application hosts were of type 2. The file system

exported by the NFS server to host the MQ logs and queues, was deployed on a RAID0,

enterprise SSD volume. Links between the applications and the MIQM QM hosts were

40Gb, whilst the NFS links were 10Gb. For failover testing, only one application host was

used.

NFS Server

MIQM Standby QMMIQM Active QM

Application Server 1 Application Server 2

40Gb Network Link:

10Gb Network Link:

22

Machine Types

Type 1 (Single server (SAN test), RDQM nodes, MIQM Active/Standby hosts & NFS

Server)

Category Value

Machine x3550 M5

OS Red Hat Enterprise Linux Server 7.4

CPU 2 x 14 Cores: Intel Xeon E5-2690 V4 @ 2.6GHz.

RAM 128GB RAM

Network 1Gb, 10Gb & 40Gb Ethernet

Disks (hosting MQ

logs/queues for RDQM

nodes or as NFS

server)

2 x 400GB, 6Gb SATA, Enterprise Performance SSDs

(00YC326) in RAID 0 array.

RAID ServeRAID M5210 (4GB Flash RAID cache)

Type 2 (Application Clients)

Category Value

Machine x3550 M5

OS Red Hat Enterprise Linux Server 7.4

CPU 2 x 12 Cores: Intel Xeon E5-2690 V3 @ 2.6GHz.

RAM 128GB RAM

Network 1Gb, 10Gb & 40Gb Ethernet

23

Appendix B : Workloads

Two scenarios were used to collect the measurements in this report:

Test Scenario 1 – Requester/Responder (Persistent messages)
The test scenario in Figure 9 is a Requester/Responder scenario that simulates several

applications that interact with a single QM. Ten pairs of request/reply queues are created

for this test. One or more requester applications will send messages to one of the

application request queues and will wait for a reply on the associated reply queue.

Responder applications will listen for messages on the request queues before sending

them to the correct reply queue.

Subsequent requester applications will send and receive messages from the set of

application queues on a round-robin basis i.e. distributing the messages produced and

consumed across the set of application queues (the diagram below shows how the

distribution would cycle round, if only three queue pairs are used).

Each test is scaled up by adding additional batches of requesters in stages, until the

limiting factor is reached. Depending on the nature of the test (message size, latency of

the file system hosting the transaction log etc) the number of requesters added before

the limit of the test is reached, will differ.

MQ-CPH was used as the test application.

FIGURE 9 - REQUESTER-RESPONDER TEST SCENARIO

Test Scenario 2 – Putter/Getter (Persistent messages)

For the fail-over tests, a Putter/Getter test scenario was used. Ten queues are created

for this test.

One or more Put/Get applications will send messages to one of the application request

queues and will then Get the message back off the same queue. Subsequent Put/Get

applications will send and receive messages from the set of application queues on a

round-robin basis i.e. distributing the messages produced and consumed across the set

MQ-CPH

MQ Server (Primary/Active)

Responder 1
MQGet

Responder 2

Requester 1

Requestor 2

Requester 3

Requester 4

MQPut

MQ-CPH

MQ

…Responder 3

Responder 4

MQGet MQPut

Requester Machine

Request queues

Reply queues

…

Requester n Responder n

……

…

Responder Machine

24

of application queues (the diagram below shows how the distribution would cycle round,

if only three queues are used).

A modified version of JMSPerfharness was used (modified to attempt reconnection to a

secondary QM, when a JMS API call to the primary QM returned with an error).

In contrast to the Requester/Responder scenario, this scenario was rated, i.e. the

Put/Get applications were set to execute n loops/sec, maintaining steady rate of about

50,000/sec where this was achievable. This capped the MQ server CPU to around 70%,

in most cases, so that fail-over was not occurring when the machine was already CPU

constrained by the workload running as fast as it could.

FIGURE 10 - PUTTER/GETTER TEST SCENARIO

MQ Server (Primary/Active)

MQGet
PutGet App 1

PutGet App 2

PutGet App 3

PutGet App 4

MQPut

JMSPerfHarness

MQ

Requester Machine

Queues

PutGet App 5

…

…

25

Appendix C : Utilities

RDQM Related Commands

For RDQM, the HA current location, and status of the RDQM nodes can be viewed using

rdqmstatus. You can also monitor the Pacemaker cluster, using crm_mon.

Running rdqmstatus commands from a node hosting a secondary QM in the RDQM HA

group (mqperfx2), in a healthy Pacemaker cluster, where the primary QM is currently

running on the node (mqperfxs) will return the following output, for example:

[mqperf@mqperfx2 ~]$ rdqmstatus

Node: mqperfx2

Queue manager name: PERF0

Queue manager status: Running elsewhere

HA current location: mqperfxs

Command '/opt/mqm/bin/rdqmstatus' run with sudo.

[mqperf@mqperfx2 ~]$ rdqmstatus -n

Node mqperfxs is online

Node mqperfxw is online

Node mqperfx2 is online

Command '/opt/mqm/bin/rdqmstatus' run with sudo.

Running the crm_mon command from another node in the cluster (mqperfx2) when the

Pacemaker cluster is in the same state, will return the following output, for example:

[mqperf@mqperfx2 ~]$ crm_mon

Stack: corosync

Current DC: mqperfxw (version 1.1.15.linbit-2.0+20160622+e174ec8.el7-e174ec8) - partition

with quorum

Last updated: Wed Jun 6 10:17:29 2018 Last change: Wed Jun 6 10:17:26 2018 by

mqm via crm_attribute on mqperfxs

3 nodes and 6 resources configured

Online: [mqperfx2 mqperfxs mqperfxw]

 Master/Slave Set: ms_drbd_perf0 [p_drbd_perf0]

 Masters: [mqperfxs]

 Slaves: [mqperfx2 mqperfxw]

p_fs_perf0 (ocf::heartbeat:Filesystem): Started mqperfxs

p_rdqmx_perf0 (ocf::ibm:rdqmx): Started mqperfxs

perf0 (ocf::ibm:rdqm): Started mqperfxs

Simulating Network latency (tc)
Latencies were injected into the network interfaces where applicable, using tc (traffic

control).

The example below, shows how to set a 500us latency on interface ens1f0, the 10Gb

link.

[root@mqperfxs mqperf]# ping mqperfx2

PING mqperfx2.hursley.ibm.com (9.20.36.121) 56(84) bytes of data.

64 bytes from mqperfx2.hursley.ibm.com (9.20.36.121): icmp_seq=1 ttl=64 time=0.181 ms

26

64 bytes from mqperfx2.hursley.ibm.com (9.20.36.121): icmp_seq=2 ttl=64 time=0.090 ms

^C

--- mqperfx2.hursley.ibm.com ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1001ms

rtt min/avg/max/mdev = 0.090/0.135/0.181/0.046 ms

[root@mqperfxs mqperf]# tc qdisc add dev ens1f0 root netem delay 500us

[root@mqperfxs mqperf]# tc qdisc show dev ens1f0

qdisc netem 8001: root refcnt 33 limit 1000 delay 499us

[root@mqperfxs mqperf]# ping mqperfx210

PING mqperfx210.hursley.ibm.com (10.20.36.121) 56(84) bytes of data.

64 bytes from mqperfx210.hursley.ibm.com (10.20.36.121): icmp_seq=1 ttl=64 time=0.531 ms

64 bytes from mqperfx210.hursley.ibm.com (10.20.36.121): icmp_seq=2 ttl=64 time=0.532 ms

^C

--- mqperfx210.hursley.ibm.com ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1001ms

rtt min/avg/max/mdev = 0.531/0.531/0.532/0.023 ms

[root@mqperfxs mqperf]# tc qdisc delete dev ens1f0 root

Simulating Network outage (iptables)

In order to simulate a network outage on the primary queue manager, the iptables

command was used.

NB: Do not use ‘ifdown’ command to simulate an outage. This will disable the device

and remove the IP address so that DRBD can no longer bind to it. The use of this

command is not suitable for fail-over testing.

The iptables commands used are shown below, being used to drop all inbound and

outbound packets on interfaces ens3 & ens1f0 (the 10Gb and 40Gb links). The

subsequent list-rules format of the command shows the new rules.

iptables -A INPUT -i ens3 -j DROP

iptables -A OUTPUT -o ens3 -j DROP

iptables -A INPUT -i ens1f0 -j DROP

iptables -A OUTPUT -o ens1f0 -j DROP

iptables -S

-P INPUT ACCEPT

-P FORWARD ACCEPT

-P OUTPUT ACCEPT

-A INPUT -i ens3 -j DROP

-A INPUT -i ens1f0 -j DROP

-A OUTPUT -o ens3 -j DROP

-A OUTPUT -o ens1f0 -j DROP

Deleting the rules will stop packets being dropped, e.g.:

iptables -D INPUT -i ens3 -j DROP

iptables -D OUTPUT -o ens3 -j DROP

iptables -D INPUT -i ens1f0 -j DROP

iptables -D OUTPUT -o ens1f0 -j DROP

27

Appendix D : Glossary of terms used in this report

CD Continuous delivery.

DRBD Distributed, replicated block device.

HA High availability.

JMSPerfharness JMS based, performance test application

(https://github.com/ot4i/perf-harness)

LTS Long term service.

MIQM Multi-instance queue manager.

MQ-CPH C based, performance test application

(https://github.com/ibm-messaging/mq-cph)

RDQM Replicated data queue manager.

https://github.com/ot4i/perf-harness
https://github.com/ibm-messaging/mq-cph

28

Appendix E : Additional Resources

There is a wealth of information on RDQM in the MQ V9 Knowledge Centre, which you

should refer to, but the following additional resources can be helpful.

RDQM (Easy HA) - Getting started

https://youtu.be/5qYHsmKZt2M

RDQM in MQ Advanced 9.0.4

https://developer.ibm.com/messaging/2017/10/25/rdqm-mq-advanced-9-0-4

IBM MQ: How long will it take to (re)start my queue manager?

https://developer.ibm.com/messaging/2017/10/25/qm_restart_time

RDQM GitHub

https://github.com/ibm-messaging/mq-rdqm

MQ-CPH (The IBM MQ C Performance Harness)

https://github.com/ibm-messaging/mq-cph

JMSPerfHarness

https://github.com/ot4i/perf-harness

https://youtu.be/5qYHsmKZt2M
https://developer.ibm.com/messaging/2017/10/25/rdqm-mq-advanced-9-0-4
https://developer.ibm.com/messaging/2017/10/25/qm_restart_time
https://github.com/ibm-messaging/mq-rdqm
https://github.com/ibm-messaging/mq-cph
https://github.com/ot4i/perf-harness

